51
|
Tolcos M, Petratos S, Hirst JJ, Wong F, Spencer SJ, Azhan A, Emery B, Walker DW. Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants? Prog Neurobiol 2017; 154:62-77. [PMID: 28392287 DOI: 10.1016/j.pneurobio.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
Poor white matter development in intrauterine growth restricted (IUGR) babies remains a major, untreated problem in neonatology. New therapies, guided by an understanding of the mechanisms that underlie normal and abnormal oligodendrocyte development and myelin formation, are required. Much of our knowledge of the mechanisms that underlie impaired myelination come from studies in adult demyelinating disease, preterm brain injury, or experimental models of hypoxia-ischemia. However, relatively less is known for IUGR which is surprising because IUGR is a leading cause of perinatal mortality and morbidity, second only to premature birth. IUGR is also a significant risk factor for the later development of cerebral palsy, and is a greater risk compared to some of the more traditionally researched antecedents - asphyxia and inflammation. Recent evidence suggests that the white matter injury and reduced myelination in the brains of some preterm babies is due to impaired maturation of oligodendrocytes thereby resulting in the reduced capacity to synthesize myelin. Therefore, it is not surprising that the hypomyelination observable in the central nervous system of IUGR infants has similarly lead to investigations identifying a delay or blockade in the progress of maturation of oligodendrocytes in these infants. This review will discuss current ideas thought to account for the poor myelination often present in the neonate's brain following IUGR, and discuss novel interventions that are promising as treatments that promote oligodendrocyte maturation, and thereby repair the myelination deficits that otherwise persist into infancy and childhood and lead to neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Monash Newborn and Monash University, Clayton, Victoria, 3168, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Aminath Azhan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Ben Emery
- Oregon Health and Science University, Portland, OR, 97239-3098, USA
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
52
|
GABA A receptor expression and white matter disruption in intrauterine growth restricted piglets. Int J Dev Neurosci 2017; 59:1-9. [PMID: 28219764 DOI: 10.1016/j.ijdevneu.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is one of the most common causes of perinatal mortality and morbidity. White matter and neuronal injury are major pathophysiological features of the IUGR neonatal brain. GABAA (γ-aminobutyric acid type A) receptors have been shown to play a role in oligodendrocyte differentiation and proliferation in the neonatal brain and may be a key factor in white matter injury and myelination in IUGR neonates. Whether there are impairments to the GABAergic system and neuronal cytoskeleton in IUGR brain has yet to be elucidated. This study aims to examine GABAA receptor α1 and α3 subunit protein expression and distribution in parietal cortex and hippocampus of the IUGR piglet at four different ages (term=115d - days gestational age), 100d, 104d, birth (postnatal day 0-P0) and P7 and to examine neuronal and myelination patterns. Significant alterations to GABAA receptor α1 and α3 protein expression levels were observed in the IUGR piglet brain of P7 IUGR piglets with significantly greater α3 expression compared to α1 expression in the hippocampus while there was virtually no difference between the two subunits in the parietal cortex. However a significantly lower α1/α3 ratio was evident in P7 IUGR cortex when compared with P7 NG cortex. Neuronal somatodendrites studied using MAP2 immunohistochemistry showed reduced and disrupted somatodendrites while MBP immunolabelling showed loss of axonal fibres from gestational day 104d through to P7. These findings provide insights into the effects of IUGR on the development of the GABA system, altered developmental maturation of GABAA receptor subunit expression in the IUGR brain may influence myelination and may partly explain the cognitive disabilities observed in IUGR. Understanding the mechanisms behind grey and white matter injury in the IUGR infant is essential to identifying targets for treatments to improve long-term outcomes for IUGR infants.
Collapse
|
53
|
Ohshima M, Coq JO, Otani K, Hattori Y, Ogawa Y, Sato Y, Harada-Shiba M, Ihara M, Tsuji M. Mild intrauterine hypoperfusion reproduces neurodevelopmental disorders observed in prematurity. Sci Rep 2016; 6:39377. [PMID: 27996031 PMCID: PMC5171836 DOI: 10.1038/srep39377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022] Open
Abstract
Severe intrauterine ischemia is detrimental to the developing brain. The impact of mild intrauterine hypoperfusion on neurological development, however, is still unclear. We induced mild intrauterine hypoperfusion in rats on embryonic day 17 via arterial stenosis with metal microcoils wrapped around the uterine and ovarian arteries. All pups were born with significantly decreased birth weights. Decreased gray and white matter areas were observed without obvious tissue damage. Pups presented delayed newborn reflexes, muscle weakness, and altered spontaneous activity. The levels of proteins indicative of inflammation and stress in the vasculature, i.e., RANTES, vWF, VEGF, and adiponectin, were upregulated in the placenta. The levels of mRNA for proteins associated with axon and astrocyte development were downregulated in fetal brains. The present study demonstrates that even mild intrauterine hypoperfusion can alter neurological development, which mimics the clinical signs and symptoms of children with neurodevelopmental disorders born prematurely or with intrauterine growth restriction.
