51
|
Ma MY, Yu LQ, Wang SW, Meng Y, Lv YK. Hybrid ZIF-8-90 for Selective Solid-Phase Microextraction of Exhaled Breath from Gastric Cancer Patients. ACS APPLIED BIO MATERIALS 2021; 4:3608-3613. [PMID: 35014446 DOI: 10.1021/acsabm.1c00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) are a new kind of microporous materials whose unique properties make them promising as coatings for solid phase microextraction (SPME). However, previous MOF coatings for SPME exclusively focus on single-linker MOFs, and the selective enrichment of polar or nonpolar targets depends on the polarity of linker on the surface of MOFs, which greatly limits the application of MOF coating for SPME in real samples. Here, we report a hybrid MOF-coated stainless steel fiber for SPME of biomarkers in exhaled breath from gastric cancer patients. Zeolitic imidazolate framework-8-90 (ZIF-8-90) possesses the aldehyde groups and methyl groups in the framework as a model MOF, and eight biomarkers (ethanol, acetone, hexanal, hexanol, nonane, isoprene, heptane, and decane) were used as the target analytes. The ZIF-8-90-coated fiber shows high enrichment efficiency for hydrophilic targets and hydrophobic targets, wide linearity (three orders of magnitude), and low detection limits (0.82-2.64 μg L-1). The ZIF-8-90-coated fiber exhibited higher enrichment performance for all the investigated analytes as a result of the synergy of methyl and aldehyde groups, the porous structure, and the suitable pore size of ZIF-8-90 (4-5 Å). The relative standard deviation (RSD) of six repetitions for extractions using the same ZIF-8-90-coated fiber ranged from 2.5 to 7.3%. The reproducibility between the three fibers prepared in parallel varied in the range of 4.8-12% (RSD). The fabricated ZIF-8-90-coated fiber lasted for at least 120 cycles of extraction/desorption/conditioning without an obvious reduction in extraction efficiency and precision. Finally, the developed ZIF-8-90-coated SPME fiber has been successfully used for the analysis of exhaled breath samples from gastric patients with satisfied recoveries (88-106%).
Collapse
Affiliation(s)
- Meng-Yuan Ma
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Li-Qing Yu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Shuo-Wen Wang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Ying Meng
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| |
Collapse
|
52
|
Hintzen KFH, Grote J, Wintjens AGWE, Lubbers T, Eussen MMM, van Schooten FJ, Bouvy ND, Peeters A. Breath analysis for the detection of digestive tract malignancies: systematic review. BJS Open 2021; 5:6226007. [PMID: 33855362 PMCID: PMC8047095 DOI: 10.1093/bjsopen/zrab013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background In recent decades there has been growing interest in the use of volatile organic compounds (VOCs) in exhaled breath as biomarkers for the diagnosis of multiple variants of cancer. This review aimed to evaluate the diagnostic accuracy and current status of VOC analysis in exhaled breath for the detection of cancer in the digestive tract. Methods PubMed and the Cochrane Library database were searched for VOC analysis studies, in which exhaled air was used to detect gastro-oesophageal, liver, pancreatic, and intestinal cancer in humans, Quality assessment was performed using the QUADAS-2 criteria. Data on diagnostic performance, VOCs with discriminative power, and methodological information were extracted from the included articles. Results Twenty-three articles were included (gastro-oesophageal cancer n = 14, liver cancer n = 1, pancreatic cancer n = 2, colorectal cancer n = 6). Methodological issues included different modalities of patient preparation and sampling and platform used. The sensitivity and specificity of VOC analysis ranged from 66.7 to 100 per cent and from 48.1 to 97.9 per cent respectively. Owing to heterogeneity of the studies, no pooling of the results could be performed. Of the VOCs found, 32 were identified in more than one study. Nineteen were reported as cancer type-specific, whereas 13 were found in different cancer types. Overall, decanal, nonanal, and acetone were the most frequently identified. Conclusion The literature on VOC analysis has documented a lack of standardization in study designs. Heterogeneity between the studies and insufficient validation of the results make interpretation of the outcomes challenging. To reach clinical applicability, future studies on breath analysis should provide an accurate description of the methodology and validate their findings.
