51
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
52
|
George A, Varghese J, Padinharayil H. Potential of Biotechnology in Cancer Management. NOVEL TECHNOLOGIES IN BIOSYSTEMS, BIOMEDICAL & DRUG DELIVERY 2023:9-44. [DOI: 10.1007/978-981-99-5281-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
53
|
The role of exosomes in the molecular mechanisms of metastasis: Focusing on EMT and cancer stem cells. Life Sci 2022; 310:121103. [DOI: 10.1016/j.lfs.2022.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
54
|
George IA, Chauhan R, Dhawale R, Iyer R, Limaye S, Sankaranarayanan R, Venkataramanan R, Kumar P. Insights into therapy resistance in cervical cancer. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100074. [DOI: 10.1016/j.adcanc.2022.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
55
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
56
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
57
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
58
|
Polymer Thin Film Promotes Tumor Spheroid Formation via JAK2-STAT3 Signaling Primed by Fibronectin-Integrin α5 and Sustained by LMO2-LDB1 Complex. Biomedicines 2022; 10:biomedicines10112684. [DOI: 10.3390/biomedicines10112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.
Collapse
|
59
|
Mekkawy SA, Abdalla MS, Omran MM, Hassan NM, Abdelfattah R, Abdel-Salam IM. Cancer Stem Cells as a Prognostic Biomarker and Therapeutic Target Using Curcumin/ Piperine Extract for Multiple Myeloma. Asian Pac J Cancer Prev 2022; 23:3507-3515. [PMID: 36308377 PMCID: PMC9924316 DOI: 10.31557/apjcp.2022.23.10.3507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological bone marrow malignancy that can be treated but is usually fatal. Medication resistance is the major cause of relapses due to cancer stem cells (CSCs). As a result, this study aimed to identify multiple myeloma cancer stem cells (MMCSCs) in the bone marrow of twelve MM patients with pathological complete response (pCR) after chemotherapy and to investigate the potential effect of Curcumin/Piperine (C/P) extract as an anti-MMCSCs treatment in twenty newly diagnosed patients. METHODS This study included twenty bone marrow (BM) samples from newly diagnosed MM patients and twelve BM samples from pCR patients after a year of treatment. The MTT test was performed to assess the treatment's effective dosage. A flow cytometer was used to identify MMCSCs, cell cycle profile, extract's apoptotic activity, and proliferation marker in the selected samples. Also, a colony formation test and stemness protein were investigated. RESULTS In newly diagnosed MM patients, the C/P extract suppressed MMCSCs by 64.71% for CD138-/CD19- and 38.31% for CD38++. In MM patients' samples obtained after one year of treatment, the MMCSCs inhibition percentage reached 44.71% (P < 0.008) for CD138-/CD19- and 36.94% (P < 0.221) for CD38++. According to cell cycle analyses, the number of cells treated with C/P extract was significantly reduced in the S and G0/G1 phases (87.38%: 35.15%, and 4.83%: 2.17% respectively), with a rapid increase in the G2/M phases (1.1%: 2.2%.). MMCSCs apoptosis was identified using a flow cytometer and Annexin-V. Multiple myeloma stem cell (MMCSC) proliferation was inhibited. Clonogenicity was suppressed by 60%, and stemness protein expression was reduced by 70%. CONCLUSION MMCSCs in the bone marrow of MM-pCR patients can be utilized as a prognostic tool to predict recurrent multiple myeloma incidence. Also, the therapeutic potential of C/P extract as a prospective anti-MM drug targeting MMCSCs.
Collapse
Affiliation(s)
- Sara A. Mekkawy
- Molecular Biotechnology program, Faculty of Science, Helwan University, Cairo, Egypt. ,For Correspondence:
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Naglaa M. Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Egypt.
| | - Raafat Abdelfattah
- Medical Oncology Department, National cancer institute, Cairo University, Egypt.
| | | |
Collapse
|
60
|
Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin. Cell Rep 2022; 40:111390. [PMID: 36130502 DOI: 10.1016/j.celrep.2022.111390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/22/2022] Open
Abstract
Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.
Collapse
|
61
|
Aljabban J, Rohr M, Syed S, Cohen E, Hashi N, Syed S, Khorfan K, Aljabban H, Borkowski V, Segal M, Mukhtar M, Mohammed M, Boateng E, Nemer M, Panahiazar M, Hadley D, Jalil S, Mumtaz K. Dissecting novel mechanisms of hepatitis B virus related hepatocellular carcinoma using meta-analysis of public data. World J Gastrointest Oncol 2022; 14:1856-1873. [PMID: 36187396 PMCID: PMC9516659 DOI: 10.4251/wjgo.v14.i9.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a cause of hepatocellular carcinoma (HCC). Interestingly, this process is not necessarily mediated through cirrhosis and may in fact involve oncogenic processes. Prior studies have suggested specific oncogenic gene expression pathways were affected by viral regulatory proteins. Thus, identifying these genes and associated pathways could highlight predictive factors for HCC transformation and has implications in early diagnosis and treatment.
AIM To elucidate HBV oncogenesis in HCC and identify potential therapeutic targets.
METHODS We employed our Search, Tag, Analyze, Resource platform to conduct a meta-analysis of public data from National Center for Biotechnology Information’s Gene Expression Omnibus. We performed meta-analysis consisting of 155 tumor samples compared against 185 adjacent non-tumor samples and analyzed results with ingenuity pathway analysis.
RESULTS Our analysis revealed liver X receptors/retinoid X receptor (RXR) activation and farnesoid X receptor/RXR activation as top canonical pathways amongst others. Top upstream regulators identified included the Ras family gene rab-like protein 6 (RABL6). The role of RABL6 in oncogenesis is beginning to unfold but its specific role in HBV-related HCC remains undefined. Our causal analysis suggests RABL6 mediates pathogenesis of HBV-related HCC through promotion of genes related to cell division, epigenetic regulation, and Akt signaling. We conducted survival analysis that demonstrated increased mortality with higher RABL6 expression. Additionally, homeobox A10 (HOXA10) was a top upstream regulator and was strongly upregulated in our analysis. HOXA10 has recently been demonstrated to contribute to HCC pathogenesis in vitro. Our causal analysis suggests an in vivo role through downregulation of tumor suppressors and other mechanisms.