Collapse
Affiliation(s)
- Makiko Ohshima
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Jacques-Olivier Coq
- Institut de Neurosciences de la Timone, UMR7289, CNRS, Aix Marseille Université, Marseille 13005, France
| | - Kentaro Otani
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Yorito Hattori
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Mariko Harada-Shiba
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| |
Collapse
|
54
|
Wixey JA, Chand KK, Colditz PB, Bjorkman ST. Review: Neuroinflammation in intrauterine growth restriction. Placenta 2016; 54:117-124. [PMID: 27916232 DOI: 10.1016/j.placenta.2016.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants.
Collapse
Affiliation(s)
- Julie A Wixey
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
| | - Kirat K Chand
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Paul B Colditz
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - S Tracey Bjorkman
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| |
Collapse
|
55
|
Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav 2016; 164:233-48. [DOI: 10.1016/j.physbeh.2016.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
56
|
Rideau Batista Novais A, Pham H, Van de Looij Y, Bernal M, Mairesse J, Zana-Taieb E, Colella M, Jarreau PH, Pansiot J, Dumont F, Sizonenko S, Gressens P, Charriaut-Marlangue C, Tanter M, Demene C, Vaiman D, Baud O. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia 2016; 64:2306-2320. [PMID: 27687291 DOI: 10.1002/glia.23079] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022]
Abstract
Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.
Collapse
Affiliation(s)
- Aline Rideau Batista Novais
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Hoa Pham
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Yohan Van de Looij
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Division of Development and Growth, Department of Child and Adolescent Medicine, Geneva University Hospital and School of Medicine, Geneva, Switzerland
| | - Miguel Bernal
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Jerome Mairesse
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Elodie Zana-Taieb
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France.,Université Paris-Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, Paris, France
| | - Marina Colella
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Pierre-Henri Jarreau
- Fondation PremUp, Paris, France.,Université Paris-Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, Paris, France
| | - Julien Pansiot
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Florent Dumont
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Stéphane Sizonenko
- Division of Development and Growth, Department of Child and Adolescent Medicine, Geneva University Hospital and School of Medicine, Geneva, Switzerland
| | - Pierre Gressens
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Christiane Charriaut-Marlangue
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Mickael Tanter
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Charlie Demene
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Olivier Baud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France. .,Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, Paris, France. .,Université Paris Diderot, Paris, France. .,Fondation PremUp, Paris, France.
| |
Collapse
|
57
|
Liu X, Zhao Y, Peng S, Zhang S, Wang M, Chen Y, Zhang S, Yang Y, Sun C. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells. Sci Rep 2016; 6:31049. [PMID: 27491681 PMCID: PMC4974506 DOI: 10.1038/srep31049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yahong Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Su Peng
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuqiang Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Meihong Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yeyue Chen
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Shan Zhang
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cheng Sun
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
58
|
Lee JY, Petratos S. Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Mol Neurobiol 2016; 53:6568-6583. [PMID: 27427390 DOI: 10.1007/s12035-016-0013-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
Thyroid hormone plays an important role in central nervous system (CNS) development, including the myelination of variable axonal calibers. It is well-established that thyroid hormone is required for the terminal differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes by inducing rapid cell-cycle arrest and constant transcription of pro-differentiation genes. This is well supported by the hypomyelinating phenotypes exhibited by patients with congenital hypothyroidism, cretinism. During development, myelinating oligodendrocytes only appear after the formation of neural circuits, indicating that the timing of oligodendrocyte differentiation is important. Since fetal and post-natal serum thyroid hormone levels peak at the stage of active myelination, it is suspected that the timing of oligodendrocyte development is finely controlled by thyroid hormone. The essential machinery for thyroid hormone signaling such as deiodinase activity (utilized by cells to auto-regulate the level of thyroid hormone), and nuclear thyroid hormone receptors (for gene transcription) are expressed on oligodendrocytes. In this review, we discuss the known and potential thyroid hormone signaling pathways that may regulate oligodendrocyte development and CNS myelination. Moreover, we evaluate the potential of targeting thyroid hormone signaling for white matter injury or disease.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.,ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
59
|
Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016:9260592. [PMID: 27293450 PMCID: PMC4884839 DOI: 10.1155/2016/9260592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/17/2023] Open
Abstract
Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.
Collapse
Affiliation(s)
- Alistair E. Cole
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
60
|
Perrone S, Santacroce A, Picardi A, Buonocore G. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases. World J Clin Pediatr 2016; 5:172-181. [PMID: 27170927 PMCID: PMC4857230 DOI: 10.5409/wjcp.v5.i2.172] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/30/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Nowadays metabolic syndrome represents a real outbreak affecting society. Paradoxically, pediatricians must feel involved in fighting this condition because of the latest evidences of developmental origins of adult diseases. Fetal programming occurs when the normal fetal development is disrupted by an abnormal insult applied to a critical point in intrauterine life. Placenta assumes a pivotal role in programming the fetal experience in utero due to the adaptive changes in structure and function. Pregnancy complications such as diabetes, intrauterine growth restriction, pre-eclampsia, and hypoxia are associated with placental dysfunction and programming. Many experimental studies have been conducted to explain the phenotypic consequences of fetal-placental perturbations that predispose to the genesis of metabolic syndrome, obesity, diabetes, hyperinsulinemia, hypertension, and cardiovascular disease in adulthood. In recent years, elucidating the mechanisms involved in such kind of process has become the challenge of scientific research. Oxidative stress may be the general underlying mechanism that links altered placental function to fetal programming. Maternal diabetes, prenatal hypoxic/ischaemic events, inflammatory/infective insults are specific triggers for an acute increase in free radicals generation. Early identification of fetuses and newborns at high risk of oxidative damage may be crucial to decrease infant and adult morbidity.