Collapse
Affiliation(s)
- K F H Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - J Grote
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A G W E Wintjens
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - T Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M M M Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - N D Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
53
|
Yusuf A, Fitzgerald RC. Screening for Barrett's Oesophagus: Are We Ready for it? ACTA ACUST UNITED AC 2021; 19:321-336. [PMID: 33746508 PMCID: PMC7962426 DOI: 10.1007/s11938-021-00342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
Purpose of review The targeted approach adopted for Barrett’s oesophagus (BO) screening is sub-optimal considering the large proportion of BO cases that are currently missed. We reviewed the literature highlighting recent technological advancements in efforts to counteract this challenge. We also provided insights into strategies that can improve the outcomes from current BO screening practises. Recent findings The standard method for BO detection, endoscopy, is invasive and expensive and therefore inappropriate for mass screening. On the other hand, endoscopy is more cost-effective for screening a high-risk population. A consensus has however not been reached on who should be screened. Risk prediction algorithms have been tested as an enrichment pre-screening tool reporting modest AUC’s but require more prospective evaluation studies. Less invasive endoscopy methods like trans-nasal endoscopy, oesophageal capsule endsocopy and non-endoscopic cell collection devices like the Cytosponge coupled with biomarker analysis have shown promise in BO detection with randomised clinical trial evidence. Summary A three-tier precision cancer programme whereby risk prediction algorithms and non-endoscopic minimally invasive cell collection devices are used to triage test a wider pool of individuals may improve the detection rate of current screening practises with minimal cost implications.
Collapse
Affiliation(s)
- Aisha Yusuf
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ United Kingdom
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ United Kingdom
| |
Collapse
|
54
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Antonowicz S, Bodai Z, Wiggins T, Markar SR, Boshier PR, Goh YM, Adam ME, Lu H, Kudo H, Rosini F, Goldin R, Moralli D, Green CM, Peters CJ, Habib N, Gabra H, Fitzgerald RC, Takats Z, Hanna GB. Endogenous aldehyde accumulation generates genotoxicity and exhaled biomarkers in esophageal adenocarcinoma. Nat Commun 2021; 12:1454. [PMID: 33674602 PMCID: PMC7935981 DOI: 10.1038/s41467-021-21800-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
Volatile aldehydes are enriched in esophageal adenocarcinoma (EAC) patients' breath and could improve early diagnosis, however the mechanisms of their production are unknown. Here, we show that weak aldehyde detoxification characterizes EAC, which is sufficient to cause endogenous aldehyde accumulation in vitro. Two aldehyde groups are significantly enriched in EAC biopsies and adjacent tissue: (i) short-chain alkanals, and (ii) medium-chain alkanals, including decanal. The short-chain alkanals form DNA-adducts, which demonstrates genotoxicity and confirms inadequate detoxification. Metformin, a putative aldehyde scavenger, reduces this toxicity. Tissue and breath concentrations of the medium-chain alkanal decanal are correlated, and increased decanal is linked to reduced ALDH3A2 expression, TP53 deletion, and adverse clinical features. Thus, we present a model for increased exhaled aldehydes based on endogenous accumulation from reduced detoxification, which also causes therapeutically actionable genotoxicity. These results support EAC early diagnosis trials using exhaled aldehyde analysis.
Collapse
Affiliation(s)
- Stefan Antonowicz
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Zsolt Bodai
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tom Wiggins
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Piers R Boshier
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yan Mei Goh
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mina E Adam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Haonan Lu
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hiromi Kudo
- Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Pathology, Imperial College London, London, UK
| | | | - Robert Goldin
- Centre for Pathology, Imperial College London, London, UK
| | - Daniela Moralli
- Chromosome Dynamics Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Catherine M Green
- Chromosome Dynamics Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris J Peters
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hani Gabra
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
56
|
Xiang L, Wu S, Hua Q, Bao C, Liu H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front Oncol 2021; 11:606915. [PMID: 33747921 PMCID: PMC7970758 DOI: 10.3389/fonc.2021.606915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Human exhaled volatile organic compounds (VOCs) are being extensively studied for the purposes of noninvasive cancer diagnoses. This article was primarily to assess the feasibility of utilizing exhaled VOCs analysis for gastrointestinal cancer (GIC) diagnosis. Methods PRISMA-based system searches were conducted for related studies of exhaled VOCs in GIC diagnosis based on predetermined criteria. Relevant articles on colorectal cancer and gastroesophageal cancer were summarized, and meta analysis was performed on articles providing sensitivity and specificity data. Results From 2,227 articles, 14 were found to meet inclusion criteria, six of which were on colorectal cancer (CRC) and eight on Gastroesophageal cancer(GEC). Five articles could provide specific data of sensitivity and specificity in GEC, which were used for meta-analysis. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated based on the combination of these data, and were 85.0% [95% confidence interval (CI): 79.0%-90.0%], 89.0% (95%CI: 86.0%-91.0%), 41.30 (21.56-79.10), and 0.93, respectively. Conclusion VOCs can distinguish gastrointestinal cancers from other gastrointestinal diseases, opening up a new avenue for the diagnosis and identification of gastrointestinal cancers, and the analysis of VOCs in exhaled breath has potential clinical application in screening. VOCs are promising tumor biomarkers for GIC diagnosis. Furthermore, limitations like the heterogeneity of diagnostic VOCs between studies should be minded.