CONCLUSION This meta-analysis describes possible roles of RABL6 and HOXA10 in the pathogenesis of HBV-related HCC. RABL6 and HOXA10 represent potential therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Eli Cohen
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Naima Hashi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Sharjeel Syed
- Department of Medicine, University of Chicago Hospitals, Chicago, IL 60637, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno, Fresno, CA 93701, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Frankfort, IL 60423, United States
| | - Emmanuel Boateng
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Mary Nemer
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dexter Hadley
- Department of Pathology, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Sajid Jalil
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Khalid Mumtaz
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
62
|
Zhang S, Zhu N, Li HF, Gu J, Zhang CJ, Liao DF, Qin L. The lipid rafts in cancer stem cell: a target to eradicate cancer. Stem Cell Res Ther 2022; 13:432. [PMID: 36042526 PMCID: PMC9429646 DOI: 10.1186/s13287-022-03111-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem cell properties that sustain cancers, which may be responsible for cancer metastasis or recurrence. Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in the plasma membrane that mediate various intracellular signaling. The occurrence and progression of cancer are closely related to lipid rafts. Emerging evidence indicates that lipid raft levels are significantly enriched in CSCs compared to cancer cells and that most CSC markers such as CD24, CD44, and CD133 are located in lipid rafts. Furthermore, lipid rafts play an essential role in CSCs, specifically in CSC self-renewal, epithelial-mesenchymal transition, drug resistance, and CSC niche. Therefore, lipid rafts are critical regulatory platforms for CSCs and promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hong Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Chan Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Duan Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China. .,Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China. .,Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
63
|
Islas JF, Quiroz-Reyes AG, Delgado-Gonzalez P, Franco-Villarreal H, Delgado-Gallegos JL, Garza-Treviño EN, Gonzalez-Villarreal CA. Cancer Stem Cells in Tumor Microenvironment of Adenocarcinoma of the Stomach, Colon, and Rectum. Cancers (Basel) 2022; 14:3948. [PMID: 36010940 PMCID: PMC9405851 DOI: 10.3390/cancers14163948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal adenocarcinomas are one of the world's deadliest cancers. Cancer stem cells and the tissue microenvironment are highly regulated by cell and molecular mechanisms. Cancer stem cells are essential for maintenance and progression and are associated with resistance to conventional treatments. This article reviews the current knowledge of the role of the microenvironment during the primary establishment of gastrointestinal adenocarcinomas in the stomach, colon, and rectum and its relationship with cancer stem cells. We also describe novel developments in cancer therapeutics, such as targeted therapy, and discuss the advantages and disadvantages of different treatments for improving gastrointestinal cancer prognosis.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Adriana G. Quiroz-Reyes
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Paulina Delgado-Gonzalez
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | | | - Juan Luis Delgado-Gallegos
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Elsa N. Garza-Treviño
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | | |
Collapse
|
64
|
Song L, Mino M, Yamak J, Nguyen V, Lopez D, Pham V, Fazelpour A, Le V, Fu D, Tippin M, Uchio E, Zi X. Flavokawain A Reduces Tumor-Initiating Properties and Stemness of Prostate Cancer. Front Oncol 2022; 12:943846. [PMID: 35912174 PMCID: PMC9326116 DOI: 10.3389/fonc.2022.943846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
We have previously demonstrated the in vivo chemopreventive efficacy of flavokawain A (FKA), a novel chalcone from the kava plant, in prostate carcinogenesis models. However, the mechanisms of the anticarcinogenic effects of FKA remain largely unknown. We evaluated the effect of FKA on prostate tumor spheroid formation by prostate cancer stem cells, which were sorted out from CD44+/CD133+ prostate cancer cells 22Rv1 and DU145. FKA treatment significantly decreased both the size and numbers of the tumor spheroids over different generations of spheroid passages. In addition, the dietary feeding of FKA-formulated food to Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice bearing CD44+/CD133+ 22Rv1 xenograft tumors resulted in a significant reduction of tumor growth compared to those fed with vehicle control food–fed mice. Furthermore, the expression of stem cell markers, such as Nanog, Oct4, and CD44, were markedly downregulated in both tumor spheroids and tumor tissues. We also observed that FKA inhibits Ubc12 neddylation, c-Myc, and keratin-8 expression in both CD44+/CD133+ prostate tumor spheroids and xenograft tumors. Our results suggest that FKA can reduce the tumor-initiating properties and stemness of prostate cancer, which provides a new mechanism for the chemoprevention efficacy of FKA.
Collapse
Affiliation(s)
- Liankun Song
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Merci Mino
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Jana Yamak
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Vyvyan Nguyen
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Derron Lopez
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Victor Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Ali Fazelpour
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Vinh Le
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Dongjun Fu
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Matthew Tippin
- Department of Urology, University of California, Irvine, Orang, CA, United States
| | - Edward Uchio
- Department of Urology, University of California, Irvine, Orang, CA, United States
- Chao Family Comprehensive Cancer Center, Orange, CA, United States
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orang, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Chao Family Comprehensive Cancer Center, Orange, CA, United States
- *Correspondence: Xiaolin Zi,
| |
Collapse
|
65
|
Du YB, Wang XF, Liu XJ, Li Y, Miao QF, Jiang M, Sheng WJ, Zhen YS. The recombinant defensin/HSA fusion protein that inhibits NF-κb associated with intensive macropinocytosis shows potent efficacy against pancreatic cancer. Biochem Pharmacol 2022; 201:115057. [PMID: 35489393 DOI: 10.1016/j.bcp.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
KRAS mutation and NF-κB both play crucial role in pancreatic cancer; in addition, defensin, the peptide mediator in innate immunity, can inhibit NF-κB. Assuming a strategy that targets both NF-κB and concomitantly the mutated KRAS indirectly via intensive macropinocytosis, we designed and generated a recombinant protein DF2-HSA which consists of two molecules of human beta-defensin 2 (HBD2) and a moiety of human serum albumin (HSA). As shown, the recombinant protein DF2-HSA markedly down-regulated NF-κB in both KRAS mutant MIA PaCa-2 cells and wild type BxPC-3 cells. Determined by confocal microscopy, the uptake of DF2-HSA in MIA PaCa-2 cells was more intense than that in BxPC-3 cells. The uptake was blocked by the specific inhibitor EIPA, indicating that DF2-HSA internalized via macropinocytosis. DF2-HSA displayed more potent cytotoxicity to cancer cells than HBD2. DF2-HSA induced apoptosis in cancer cells. Notably, DF2-HSA inhibited tumor cell spheroid formation, an effect comparable to that of salinomycin. DF2-HSA inhibited tumor cell migration and invasion. As detected with scanning electron microscopy, DF2-HSA strongly depleted filopodia on cell surface; and salinomycin induced similar changes. By in vivo imaging, DF2-HSA displayed intense tumor-site accumulation and lasting retention for over 14 days; however, HBD2 showed much less tumor-site accumulation and a shorter retention time for only 24 h. DF2-HSA suppressed the growth of pancreatic cancer MIA PaCa-2 xenograft in athymic mice; and its combination with gemcitabine achieved higher antitumor efficacy. In summary, the recombinant defensin/HSA fusion protein that inhibits NF-κb associated with intensive macropinocytosis is highly effective against pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Bo Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qing-Fang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei-Jin Sheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
66
|
Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting. Stem Cells Int 2022; 2022:9653244. [PMID: 35800881 PMCID: PMC9256444 DOI: 10.1155/2022/9653244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer is characterized by an abnormal growth of the cells in an uncontrolled manner. These cells have the potential to invade and can eventually turn into malignancy, leading to highly fatal forms of tumor. Small subpopulations of cancer cells that are long-lived with the potential of excessive self-renewal and tumor formation are called cancer stem cells (CSCs) or cancer-initiating cells or tumor stem cells. CSCs can be found in tissues, such as breast, brain, lung, liver, ovary, and testis; however, their origin is still a matter of debate. These cells can differentiate and possess self-renewal capacity maintained by numerous intracellular signal transduction pathways, such as the Wnt/β-catenin signaling, Notch signaling, transforming growth factor-β signaling, and Hedgehog signaling. They can also contribute to numerous malignancies and are an important reason for tumor recurrence and metastasis because they are resistant to the known therapeutic strategies that mainly target the bulk of the tumor cells. This review contains collected and compiled information after analyzing published works of the last three decades. The goal was to gather information of recent breakthroughs related to CSCs, strategies to target CSCs' niche (e.g., nanotechnology with tumor biology), and their signaling pathways for cancer therapy. Moreover, the role of metformin, an antidiabetic drug, acting as a chemotherapeutic agent on CSCs by inhibiting cellular transformation and its selective killing is also addressed.