Collapse
|
61
|
Jiang P, Chen C, Liu XB, Pleasure DE, Liu Y, Deng W. Human iPSC-Derived Immature Astroglia Promote Oligodendrogenesis by Increasing TIMP-1 Secretion. Cell Rep 2016; 15:1303-15. [PMID: 27134175 DOI: 10.1016/j.celrep.2016.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/29/2015] [Accepted: 03/28/2016] [Indexed: 01/22/2023] Open
Abstract
Astrocytes, once considered passive support cells, are increasingly appreciated as dynamic regulators of neuronal development and function, in part via secreted factors. The extent to which they similarly regulate oligodendrocytes or proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) is less understood. Here, we generated astrocytes from human pluripotent stem cells (hiPSC-Astros) and demonstrated that immature astrocytes, as opposed to mature ones, promote oligodendrogenesis in vitro. In the PVL mouse model of neonatal hypoxic/ischemic encephalopathy, associated with cerebral palsy in humans, transplanted immature hiPSC-Astros promoted myelinogenesis and behavioral outcome. We further identified TIMP-1 as a selectively upregulated component secreted from immature hiPSC-Astros. Accordingly, in the rat PVL model, intranasal administration of conditioned medium from immature hiPSC-Astros promoted oligodendrocyte maturation in a TIMP-1-dependent manner. Our findings suggest stage-specific developmental interactions between astroglia and oligodendroglia and have important therapeutic implications for promoting myelinogenesis.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Developmental Neuroscience, Munroe-Meyer Institute, and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Chen Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Xiao-Bo Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA; Center for Neuroscience, School of Medicine, University of California at Davis, Davis, CA 95618, USA
| | - David E Pleasure
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA; Center for Neuroscience, School of Medicine, University of California at Davis, Davis, CA 95618, USA
| | - Ying Liu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA; Center for Neuroscience, School of Medicine, University of California at Davis, Davis, CA 95618, USA.
| |
Collapse
|
62
|
Coq JO, Delcour M, Massicotte VS, Baud O, Barbe MF. Prenatal ischemia deteriorates white matter, brain organization, and function: implications for prematurity and cerebral palsy. Dev Med Child Neurol 2016; 58 Suppl 4:7-11. [PMID: 27027601 PMCID: PMC4817365 DOI: 10.1111/dmcn.13040] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/16/2022]
Abstract
Cerebral palsy (CP) describes a group of neurodevelopmental disorders of posture and movement that are frequently associated with sensory, behavioral, and cognitive impairments. The clinical picture of CP has changed with improved neonatal care over the past few decades, resulting in higher survival rates of infants born very preterm. Children born preterm seem particularly vulnerable to perinatal hypoxia-ischemia insults at birth. Animal models of CP are crucial for elucidating underlying mechanisms and for development of strategies of neuroprotection and remediation. Most animal models of CP are based on hypoxia-ischemia around the time of birth. In this review, we focus on alterations of brain organization and functions, especially sensorimotor changes, induced by prenatal ischemia in rodents and rabbits, and relate these alterations to neurodevelopmental disorders found in preterm children. We also discuss recent literature that addresses the relationship between neural and myelin plasticity, as well as possible contributions of white matter injury to the emergence of brain dysfunctions induced by prenatal ischemia.
Collapse
Affiliation(s)
- Jacques-Olivier Coq
- CNRS-Aix-Marseille Université, Neurosciences Intégratives et Adaptatives, Marseille,CNRS-Aix-Marseille Université, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - Maxime Delcour
- CNRS-Aix-Marseille Université, Neurosciences Intégratives et Adaptatives, Marseille
| | - Vicky S Massicotte
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Olivier Baud
- Université Paris, Faculté de Médecine Denis Diderot, Paris,Hôpital Robert-Debré, Paris, France
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
63
|
Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 2016; 594:807-23. [PMID: 26607046 PMCID: PMC4753264 DOI: 10.1113/jp271402] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions.
Collapse
Affiliation(s)
- Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Huppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Switzerland
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
64
|
Apoptosis of Oligodendrocytes during Early Development Delays Myelination and Impairs Subsequent Responses to Demyelination. J Neurosci 2016; 35:14031-41. [PMID: 26468203 DOI: 10.1523/jneurosci.1706-15.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED During mammalian development, myelin-forming oligodendrocytes are generated and axons ensheathed according to a tightly regulated sequence of events. Excess premyelinating oligodendrocytes are eliminated by apoptosis and the timing of the onset of myelination in any specific CNS region is highly reproducible. Although the developing CNS recovers more effectively than the adult CNS from similar insults, it is unknown whether early loss of oligodendrocyte lineage cells leads to long-term functional deficits. To directly assess whether the loss of oligodendrocytes during early postnatal spinal cord development impacted oligodendrogenesis, myelination, and remyelination, transgenic mouse lines were generated in which a modified caspase-9 molecule allowed spatial and temporal control of the apoptotic pathway specifically in mature, myelin basic protein expressing oligodendrocytes (MBP-iCP9). Activating apoptosis in MBP(+) cells of the developing spinal cord during the first postnatal week inhibited myelination. This inhibition was transient, and the levels of myelination largely returned to normal after 2 weeks. Despite robust developmental plasticity, MBP-iCP9-induced oligodendrocyte apoptosis compromised the rate and extent of adult remyelination. Remyelination failure correlated with a truncated proliferative response of oligodendrocyte progenitor cells, suggesting that depleting the oligodendrocyte pool during critical developmental periods compromises the regenerative response to subsequent demyelinating lesions. SIGNIFICANCE STATEMENT This manuscript demonstrates that early insults leading to oligodendrocyte apoptosis result in the impairment of recovery from demyelinating diseases in the adult. These studies begin to provide an initial understanding of the potential failure of recovery in insults, such as periventricular leukomalacia and multiple sclerosis.
Collapse
|
65
|
Bronson SL, Bale TL. The Placenta as a Mediator of Stress Effects on Neurodevelopmental Reprogramming. Neuropsychopharmacology 2016; 41:207-18. [PMID: 26250599 PMCID: PMC4677129 DOI: 10.1038/npp.2015.231] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/10/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Adversity experienced during gestation is a predictor of lifetime neuropsychiatric disease susceptibility. Specifically, maternal stress during pregnancy predisposes offspring to sex-biased neurodevelopmental disorders, including schizophrenia, attention deficit/hyperactivity disorder, and autism spectrum disorders. Animal models have demonstrated disease-relevant endophenotypes in prenatally stressed offspring and have provided unique insight into potential programmatic mechanisms. The placenta has a critical role in the deleterious and sex-specific effects of maternal stress and other fetal exposures on the developing brain. Stress-induced perturbations of the maternal milieu are conveyed to the embryo via the placenta, the maternal-fetal intermediary responsible for maintaining intrauterine homeostasis. Disruption of vital placental functions can have a significant impact on fetal development, including the brain, outcomes that are largely sex-specific. Here we review the novel involvement of the placenta in the transmission of the maternal adverse environment and effects on the developing brain.
Collapse
Affiliation(s)
- Stefanie L Bronson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Tracy L Bale
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
66
|
Nüsken E, Gellhaus A, Kühnel E, Swoboda I, Wohlfarth M, Vohlen C, Schneider H, Dötsch J, Nüsken KD. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming. J Cell Biochem 2015; 117:1594-603. [DOI: 10.1002/jcb.25450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/19/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| | - Alexandra Gellhaus
- Institute of Molecular Biology; University of Duisburg-Essen; Essen Germany
- Department of Gynecology and Obstetrics; University Hospital Essen; Essen Germany
| | - Elisabeth Kühnel
- Institute of Molecular Biology; University of Duisburg-Essen; Essen Germany
- Department of Gynecology and Obstetrics; University Hospital Essen; Essen Germany
| | - Isabelle Swoboda
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
| | - Maria Wohlfarth
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
| | - Christina Vohlen
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
| | - Holm Schneider
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| | - Jörg Dötsch
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
67
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
68
|
Jensen BK, Monnerie H, Mannell MV, Gannon PJ, Espinoza CA, Erickson MA, Bruce-Keller AJ, Gelman BB, Briand LA, Pierce RC, Jordan-Sciutto KL, Grinspan JB. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Antiretrovirals in HIV-Associated Neurocognitive Disorders. J Neuropathol Exp Neurol 2015; 74:1093-118. [PMID: 26469251 PMCID: PMC4608376 DOI: 10.1097/nen.0000000000000255] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hubert Monnerie
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maggie V. Mannell
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J. Gannon
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay Espinoza
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle A. Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Lisa A. Briand
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, Pennsylvania
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judith B. Grinspan
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
69
|
Licht DJ. Brain hypoxia before surgery; a tale of two cells: Astrocytes and oligodendrocytes. J Thorac Cardiovasc Surg 2015; 151:273-4. [PMID: 26463653 DOI: 10.1016/j.jtcvs.2015.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Daniel J Licht
- Department of Neurology and Pediatrics, June and Steve Wolfson Laboratory for Clinical and Biomedical Optics, The Children's Hospital of Philadelphia, Philadelphia, Pa.