Collapse
|
67
|
Oncofetal proteins and cancer stem cells. Essays Biochem 2022; 66:423-433. [PMID: 35670043 DOI: 10.1042/ebc20220025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Abstract
Cancer stem cells (CSCs) are considered as a small population of cells with stem-like properties within the tumor bulk, and are largely responsible for tumor recurrence, metastasis, and therapy resistance. CSCs share critical features with embryonic stem cells (ESCs). The pluripotent transcription factors (TFs) and developmental signaling pathways of ESCs are invariably hijacked by CSCs termed ‘oncofetal drivers’ in many cancers, which are rarely detectable in adult tissues. The unique expression pattern makes oncofetal proteins ideal therapeutic targets in cancer treatment. Therefore, elucidation of oncofetal drivers in cancers is critical for the development of effective CSCs-directed therapy. In this review, we summarize the common pluripotent TFs such as OCT4, SOX2, NANOG, KLF4, MYC, SALL4, and FOXM1, as well as the development signaling including Wnt/β-catenin, Hedgehog (Hh), Hippo, Notch, and TGF-β pathways of ESCs and CSCs. We also describe the newly identified oncofetal proteins that drive the self-renewal, plasticity, and therapy-resistance of CSCs. Finally, we explore how the clinical implementation of targeting oncofetal drivers, including small-molecule inhibitors, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) can facilitate the development of CSCs-directed therapy.
Collapse
|
68
|
IDH mutation and cancer stem cell. Essays Biochem 2022; 66:413-422. [PMID: 35611837 DOI: 10.1042/ebc20220008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small population of cells in human malignancies that resemble the biology of human pluripotent stem cells. CSCs are closely related to the critical hallmarks in human cancers, ranging from oncogenesis to disease progression, therapeutic resistance, and overall outcome. Mutations in isocitrate dehydrogenase (IDH) were recently identified as founder mutations for human cancers. An increasing amount of evidence indicates that IDH mutations are closely related to the establishment and maintenance of CSCs. Biosynthesis of oncometabolite, metabolic reprogramming, and epigenetic shifts establish distinctive molecular signatures in IDH-mutated CSCs. Additionally, IDH mutation and IDH-related pathways could be valuable molecular targets to impact the CSC components in human cancers and to improve the disease outcome.
Collapse
|
69
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
70
|
Xiang X, Ma HZ, Chen YQ, Zhang DZ, Ma SX, Wang HJ, Liu DM, Yuan Y, Cai H. GM-CSF-miRNA-Jak2/Stat3 Signaling Mediates Chemotherapy-Induced Cancer Cell Stemness in Gastric Cancer. Front Pharmacol 2022; 13:855351. [PMID: 35600882 PMCID: PMC9117965 DOI: 10.3389/fphar.2022.855351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Chemotherapy serves as the first choice in clinic to treat advanced gastric cancer. However, emerging evidence indicated the induction of drug resistance and cancer stem cells occasionally by chemotherapy, which seriously limit the therapeutic effects, but the regulatory mechanism remains unclear. Here we treated two human gastric cancer cell lines SGC7901 and BGC823 with 5-Fluorouracil (5-Fu) or Cisplatin (DDP) in vitro. The survived cells showed significant increase of drug resistance, cell stemness and cytokine GM-CSF expression and secretion. As such, GM-CSF was applied to stimulate gastric cancer cells, followed by the subpopulation of CD133+ CSC analysis, sphere formation assay and stemness genes expression analysis. As a result, CSCs showed induction by GM-CSF treatment. A gastric cancer animal model further indicated that the gastric cancer cells significantly promoted tumor growth after GM-CSF treatment in vivo. High-throughput miRNA and mRNA sequencing analyses identified a subset of miRNAs and mRNAs under regulation of both 5-Fu and GM-CSF in gastric cancer cells, including upregulation of miR-877-3p and downregulation of SOCS2. Targeted overexpression or knockdown of miR-877-3p in gastric cancer cells revealed the oncogenic function of miR-877-3p in regulating gastric cancer by suppressing target gene SOCS2. Jak2/Stat3 signaling pathway, as a downstream target of SOCS2, showed activation in vitro and in vivo after treatment with miR-877-3p or GM-CSF. Our findings not only revealed a novel mechanism through which chemotherapy induced CSCs in gastric cancer via GM-CSF-miRNA-Jak2/Stat3 signaling, but also provided an experimental evidence for appropriate dose reduction of adjuvant chemotherapy in treatment of cancer patients.
Collapse
Affiliation(s)
- Xue Xiang
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Hai-zhong Ma
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Ya-qiong Chen
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Dong-zhi Zhang
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Shi-xu Ma
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Hong-jing Wang
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - De-ming Liu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Yuan Yuan
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Hui Cai
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- *Correspondence: Hui Cai,
| |
Collapse
|
71
|
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022; 11:cells11091403. [PMID: 35563709 PMCID: PMC9102449 DOI: 10.3390/cells11091403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.