| |
Collapse
|
70
|
Tataranno ML, Perrone S, Buonocore G. Plasma Biomarkers of Oxidative Stress in Neonatal Brain Injury. Clin Perinatol 2015; 42:529-39. [PMID: 26250915 DOI: 10.1016/j.clp.2015.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perinatal encephalopathy is a leading cause of lifelong disability. Increasing evidence indicates that the pathogenesis of perinatal brain damage is much more complex than originally thought, with multiple pathways involved. An important role of oxidative stress (OS) in the pathogenesis of brain injury is recognized for preterm and term infants. This article examines potential reliable and specific OS biomarkers that can be used in premature and term infants for the early detection and follow-up of the most common neonatal brain injuries, such as hypoxic-ischemic encephalopathy, intraventricular hemorrhage, and periventricular leukomalacia. The next step will be to explore the correlation between brain-specific OS biomarkers and functional brain outcomes.
Collapse
Affiliation(s)
- Maria Luisa Tataranno
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| | - Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy.
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| |
Collapse
|
71
|
Maliszewski-Hall AM, Stein AB, Alexander M, Ennis K, Rao R. Acute hypoglycemia results in reduced cortical neuronal injury in the developing IUGR rat. Pediatr Res 2015; 78:7-13. [PMID: 25826116 PMCID: PMC4472557 DOI: 10.1038/pr.2015.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypoglycemia (HG) is common in intrauterine growth restricted (IUGR) neonates. In normally grown (NG) neonatal rats, acute HG causes neuronal injury in the brain; the cerebral cortex is more vulnerable than the hippocampus (HPC). We hypothesized that the IUGR brain is less vulnerable to HG-induced injury while preserving regional variation in vulnerability. METHODS We induced IUGR via bilateral uterine artery ligation on gestational day 19 (term 22 d) rats. On postnatal day 14, insulin-induced HG of equivalent severity and duration (blood glucose < 40 mg/dl for 240 min) was produced in IUGR and NG (IUGR/HG and NG/HG). Neuronal injury in the cortex and HPC was quantified 6-72 h later using Fluoro-Jade B (FJB) histochemistry. The mRNA expression of monocarboxylate transporters, MCT1 and MCT2, and glucose transporters, GLUT1 and GLUT3, was determined using quantitative PCR. RESULTS There were fewer FJB-positive (FJB+) cells in the cortex of IUGR/HG; no difference was observed in FJB+ cells in HPC. Core body temperature was lower in IUGR/HG compared with NG/HG. MCT2 expression was increased in the IUGR cortex. CONCLUSION HG-induced neuronal injury is decreased in the cortex of the developing IUGR brain. Adaptations including systemic hypothermia and enhanced delivery of alternative substrates via MCT2 might protect against HG-induced neuronal injury in IUGR.
Collapse
Affiliation(s)
- Anne M. Maliszewski-Hall
- Department of Pediatrics, Division of Neonatology, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Ariel B. Stein
- Department of Pediatrics, Division of Neonatology, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Michelle Alexander
- Department of Pediatrics, Division of Neonatology, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Kathleen Ennis
- Department of Pediatrics, Division of Neonatology, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Raghavendra Rao
- Department of Pediatrics, Division of Neonatology, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| |
Collapse
|
72
|
Murray E, Fernandes M, Fazel M, Kennedy SH, Villar J, Stein A. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG 2015; 122:1062-72. [DOI: 10.1111/1471-0528.13435] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 12/01/2022]
Affiliation(s)
- E Murray
- Department of Psychiatry; Warneford Hospital; University of Oxford; Oxford UK
| | - M Fernandes
- Nuffield Department of Obstetrics & Gynaecology; Oxford Maternal & Perinatal Health Institute; Green Templeton College; University of Oxford; Oxford UK
| | - M Fazel
- Department of Psychiatry; Warneford Hospital; University of Oxford; Oxford UK
| | - SH Kennedy
- Nuffield Department of Obstetrics & Gynaecology; Oxford Maternal & Perinatal Health Institute; Green Templeton College; University of Oxford; Oxford UK
| | - J Villar
- Nuffield Department of Obstetrics & Gynaecology; Oxford Maternal & Perinatal Health Institute; Green Templeton College; University of Oxford; Oxford UK
| | - A Stein
- Department of Psychiatry; Warneford Hospital; University of Oxford; Oxford UK
| |
Collapse
|
73
|
Maliszewski-Hall AM, Alexander M, Tkáč I, Öz G, Rao R. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain. Neurochem Res 2015; 42:133-140. [PMID: 25972040 DOI: 10.1007/s11064-015-1609-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/24/2022]
Abstract
Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.
Collapse
Affiliation(s)
- Anne M Maliszewski-Hall
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Suite 13-227, MMC 391, Minneapolis, MN, 55455, USA.
| | - Michelle Alexander
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Suite 13-227, MMC 391, Minneapolis, MN, 55455, USA
| | - Ivan Tkáč
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Suite 13-227, MMC 391, Minneapolis, MN, 55455, USA
| |
Collapse
|
74
|
Basilious A, Yager J, Fehlings MG. Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: a systematic review. Dev Med Child Neurol 2015; 57:420-30. [PMID: 25330710 PMCID: PMC4406147 DOI: 10.1111/dmcn.12599] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 01/07/2023]
Abstract
AIM This review explores the molecular, neurological, and behavioural outcomes in animal models of uterine artery ligation. We analyse the relevance of this type of model to the pathological and functional phenotypes that are consistent with cerebral palsy and its developmental comorbidities in humans. METHOD A literature search of the PubMed database was conducted for research using the uterine artery ligation model published between 1990 and 2013. From the studies included, any relevant neuroanatomical and behavioural deficits were then summarized from each document and used for further analysis. RESULTS There were 25 papers that met the criteria included for review, and several outcomes were summarized from the results of these papers. Fetuses with growth restriction demonstrated a gradient of reduced body weight with a relative sparing of brain mass. There was a significant reduction in the size of the somatosensory cortex, hippocampus, and corpus callosum. The motor cortex appeared to be spared of identifiable deficits. Apoptotic proteins were upregulated, while those important to neuronal survival, growth, and differentiation were downregulated. Neuronal apoptosis and astrogliosis occurred diffusely throughout the brain regions. White matter injury involved oligodendrocyte precursor maturation arrest, hypomyelination, and an aberrant organization of existing myelin. Animals with growth restriction demonstrated deficits in gait, memory, object recognition, and spatial processing. INTERPRETATION This review concludes that neuronal death, white matter injury, motor abnormalities, and cognitive deficits are important outcomes of uterine artery ligation in animal models. Therefore, this is a clinically relevant type of model, as these findings resemble deficits in human cerebral palsy.
Collapse
Affiliation(s)
| | - Jerome Yager
- Department of Pediatrics, University of AlbertaEdmonton, AB, Canada
| | - Michael G Fehlings
- Faculty of Medicine, University of TorontoToronto, ON, Canada,Toronto Western Research Institute and Krembil Neuroscience Centre, University Health NetworkToronto, ON, Canada,Department of Surgery, University of TorontoToronto, ON, Canada,
Correspondence to Michael Fehlings, Toronto Western Hospital 4WW449, 399 Bathurst St, Toronto, ON, Canada M5T 2S8. E-mail:
| |
Collapse
|
75
|
Przybyl L, Ibrahim T, Haase N, Golic M, Rugor J, Luft FC, Bendix I, Serdar M, Wallukat G, Staff AC, Müller DN, Hünig T, Felderhoff-Müser U, Herse F, LaMarca B, Dechend R. Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia. Hypertension 2015; 65:1298-306. [PMID: 25847949 DOI: 10.1161/hypertensionaha.114.04892] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/22/2015] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49±2.09% of CD4-positive T cells to 23.50±3.05% and from 3.85±1.45% to 23.27±7.64%, respectively. Blood pressure and albuminuria (30.6±15.1 versus 14.6±5.5 mg/d) were similar in the superagonist or control antibody-treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66±0.03 versus 2.37±0.05 g) and in the treatment protocol (3.04±0.04 versus 2.54±0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation.
Collapse
Affiliation(s)
- Lukasz Przybyl
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Tarek Ibrahim
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Nadine Haase
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Michaela Golic
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Julianna Rugor
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Friedrich C Luft
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Ivo Bendix
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Meray Serdar
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Gerd Wallukat
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Anne Cathrine Staff
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Dominik N Müller
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Thomas Hünig
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Ursula Felderhoff-Müser
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Florian Herse
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Babette LaMarca
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Ralf Dechend
- From the Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., M.G., J.R., F.C.L., G.W., D.N.M., F.H., R.D.); Department of Pharmacology/Toxicology, Center for Excellence in Cardiovascular and Renal Research, Jackson, MS (T.I., B.L.); Department of Pediatrics I, Neonatal Neuroscience Lab, University Hospital Essen, University Duisburg-Essen, Essen, Germany (I.B., M.S., U.F.-M.); Departments of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (A.C.S.); Institute of Virology and Immunobiology, Würzburg, Germany (T.H.); and Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.).