Collapse
Affiliation(s)
- Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Audrey Nguyen
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| |
Collapse
|
72
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
73
|
Kciuk M, Gielecińska A, Budzinska A, Mojzych M, Kontek R. Metastasis and MAPK Pathways. Int J Mol Sci 2022; 23:ijms23073847. [PMID: 35409206 PMCID: PMC8998814 DOI: 10.3390/ijms23073847] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide. In many cases, the treatment of the disease is limited due to the metastasis of cells to distant locations of the body through the blood and lymphatic drainage. Most of the anticancer therapeutic options focus mainly on the inhibition of tumor cell growth or the induction of cell death, and do not consider the molecular basis of metastasis. The aim of this work is to provide a comprehensive review focusing on cancer metastasis and the mitogen-activated protein kinase (MAPK) pathway (ERK/JNK/P38 signaling) as a crucial modulator of this process.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
- Correspondence:
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| |
Collapse
|
74
|
Mazloumi Z, Farahzadi R, Rafat A, Asl KD, Karimipour M, Montazer M, Movassaghpour AA, Dehnad A, Charoudeh HN. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol 2022; 125:104757. [PMID: 35339454 DOI: 10.1016/j.yexmp.2022.104757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
DNA methylation, as an epigenetic mechanism, occurs by adding a methyl group of cytosines in position 5 by DNA methyltransferases and has essential roles in cellular function, especially in the transcriptional regulation of embryonic and adult stem cells. Hypomethylation and hypermethylation cause either the expression or inhibition of genes, and there is a tight balance between regulating the activation or repression of genes in normal cellular activity. Abnormal methylation is well-known hallmark of cancer development and progression and can switch normal stem cells into cancer stem cells. Cancer Stem Cells (CSCs) are minor populations of tumor cells that exhibit unique properties such as self-regeneration, resistance to chemotherapy, and high ability of metastasis. The purpose of this paper is to show how aberrant DNA methylation accumulation affects self-renewal, differentiation, multidrug-resistant, and metastasis processes in cancer stem cells.
Collapse
Affiliation(s)
- Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Cardiovascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Dehnad
- Department of Bacterial Disease Research, Razi Vaccine and Serum Research Institute, AREEO, Tabriz, Iran
| | | |
Collapse
|
75
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
76
|
Understanding autophagy role in cancer stem cell development. Mol Biol Rep 2022; 49:6741-6751. [PMID: 35277787 DOI: 10.1007/s11033-022-07299-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of immature cells located in the tumor mass. These cells are responsible for tumor development, proliferation, resistance and spreading. CSCs are characterized by three unique features: the ability to self-renew, differentiation and tumor formation. CSCs are similar to stem cells, but they differ in the malignant phenotype. CSCs become immortal and survive harsh environmental conditions such as hypoxia, starvation and oxidative stress. However, this harsh tumor microenvironment induces the activation of autophagy, which further increases the CSCs stemness profile, and all these features further increase tumorigenicity and metastasis capacity. Autophagy is induced by the extracellular and cellular microenvironment. Hypoxia is one of the most common factors that highly increases the activity of autophagy in CSCs. Therefore, hypoxia-induced autophagy and CSCs proliferation should be elucidated in order to find a novel cure to defeat cancer cells (CSCs and non-CSCs). The remaining challenges to close the gap between the laboratory bench and the development of therapies, to use autophagy against CSCs in patients, could be addressed by adopting a 3D platform to better-mimic the natural environment in which these cells reside. Ultimately allowing to obtain the blueprints for bioprocess scaling up and to develop the production pipeline for safe and cost-effective autophagy-based novel biologics.
Collapse
|
77
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
78
|
Liu S, Bu X, Kan A, Luo L, Xu Y, Chen H, Lin X, Lai Z, Wen D, Huang L, Shi M. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett 2022; 528:16-30. [PMID: 34958891 DOI: 10.1016/j.canlet.2021.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Oxaliplatin-based chemotherapy is widely used to treat advanced hepatocellular carcinoma (HCC), but many patients develop drug resistance that leads to tumor recurrence. Cancer stem cells (CSCs) are known to contribute to chemoresistance, the underlying mechanism, however, remains largely unknown. In this study, we discovered a specificity protein 1 (SP1)-induced long noncoding RNA--DPPA2 upstream binding RNA (DUBR) and its high expression in HCC tissues and liver CSCs. DUBR was associated with HCC progression and poor chemotherapy response. Moreover, DUBR facilitated the stemness and oxaliplatin resistance of HCC in vitro and in vivo. Mechanistically, DUBR upregulated cancerous inhibitor of protein phosphatase 2A (CIP2A) expression through E2F1-mediated transcription regulation. DUBR also exerted function by binding microRNA (miR)-520d-5p as a competing endogenous RNA to upregulate CIP2A at mRNA level. CIP2A, in turn, stabilized E2F1 protein and activated the Notch1 signaling pathway, thereby increasing the stemness feature of HCC and leading to chemoresistance. In conclusion, we identified SP1/DUBR/E2F1-CIP2A as a critical axis to activate the Notch1 signaling pathway and promote stemness and chemoresistance of HCC. Therefore, DUBR could be a potential target in HCC treatment.
Collapse
Affiliation(s)
- S Liu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xy Bu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - L Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yj Xu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hl Chen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xj Lin
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zc Lai
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ds Wen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lc Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
79
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
80
|
Arjmand B, Hamidpour SK, Alavi-Moghadam S, Yavari H, Shahbazbadr A, Tavirani MR, Gilany K, Larijani B. Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes. Front Pharmacol 2022; 13:768556. [PMID: 35264950 PMCID: PMC8899123 DOI: 10.3389/fphar.2022.768556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulation of cells which have been demonstrated in a variety of cancer models and involved in cancer initiation, progression, and development. Indeed, CSCs which seem to form a small percentage of tumor cells, display resembling characteristics to natural stem cells such as self-renewal, survival, differentiation, proliferation, and quiescence. Moreover, they have some characteristics that eventually can demonstrate the heterogeneity of cancer cells and tumor progression. On the other hand, another aspect of CSCs that has been recognized as a central concern facing cancer patients is resistance to mainstays of cancer treatment such as chemotherapy and radiation. Owing to these details and the stated stemness capabilities, these immature progenitors of cancerous cells can constantly persist after different therapies and cause tumor regrowth or metastasis. Further, in both normal development and malignancy, cellular metabolism and stemness are intricately linked and CSCs dominant metabolic phenotype changes across tumor entities, patients, and tumor subclones. Hence, CSCs can be determined as one of the factors that correlate to the failure of common therapeutic approaches in cancer treatment. In this context, researchers are searching out new alternative or complementary therapies such as targeted methods to fight against cancer. Molecular docking is one of the computational modeling methods that has a new promise in cancer cell targeting through drug designing and discovering programs. In a simple definition, molecular docking methods are used to determine the metabolic interaction between two molecules and find the best orientation of a ligand to its molecular target with minimal free energy in the formation of a stable complex. As a comprehensive approach, this computational drug design method can be thought more cost-effective and time-saving compare to other conventional methods in cancer treatment. In addition, increasing productivity and quality in pharmaceutical research can be another advantage of this molecular modeling method. Therefore, in recent years, it can be concluded that molecular docking can be considered as one of the novel strategies at the forefront of the cancer battle via targeting cancer stem cell metabolic processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Yavari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ainaz Shahbazbadr
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
81
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
82
|
Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M. Cancer Stem Cells Contribute to Drug Resistance in Multiple Different Ways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:125-139. [PMID: 36587305 DOI: 10.1007/978-3-031-12974-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Ghmkin Hassan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Said M Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, Shebeen El-Kom, 32511, Egypt
| | - Akimasa Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
83
|
Manogaran P, Somasundaram B, Viswanadha VP. Reversal of cisplatin resistance by neferine/isoliensinine and their combinatorial regimens with cisplatin-induced apoptosis in cisplatin-resistant colon cancer stem cells (CSCs). J Biochem Mol Toxicol 2021; 36:e22967. [PMID: 34921482 DOI: 10.1002/jbt.22967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Cisplatin chemotherapy to the colorectal cancer cells (CRCs) is accompanied by dose-limiting adverse effects along with the acquisition of drug resistance implicating low therapeutic outcomes. The present study is aimed to evaluate the chemosensitizing efficacy of neferine/isoliensinine or combinatorial regimen of neferine/isoliensinine with cisplatin against CSCs (cisplatin resistant colon stem cells). CSCs were developed using pulse exposure of cisplatin to parental HCT-15 cells. Neferine/isoliensinine or combinatorial regimens of Neferine/isoliensinine and cisplatin exhibited a stronger cytotoxic activity against CSCs compared to control. IC50 doses were found to be 6.5 μM for neferine, 12.5 μM for isoliensinine, and 120 μM for cisplatin respectively. Furthermore, the combinatorial regimen of a low dose of cisplatin (40 μM) with 4 μM neferine/8 μM isoliensinine induced cell death in a synergistic manner as described by isobologram. Neferine/isoliensinine could confer extensive intracellular reactive oxygen species generation in CSCs. Neferine/isoliensinine or combinatorial regimens dissipated mitochondrial membrane potential and enhanced intracellular [Ca2+ ]i, which were measured by spectroflurimetry. Furthermore, these combinatorial regimens induced a significant increase in the sub G0 phase of cell cycle arrest and PI uptake and alleviated the expression of ERCC1 in CSCs. Combinatorial regimens or neferine/isoliensinine treatments downregulated the cell survival protein expression (PI3K/pAkt/mTOR) and activated mitochondria-mediated apoptosis by upregulating Bax, cytochrome c, caspase-3, and PARP cleavage expression while downregulating the BCl-2 expression in CSCs. Our study confirms the chemosensitizing efficacy of neferine/isoliensinine or combinatorial regimens of neferine/isoliensinine with a low dose of cisplatin against CSCs.
Collapse
Affiliation(s)
- Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Bharath Somasundaram
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
84
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
85
|
Feng J, Zhu R, Yin Y, Wang S, Zhou L, Lv F, Zhao D. Re-Recognizing the Cellular Origin of the Primary Epithelial Tumors of the Liver. J Hepatocell Carcinoma 2021; 8:1537-1563. [PMID: 34917552 PMCID: PMC8668194 DOI: 10.2147/jhc.s334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
The primary epithelial tumors of the liver (PETL) are composed of a series of heterogeneous tumors. Although the classification of PETLs has been updated several times by the World Health Organization, the cellular origins of some tumors in this family remain to be precisely depicted. In addition, certain tumors in different categories have similar histology, molecular phenotypes and biological characteristics, suggesting that they may have the same cellular origin. In this work, a narrative review method was adopted to review the relevant papers. By comparing the expression profiles of biomarkers of liver epithelium at different lineages and stages of differentiation, the cells-of-origin of some major members of the PETL family were reassessed. We propose that 1) hepatic adenomas, hepatocellular carcinomas (HCCs) and pure fetal hepatoblastomas (HBs) share the same spectrum in their cellular origin including the hepatocytic-committed progenitors (HCP) and their differentiated descendants. 2) Bile duct adenomas, peribiliary cysts and intrahepatic cholangiocellular carcinomas (ICCs) can share the same spectrum in their cellular origin including the cholangiocytic-committed progenitors (CCP) and their differentiated descendants. 3) The cells-of-origin of embryonal HBs include liver stem cells (LSCs), hepatoblasts, and transitional cells between them. Embryonal HB with small cell element, small cell undifferentiated HB and small cell neuroendocrine carcinoma of the liver can have the same or similar cells-of-origin from LSC. Embryonal HB lacking the small cell component of the LSC phenotype and presenting both hepatocytic and bile duct/ductule components may originate from actual hepatoblasts/hepatic progenitor cells (HPCs) as the combined HCC-ICC does. 4) Teratoid hepatoblastoma and mixed epithelial/mesenchymal HBs can be derived from the LSCs or even less committed extrahepatic pluripotent stem cell. 5) Many members of the PETLs family, including those derived from LSCs, hepatoblasts/HPCs, early HCPs and CCPs, have neuroendocrine potentiality. Except for those primary hepatic neuroendocrine tumor (PHNET) exhibit hepatocytic and/or cholangiocytic phenotypes, other PHNETs subtype may be derived from the descendants of LSC that differentiate towards the upper digestive tract, pancreas or other lineages.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jiliang Feng Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, No. 8, Xitoutiao, Youanmenwai Street, FengTai District, Beijing, 100069, People’s Republic of ChinaTel +86-10-83997342Fax +86-10-83997343 Email
| | - Ruidong Zhu
- General Surgical Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yu Yin
- Department of Pathology, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shanshan Wang
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lei Zhou
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College/Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Fudong Lv
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Dawei Zhao
- Department of Medical Imaging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
86
|
Liu X, Shan W, Li T, Gao X, Kong F, You H, Kong D, Qiao S, Tang R. Cellular retinol binding protein-1 inhibits cancer stemness via upregulating WIF1 to suppress Wnt/β-catenin pathway in hepatocellular carcinoma. BMC Cancer 2021; 21:1224. [PMID: 34775955 PMCID: PMC8590789 DOI: 10.1186/s12885-021-08967-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background CRBP-1, a cytosolic chaperone of vitamin A, is identified in a serious number of cancers; however, its biological role in hepatocellular carcinoma (HCC) needs to be further explored. The aim of our present study is to explore the roles and mechanisms of CRBP-1 in regulating liver cancer by using in vitro and in vivo biology approaches. Methods The expression level of CRBP-1 was detected using immunohistochemistry in HCC and matching adjacent non-tumorous liver tissues. Following established stable CRBP-1 overexpressed HCC cell lines, the cell growth and tumorigenicity were investigated both in vitro and in vivo. Intracellular retinoic acid was quantified by ELISA. The relationship between CRBP-1 and WIF1 was validated by using dual luciferase and ChIP analyses. Results The low expression of CRBP-1 was observed in HCC tissues compared to the normal liver tissues, while high CRBP-1 expression correlated with clinicopathological characteristics and increased overall survival in HCC patients. Overexpression of CRBP-1 significantly inhibited cell growth and tumorigenicity both in vitro and in vivo. Moreover, overexpression of CRBP-1 suppressed tumorsphere formation and cancer stemness related genes expression in HCC. Mechanically, CRBP-1 inhibited Wnt/β-catenin signaling pathway to suppress cancer cell stemness of HCC. Furthermore, our results revealed that CRBP-1 could increase the intracellular levels of retinoic acid, which induced the activation of RARs/RXRs leading to the transcriptional expression of WIF1, a secreted antagonist of the Wnt/β-catenin signaling pathway, by physically interacting with the region on WIF1 promoter. Conclusion Our findings reveal that CRBP-1 is a crucial player in the initiation and progression of HCC, which provide a novel independent prognostic biomarker and therapeutic target for the diagnosis and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08967-2.