| |
Collapse
|
76
|
Morin EC, Schleger F, Preissl H, Braendle J, Eswaran H, Abele H, Brucker S, Kiefer-Schmidt I. Functional brain development in growth-restricted and constitutionally small fetuses: a fetal magnetoencephalography case-control study. BJOG 2015; 122:1184-90. [DOI: 10.1111/1471-0528.13347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/26/2022]
Affiliation(s)
- EC Morin
- Department of Obstetrics and Gynaecology; University of Tuebingen; Tuebingen Germany
- fMEG-Center; University of Tuebingen; Tuebingen Germany
| | - F Schleger
- fMEG-Center; University of Tuebingen; Tuebingen Germany
| | - H Preissl
- fMEG-Center; University of Tuebingen; Tuebingen Germany
| | - J Braendle
- Department of Obstetrics and Gynaecology; University of Tuebingen; Tuebingen Germany
- fMEG-Center; University of Tuebingen; Tuebingen Germany
| | - H Eswaran
- SARA Research Center; Department of Obstetrics and Gynecology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - H Abele
- Department of Obstetrics and Gynaecology; University of Tuebingen; Tuebingen Germany
| | - S Brucker
- Department of Obstetrics and Gynaecology; University of Tuebingen; Tuebingen Germany
- University Women's Hospital and Research Institute for Women's Health; Tuebingen Germany
| | - I Kiefer-Schmidt
- Department of Obstetrics and Gynaecology; University of Tuebingen; Tuebingen Germany
- fMEG-Center; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
77
|
Cerebrovascular adaptations to chronic hypoxia in the growth restricted lamb. Int J Dev Neurosci 2015; 45:55-65. [PMID: 25639519 DOI: 10.1016/j.ijdevneu.2015.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic moderate hypoxia induces angiogenic adaptation in the brain, reflecting a modulatory role for oxygen in determining cerebrovascular development. Chronic intrauterine fetal hypoxia, such as occurs in intrauterine growth restriction (IUGR) is likely to lead to a reduction in oxygen delivery to the brain and long-term neurological abnormalities. Thus we investigated whether vascular remodeling and vascular abnormalities were evident in the brain of IUGR newborn lambs that were chronically hypoxic in utero. Single uterine artery ligation (SUAL) surgery was performed in fetuses at ∼ 105 days gestation (term ∼ 145 days) to induce placental insufficiency and IUGR. Ewes delivered naturally at term and lambs were euthanased 24h later. IUGR brains (n = 9) demonstrated a significant reduction in positive staining for the number of blood vessels (laminin immunohistochemistry) compared with control (n = 8): from 1650 ± 284 to 416 ± 47 cells/mm(2) in subcortical white matter (SCWM) 1793 ± 298 to 385 ± 20 cells/mm(2) in periventricular white matter (PVWM), and 1717 ± 161 to 405 ± 84 cells/mm(2) in the subventricular zone (SVZ). The decrease in vascular density was associated with a significant decrease in VEGF immunoreactivity. The percentage of blood vessels exhibiting endothelial cell proliferation (Ki67 positive) varied regionally between 14 to 22% in white matter of control lambs, while only 1-3% of blood vessels in IUGR brains showed proliferation. A 66% reduction in pericyte coverage (α-SMA and desmin) of blood vessels was observed in SCWM, 71% in PVWM, and 73% in SVZ of IUGR lambs, compared to controls. A reduction in peri-vascular astrocytes (GFAP and laminin) was also observed throughout the white matter of IUGR lambs, and extravasation of albumin into the brain parenchyma was present, indicative of increased permeability of the blood brain barrier. Chronic hypoxia associated with IUGR results in a reduction in vascular density in the white matter of IUGR newborn brains. Vascular pericyte coverage and peri-vascular astrocytes, both of which are essential for stabilisation of blood vessels and the maintenance of vascular permeability, were also decreased in the white matter of IUGR lambs. In turn, these vascular changes could lead to inadequate oxygen supply and contribute to under-perfusion and increased vulnerability of white matter in IUGR infants.
Collapse
|
78
|
|
79
|
Hale MW, Spencer SJ, Conti B, Jasoni CL, Kent S, Radler ME, Reyes TM, Sominsky L. Diet, behavior and immunity across the lifespan. Neurosci Biobehav Rev 2014; 58:46-62. [PMID: 25524877 DOI: 10.1016/j.neubiorev.2014.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/10/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that perinatal events can set an organism on a life-long trajectory for either health or disease, resilience or risk. One early life variable that has proven critical for optimal development is the nutritional environment in which the organism develops. Extensive research has documented the effects of both undernutrition and overnutrition, with strong links evident for an increased risk for obesity and metabolic disorders, as well as adverse mental health outcomes. Recent work has highlighted a critical role of the immune system, in linking diet with long term health and behavioral outcomes. The present review will summarize the recent literature regarding the interactions of diet, immunity, and behavior.
Collapse
Affiliation(s)
- Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, VIC, Australia.
| | - Bruno Conti
- The Scripps Research Institute, La Jolla, CA, USA
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Morgan E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Teresa M Reyes
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
80
|
Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V. Neurobiology of premature brain injury. Nat Neurosci 2014; 17:341-6. [PMID: 24569830 PMCID: PMC4106480 DOI: 10.1038/nn.3604] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
Every year in the United States, an estimated 500,000 babies are born preterm (before 37 completed weeks of gestation), and this number is rising, along with the recognition of brain injuries due to preterm delivery. A common underlying pathogenesis appears to be perinatal hypoxia induced by immature lung development, which causes injury to vulnerable neurons and glia. Abnormal growth and maturation of susceptible cell types, particularly neurons and oligodendrocytes, in preterm babies with very low birth weight is associated with decreased cerebral and cerebellar volumes and increases in cerebral ventricular size. Here we reconcile these observations with recent studies using models of perinatal hypoxia that show perturbations in the maturation and function of interneurons, oligodendrocytes and astroglia. Together, these findings suggest that the global mechanism by which perinatal hypoxia alters development is through a delay in maturation of affected cell types, including astroglia, oligodendroglia and neurons.