Collapse
Affiliation(s)
- Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Wenhua Shan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Tingting Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Shuxi Qiao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
87
|
Bukovac A, Dragičević K, Kafka A, Orešković D, Cesarec-Augustinović S, Pećina-Šlaus N. Decoding the Role of DVL1 in Intracranial Meningioma. Int J Mol Sci 2021; 22:11996. [PMID: 34769425 PMCID: PMC8584635 DOI: 10.3390/ijms222111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
In the search for molecular candidates for targeted meningioma therapies, increasing attention has been paid to the role of signaling pathways in the development and progression of intracranial meningiomas. Although it is well known that the Wnt signaling pathway is involved in meningioma progression, the role of its central mediator, DVL1, is still unclear. In order to investigate the influence of DVL1 gene alterations on the progression of human intracranial meningioma, we focused on its central PDZ domain, which is responsible for DVL interaction with the Fzd receptor and the phosphorylation of DVL mediated through the casein kinases CK1 and CK2. A genetic analysis of genomic instability revealed the existence of microsatellite instability in 9.09% and the loss of heterozygosity in 6.06% of the samples. The sequencing of the PDZ gene region showed repetitive deletions of two bases located in intron 7 and exon 8, and a duplication in intron 8 in most samples, with different outcomes on the biological function of the DVL1 protein. Immunohistochemistry revealed that the nuclear expression of DVL1 was significantly correlated with a higher expression of active β-catenin (p = 0.029) and a higher meningioma grade (p = 0.030), which leads to the conclusion that it could be used as biomarker for meningioma progression and the activation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.K.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Dragičević
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.K.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Orešković
- Department of Neurosurgery, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Sanja Cesarec-Augustinović
- “Ljudevit Jurak” Department of Pathology and Cytology, Clinical Hospital Center “Sestre milosrdnice”, 10000 Zagreb, Croatia;
| | - Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.K.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
88
|
Schmidtlein PM, Volz C, Hackel A, Thürling I, Castven D, Braun R, Wellner UF, Konukiewitz B, Riemekasten G, Lehnert H, Marquardt JU, Ungefroren H. Activation of a Ductal-to-Endocrine Transdifferentiation Transcriptional Program in the Pancreatic Cancer Cell Line PANC-1 Is Controlled by RAC1 and RAC1b through Antagonistic Regulation of Stemness Factors. Cancers (Basel) 2021; 13:cancers13215541. [PMID: 34771704 PMCID: PMC8583136 DOI: 10.3390/cancers13215541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary For patients with metastatic pancreatic ductal adenocarcinoma (PDAC) there is currently no cure; hence, novel effective therapies are desperately needed. Among PDAC patients, the tumor cell phenotypes are heterogeneous as a result of epithelial–mesenchymal transition, a process that endows them with the ability to metastasize, resist therapy, and generate cancer stem cells. The heightened plasticity of quasimesenchymal and potentially metastatic tumor cells may, however, also be exploited for their transdifferentiation into benign, highly differentiated or post-mitotic cells. Since PDAC patients often have a need for replacement of insulin-producing cells, conversion of tumor cells with a ductal/exocrine origin to endocrine β cell-like cells is an attractive therapeutic option. Successful transdifferentiation into insulin-producing cells has been reported for the quasimesenchymal cell line PANC-1; however, the mechanistic basis of this transformation process is unknown. Here, we show that the small GTPases, RAC1 and RAC1b control this process by antagonistic regulation of stemness genes. Abstract Epithelial–mesenchymal transition (EMT) is a driving force for tumor growth, metastatic spread, therapy resistance, and the generation of cancer stem cells (CSCs). However, the regained stem cell character may also be exploited for therapeutic conversion of aggressive tumor cells to benign, highly differentiated cells. The PDAC-derived quasimesenchymal-type cell lines PANC-1 and MIA PaCa-2 have been successfully transdifferentiated to endocrine precursors or insulin-producing cells; however, the underlying mechanism of this increased plasticity remains elusive. Given its crucial role in normal pancreatic endocrine development and tumor progression, both of which involve EMT, we analyzed here the role of the small GTPase RAC1. Ectopic expression in PANC-1 cells of dominant negative or constitutively active mutants of RAC1 activation blocked or enhanced, respectively, the cytokine-induced activation of a ductal-to-endocrine transdifferentiation transcriptional program (deTDtP) as revealed by induction of the NEUROG3, INS, SLC2A2, and MAFA genes. Conversely, ectopic expression of RAC1b, a RAC1 splice isoform and functional antagonist of RAC1-driven EMT, decreased the deTDtP, while genetic knockout of RAC1b dramatically increased it. We further show that inhibition of RAC1 activation attenuated pluripotency marker expression and self-renewal ability, while depletion of RAC1b dramatically enhanced stemness features and clonogenic potential. Finally, rescue experiments involving pharmacological or RNA interference-mediated inhibition of RAC1 or RAC1b, respectively, confirmed that both RAC1 isoforms control the deTDtP in an opposite manner. We conclude that RAC1 and RAC1b antagonistically control growth factor-induced activation of an endocrine transcriptional program and the generation of CSCs in quasimesenchymal PDAC cells. Our results have clinical implications for PDAC patients, who in addition to eradication of tumor cells have a need for replacement of insulin-producing cells.
Collapse
Affiliation(s)
- Paula Marie Schmidtlein
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Clara Volz
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Alexander Hackel
- Department of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (A.H.); (G.R.)
| | - Isabel Thürling
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Darko Castven
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Rüdiger Braun
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | - Ulrich Friedrich Wellner
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (R.B.); (U.F.W.)
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (A.H.); (G.R.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany; (P.M.S.); (C.V.); (I.T.); (D.C.); (J.-U.M.)