Collapse
Affiliation(s)
- Natalina Salmaso
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, Connecticut, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | - Flora M Vaccarino
- 1] Child Study Center, Yale University, New Haven, Connecticut, USA. [2] Program in Neurodevelopment and Regeneration, Yale University, New Haven, Connecticut, USA. [3] Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA. [4] Department of Neurobiology, Yale University, New Haven, Connecticut, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
81
|
Jantzie LL, Miller RH, Robinson S. Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res 2013; 74:658-67. [PMID: 24108187 PMCID: PMC3865073 DOI: 10.1038/pr.2013.155] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/10/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Brain injury from preterm birth causes white matter injury (WMI), and it leads to chronic neurological deficits including cerebral palsy, epilepsy, cognitive, and behavioral delay. Immature O4+ oligodendrocytes are particularly vulnerable to WMI. Understanding how the developing brain recovers after injury is essential to finding more effective therapeutic strategies. Erythropoietin (EPO) promotes neuronal recovery after injury; however, its role in enhancing oligodendroglial lineage recovery is unclear. Previously, we found that recombinant EPO (rEPO) treatment enhances myelin basic protein (MBP) expression and functional recovery in adult rats after prenatal transient systemic hypoxia-ischemia (TSHI). We hypothesized that after injury, rEPO would enhance oligodendroglial lineage cell genesis, survival, maturation, and myelination. METHODS In vitro assays were used to define how rEPO contributes to specific stages of oligodendrocyte development and recovery after TSHI. RESULTS After prenatal TSHI injury, rEPO promotes genesis of oligodendrocyte progenitors from oligodendrospheres, survival of oligodendrocyte precursor cells (OPCs) and O4+ immature oligodendrocytes, O4+ cell process extension, and MBP expression. rEPO did not alter OPC proliferation. CONCLUSION Together, these studies demonstrate that EPO signaling promotes critical stages of oligodendroglial lineage development and recovery after prenatal TSHI injury. EPO treatment may be beneficial to preterm and other infant patient populations with developmental brain injury hallmarked by WMI.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert H. Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shenandoah Robinson
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Corresponding Author: Shenandoah Robinson, MD Department of Neurological Surgery Boston Children's Hospital 300 Longwood Avenue Boston, MA 02215 Ph: 617-355-1485 Fax: 617-703-0906,
| |
Collapse
|
82
|
Veasey SC, Lear J, Zhu Y, Grinspan JB, Hare DJ, Wang S, Bunch D, Doble PA, Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. Sleep 2013; 36:1471-81. [PMID: 24082306 DOI: 10.5665/sleep.3038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. DESIGN Participants were randomly allocated to a control or experimental group (single independent variable). SETTING University animal house. PARTICIPANTS Adult male C57BL/6J mice. INTERVENTIONS To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). MEASUREMENTS AND RESULTS Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. CONCLUSIONS Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea.
Collapse
Affiliation(s)
- Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Levin MH, Bennett JL, Verkman AS. Optic neuritis in neuromyelitis optica. Prog Retin Eye Res 2013; 36:159-71. [PMID: 23545439 PMCID: PMC3770284 DOI: 10.1016/j.preteyeres.2013.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision.
Collapse
Affiliation(s)
- Marc H Levin
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
84
|
Perrone S, Tataranno LM, Stazzoni G, Ramenghi L, Buonocore G. Brain susceptibility to oxidative stress in the perinatal period. J Matern Fetal Neonatal Med 2013; 28 Suppl 1:2291-5. [PMID: 23968388 DOI: 10.3109/14767058.2013.796170] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress (OS) occurs at birth in all newborns as a consequence of the hyperoxic challenge due to the transition from the hypoxic intrauterine environment to extrauterine life. Free radical (FRs) sources such as inflammation, hyperoxia, hypoxia, ischaemia-reperfusion, neutrophil and macrophage activation, glutamate and free iron release, all increases the OS during the perinatal period. Newborns, and particularly preterm infants, have reduced antioxidant defences and are not able to counteract the harmful effects of FRs. Energy metabolism is central to life because cells cannot exist without an adequate supply of ATP. Due to its growth, the mammalian brain can be considered as a steady-state system in which ATP production matches ATP utilisation. The developing brain is particularly sensitive to any disturbances in energy generation, and even a short-term interruption can lead to long-lasting and irreversible damage. Whenever energy failure develops, brain damage can occur. Accumulating evidence indicates that OS is implicated in the pathogenesis of many neurological diseases, such as intraventricular haemorrhage, hypoxic-ischaemic encephalopathy and epilepsy.
Collapse
Affiliation(s)
- Serafina Perrone
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| | - Luisa M Tataranno
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| | - Gemma Stazzoni
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| | - Luca Ramenghi
- b Neonatal Pathology Unit , Giannina Gaslini Hospital , Genova , Italy
| | - Giuseppe Buonocore
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| |
Collapse
|