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany
- Correspondence:
| |
Collapse
|
89
|
Liu Z, Ren Y, Meng L, Li L, Beatson R, Deng J, Zhang T, Liu J, Han X. Epigenetic Signaling of Cancer Stem Cells During Inflammation. Front Cell Dev Biol 2021; 9:772211. [PMID: 34722553 PMCID: PMC8554148 DOI: 10.3389/fcell.2021.772211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant tumors pose a great challenge to human health, which has led to many studies increasingly elucidating the tumorigenic process. Cancer Stem Cells (CSCs) have profound impacts on tumorigenesis and development of drug resistance. Recently, there has been increased interest in the relationship between inflammation and CSCs but the mechanism underlying this relationship has not been fully elucidated. Inflammatory cytokines produced during chronic inflammation activate signaling pathways that regulate the generation of CSCs through epigenetic mechanisms. In this review, we focus on the effects of inflammation on cancer stem cells, particularly the role of signaling pathways such as NF-κB pathway, STAT3 pathway and Smad pathway involved in regulating epigenetic changes. We hope to provide a novel perspective for improving strategies for tumor treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
90
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
91
|
Senobari Z, Karimi G, Jamialahmadi K. Ellagitannins, promising pharmacological agents for the treatment of cancer stem cells. Phytother Res 2021; 36:231-242. [PMID: 34697838 DOI: 10.1002/ptr.7307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
Human tumors comprise subpopulations of cells called cancer stem cells (CSCs) that possess stemness properties. CSCs can initiate tumors and cause recurrence, metastasis and are also responsible for chemo- and radio-resistance. CSCs may use signaling pathways similar to normal stem cells, including Notch, JAK/STAT, Wnt and Hedgehog pathways. Ellagitannins (ETs) are a broad group of substances with chemopreventive and anticancer activities. The antitumor activity of ETs and their derivatives are mainly related to their antiinflammatory capacity. They are therefore able to modulate secretory growth factors and pro-inflammatory mediators such as IL-6, TGF-β, TNF-α, IL-1β and IFN-γ. Evidence suggests that ETs display their anticancer effect by targeting CSCs and disrupting stem cell signaling. However, there are still few studies in this field. Therefore, high-quality studies are needed to firmly establish the clinical efficacy of the ETs on CSCs. This paper reviews the structures, sources and pharmacokinetics of ETs. It also focuses on the function of ETs and their effects on CSCs-related cytokines and the relationship between ETs and signaling pathways in CSCs.
Collapse
Affiliation(s)
- Zohre Senobari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
92
|
Pook H, Pauklin S. Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:4834. [PMID: 34638318 PMCID: PMC8508208 DOI: 10.3390/cancers13194834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer that is strongly associated with poor prognosis and short median survival times. In stark contrast to the progress seen in other cancer types in recent decades, discoveries of new treatments in PDAC have been few and far between and there has been little improvement in overall survival (OS). The difficulty in treating this disease is multifactorial, contributed to by late presentation, difficult access to primary tumour sites, an 'immunologically cold' phenotype, and a strong tendency of recurrence likely driven by cancer stem cell (CSC) populations. Furthermore, apparently contrasting roles of tumour components (such as fibrotic stroma) and intracellular pathways (such as autophagy and TGFβ) have made it difficult to distinguish beneficial from detrimental drug targets. Despite this, progress has been made in the field, including the determination of mFOLFIRINOX as the standard-of-care adjuvant therapy and the discovery of KRASG12C mutant inhibitors. Moreover, new research, as outlined in this review, has highlighted promising new approaches including the targeting of the tumour microenvironment, enhancement of immunotherapies, epigenetic modulation, and destruction of CSCs.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
93
|
Saydé T, Manczak R, Saada S, Bégaud G, Bessette B, Lespes G, Le Coustumer P, Gaudin K, Dalmay C, Pothier A, Lalloué F, Battu S. Characterization of Glioblastoma Cancer Stem Cells Sorted by Sedimentation Field-Flow Fractionation Using an Ultrahigh-Frequency Range Dielectrophoresis Biosensor. Anal Chem 2021; 93:12664-12671. [PMID: 34491042 DOI: 10.1021/acs.analchem.1c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) appear to be an essential target for cancer therapies, in particular, in brain tumors such as Glioblastoma. Nevertheless, their isolation is made difficult by their low content in culture or tumors (<5% of the tumor mass) and is essentially based on the use of fluorescent or magnetic labeling techniques, increasing the risk of differentiation induction. The use of label-free separation methods such as sedimentation field-flow fractionation (SdFFF) is promising, but it becomes necessary to consider a coupling with a detection and characterization method for future identification and purification of CSCs from patient-derived tumors. In this study, we demonstrate for the first time the capability of using an ultrahigh-frequency range dielectrophoresis fluidic biosensor as a detector. This implies an important methodological adaptation of SdFFF cell sorting by the use of a new compatible carrier liquid DEP buffer (DEP-B). After SdFFF sorting, subpopulations derived from U87-MG and LN18 cell lines undergo biological characterization, demonstrating that using DEP-B as a carrier liquid, we sorted by SdFFF subpopulations with specific differentiation characteristics: F1 = differentiated cells/F2 = CSCs. These subpopulations presented high-frequency crossover (HFC) values similar to those measured for standard differentiated (around 110 MHz) and CSC (around 80 MHz) populations. This coupling appeared as a promising solution for the development of an online integration of these two complementary label-free separation/detection technologies.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France.,ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Rémi Manczak
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Sofiane Saada
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Gaelle Bégaud
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Barbara Bessette
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l'Adour (E2S/UPPA), 2 Avenue Pierre Angot, Pau 64053, France
| | - Philippe Le Coustumer
- Bordeaux Imaging Center, UMS 3420 CNRS-INSERM, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Claire Dalmay
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Arnaud Pothier
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Fabrice Lalloué
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| |
Collapse
|
94
|
The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis. Mol Biol Rep 2021; 48:6935-6947. [PMID: 34510322 DOI: 10.1007/s11033-021-06666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cancer is the second major threat to human society and one of the main challenges facing healthcare systems. One of the main problems of cancer care is the metastases of cancer cells that cause 90% of deaths due to cancer. Multiple molecular mechanisms are involved in cancer cell metastasis. Therefore, a better understanding of these molecular mechanisms is necessary for designing restrictive strategies against cancer cell metastasis. Accumulating data suggests that MicroRNAs (miRNAs) are involved in metastasis and invasion of human tumors through regulating multiple genes expression levels that are involved in molecular mechanisms of metastasis. The goal of this review is to present the molecular pathways by which the miR 200 family manifests its effects on EMT, cancer stem cells, angiogenesis, anoikis, and the effects of tumor cell metastases. METHODS A detailed literature search was conducted to find information about the role of the miR-200 family in the processes involved in metastasis in various databases. RESULTS Numerous lines of evidence revealed an association between the mir-200 family and metastasis of human tumors by impressing processes such as cancer stem cells, EMT, angiogenesis, and anoikis. CONCLUSIONS Understanding the molecular mechanisms associated with metastasis in which the miR-200 family is involved can be effective in treating metastatic cancers.
Collapse
|
95
|
Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression? Nutrients 2021; 13:nu13092974. [PMID: 34578851 PMCID: PMC8466600 DOI: 10.3390/nu13092974] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Iridoids are glycosides found in plants, having inherent roles in defending them against infection by viruses and microorganisms, and in the rapid repair of damaged areas. The emerging roles of iridoid glycosides on pharmacological properties have aroused the curiosity of many researchers, and studies undertaken indicate that iridoid glycosides exert inhibitory effects in numerous cancers. This review focuses on the roles and the potential mechanism of iridoid glycosides at each stage of cancer development such as proliferation, epithelial mesenchymal transition (EMT), migration, invasion and angiogenesis. Overall, the reviewed literature indicates that iridoid glycosides inhibit cancer growth by inducing cell cycle arrest or by regulating apoptosis-related signaling pathways. In addition, iridoid glycosides suppress the expression and activity of matrix metalloproteinases (MMPs), resulting in reduced cancer cell migration and invasiveness. The antiangiogenic mechanism of iridoid glycosides was found to be closely related to the transcriptional regulation of pro-angiogenic factors, i.e., vascular endothelial growth factors (VEGFs) and cluster of differentiation 31 (CD31). Taken together, these results indicate the therapeutic potential of iridoid glycosides to alleviate or prevent rapid cancer progression and metastasis.
Collapse
|
96
|
Nowicki A, Kulus M, Wieczorkiewicz M, Pieńkowski W, Stefańska K, Skupin-Mrugalska P, Bryl R, Mozdziak P, Kempisty B, Piotrowska-Kempisty H. Ovarian Cancer and Cancer Stem Cells-Cellular and Molecular Characteristics, Signaling Pathways, and Usefulness as a Diagnostic Tool in Medicine and Oncology. Cancers (Basel) 2021; 13:cancers13164178. [PMID: 34439332 PMCID: PMC8394875 DOI: 10.3390/cancers13164178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ovarian cancer is still a high-risk, metastatic disease, often diagnosed at a late stage. Difficulties in its treatment are associated with high resistance to chemotherapy and recurrence. Responsible for the malignant features of cancer are considered to be cancer stem cells (CSCs), which generate new cells by modifying various signaling pathways. Signaling pathways are crucial for the regulation of epithelial-mesenchymal transition, metastasis, and self-renewal of CSCs. New therapies based on the use of inhibitors that block CSC growth and proliferation signals are being investigated. The current histological classification of ovarian tumors, their epidemiology, and the recent knowledge of ovarian CSCs, with particular emphasis on their molecular basis, are important considerations. Abstract Despite the increasing development of medicine, ovarian cancer is still a high-risk, metastatic disease that is often diagnosed at a late stage. In addition, difficulties in its treatment are associated with high resistance to chemotherapy and frequent relapse. Cancer stem cells (CSCs), recently attracting significant scientific interest, are considered to be responsible for the malignant features of tumors. CSCs, as the driving force behind tumor development, generate new cells by modifying different signaling pathways. Moreover, investigations on different types of tumors have shown that signaling pathways are key to epithelial-mesenchymal transition (EMT) regulation, metastasis, and self-renewal of CSCs. Based on these established issues, new therapies are being investigated based on the use of inhibitors to block CSC growth and proliferation signals. Many reports indicate that CSC markers play a key role in cancer metastasis, with hopes placed in their targeting to block this process and eliminate relapses. Current histological classification of ovarian tumors, their epidemiology, and the most recent knowledge of ovarian CSCs, with particular emphasis on their molecular background, are important aspects for consideration. Furthermore, the importance of signaling pathways involved in tumor growth, development, and metastasis, is also presented.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Wojciech Pieńkowski
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paul Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Correspondence:
| |
Collapse
|
97
|
Tang W, Wu Y, Qi X, Yu R, Lu Z, Chen A, Fan X, Li J. PGK1-coupled HSP90 stabilizes GSK3β expression to regulate the stemness of breast cancer stem cells. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0362. [PMID: 34403222 PMCID: PMC9088184 DOI: 10.20892/j.issn.2095-3941.2020.0362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/02/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Glycogen synthase kinase-3β (GSK3β) has been recognized as a suppressor of Wnt/β-catenin signaling, which is critical for the stemness maintenance of breast cancer stem cells. However, the regulatory mechanisms of GSK3β protein expression remain elusive. METHODS Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β, and to characterize the interactions of GSK3β, heat shock protein 90 (Hsp90), and co-chaperones. The role of PGK1 in Hsp90 chaperoning GSK3β was evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α, and by performing a series of binding assays with bacterially purified proteins and clinical specimens. The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays. RESULTS We showed that GSK3β was a client protein of Hsp90. Hsp90, which did not directly bind to GSK3β, interacted with phosphoglycerate kinase 1 via its C-terminal domain, thereby facilitating the binding of GSK3β to Hsp90. GSK3β-bound PGK1 interacted with Hsp90 in the "closed" conformation and stabilized GSK3β expression in an Hsp90 activity-dependent manner. The Hsp90 inhibitor, 17-AAG, rather than HDN-1, disrupted the interaction between Hsp90 and PGK1, and reduced GSK3β expression, resulting in significantly reduced inhibition of β-catenin expression, to maintain the stemness of breast cancer stem cells. CONCLUSIONS Our findings identified a novel regulatory mechanism of GSK3β expression involving metabolic enzyme PGK1-coupled Hsp90, and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3β expression.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
98
|
Zhang Y, Liu F, Ng TB. Interrelationship among paraptosis, apoptosis and autophagy in lung cancer A549 cells induced by BEAP, an antitumor protein isolated from the edible porcini mushroom Boletus edulis. Int J Biol Macromol 2021; 188:313-322. [PMID: 34339788 DOI: 10.1016/j.ijbiomac.2021.07.169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
Abstract
In today's world, cancer is still the leading cause of human death. Among them, the incidence and mortality of lung cancer remain high, and have become the focus of research in the world. BEAP, a protein with anti-lung cancer activity, was isolated and purified from the edible mushroom Boletus edulis. Previous studies have shown that BEAP can inhibit the proliferation of non-small cell lung cancer A549 cells by inducing apoptosis and cell cycle arrest in vitro and in vivo. However, there are many ways in which antitumor proteins from edible and medicinal mushroom play their roles. It is worth exploring whether there are other antitumor mechanisms of BEAP, which can provide reference value for the development of new drugs targeting non-small cell lung cancer and the repurposing of existing drugs.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
99
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
100
|
Habič A, Novak M, Majc B, Lah Turnšek T, Breznik B. Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment. J Histochem Cytochem 2021; 69:775-794. [PMID: 34310223 DOI: 10.1369/00221554211035192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic activity is perturbed in tumors and their microenvironment, and proteases also affect cancer stem cells (CSCs). CSCs are the therapy-resistant subpopulation of cancer cells with tumor-initiating capacity that reside in specialized tumor microenvironment niches. In this review, we briefly summarize the significance of proteases in regulating CSC activities with a focus on brain tumor glioblastoma. A plethora of proteases and their inhibitors participate in CSC invasiveness and affect intercellular interactions, enhancing CSC immune, irradiation, and chemotherapy resilience. Apart from their role in degrading the extracellular matrix enabling CSC migration in and out of their niches, we review the ability of proteases to modulate CSC properties, which prevents their elimination. When designing protease-oriented therapies, the multifaceted roles of proteases should be thoroughly investigated.
Collapse
Affiliation(s)
- Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|