Collapse
Affiliation(s)
- Lijuan Xiang
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sihan Wu
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Oncology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qingling Hua
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chuyang Bao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hu Liu
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
57
|
Tomić M, Šetka M, Vojkůvka L, Vallejos S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:552. [PMID: 33671783 PMCID: PMC7926866 DOI: 10.3390/nano11020552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022]
Abstract
This review summarizes the recent research efforts and developments in nanomaterials for sensing volatile organic compounds (VOCs). The discussion focuses on key materials such as metal oxides (e.g., ZnO, SnO2, TiO2 WO3), conductive polymers (e.g., polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene)), and carbon-based materials (e.g., graphene, graphene oxide, carbon nanotubes), and their mutual combination due to their representativeness in VOCs sensing. Moreover, it delves into the main characteristics and tuning of these materials to achieve enhanced functionality (sensitivity, selectivity, speed of response, and stability). The usual synthesis methods and their advantages towards their integration with microsystems for practical applications are also remarked on. The literature survey shows the most successful systems include structured morphologies, particularly hierarchical structures at the nanometric scale, with intentionally introduced tunable "decorative impurities" or well-defined interfaces forming bilayer structures. These groups of modified or functionalized structures, in which metal oxides are still the main protagonists either as host or guest elements, have proved improvements in VOCs sensing. The work also identifies the need to explore new hybrid material combinations, as well as the convenience of incorporating other transducing principles further than resistive that allow the exploitation of mixed output concepts (e.g., electric, optic, mechanic).
Collapse
Affiliation(s)
- Milena Tomić
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Electronic Engineering, Autonomous University of Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Milena Šetka
- CEITEC—Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic;
| | - Lukaš Vojkůvka
- Silicon Austria Labs, Microsystem Technologies, High Tech Campus Villach, Europastraβe 12, A-9524 Villach, Austria;
| | - Stella Vallejos
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- CEITEC—Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic;
| |
Collapse
|
58
|
Politi L, Monasta L, Rigressi MN, Princivalle A, Gonfiotti A, Camiciottoli G, Perbellini L. Discriminant Profiles of Volatile Compounds in the Alveolar Air of Patients with Squamous Cell Lung Cancer, Lung Adenocarcinoma or Colon Cancer. Molecules 2021; 26:molecules26030550. [PMID: 33494458 PMCID: PMC7866040 DOI: 10.3390/molecules26030550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of the present work was to analyze volatile compounds in alveolar air in patients with squamous cell lung cancer, lung adenocarcinoma or colon cancer, to prepare algorithms able to discriminate such specific pathological conditions. The concentration of 95 volatile compounds was measured in the alveolar air of 45 control subjects, 36 patients with lung adenocarcinoma, 25 patients with squamous cell lung cancer and 52 patients with colon cancer. Volatile compounds were measured with ion molecule reaction mass spectrometry (IMR-MS). An iterated least absolute shrinkage and selection operator multivariate logistic regression model was used to generate specific algorithms and discriminate control subjects from patients with different kinds of cancer. The final predictive models reached the following performance: by using 11 compounds, patients with lung adenocarcinoma were identified with a sensitivity of 86% and specificity of 84%; nine compounds allowed us to identify patients with lung squamous cell carcinoma with a sensitivity of 88% and specificity of 84%; patients with colon adenocarcinoma could be identified with a sensitivity of 96% and a specificity of 73% using a model comprising 13 volatile compounds. The different alveolar profiles of volatile compounds, obtained from patients with three different kinds of cancer, suggest dissimilar biological–biochemistry conditions; each kind of cancer has probably got a specific alveolar profile.
Collapse
Affiliation(s)
- Leonardo Politi
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Lorenzo Monasta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Correspondence:
| | - Maria Novella Rigressi
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Andrea Princivalle
- Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (L.P.)
| | - Alessandro Gonfiotti
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Gianna Camiciottoli
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy; (L.P.); (M.N.R.); (A.G.); (G.C.)
| | - Luigi Perbellini
- Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (L.P.)
| |
Collapse
|
59
|
Leiherer A, Ślefarska D, Leja M, Heinzle C, Mündlein A, Kikuste I, Mezmale L, Drexel H, Mayhew CA, Mochalski P. The Volatilomic Footprints of Human HGC-27 and CLS-145 Gastric Cancer Cell Lines. Front Mol Biosci 2021; 7:607904. [PMID: 33585559 PMCID: PMC7874186 DOI: 10.3389/fmolb.2020.607904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of certain volatile biomarkers in the breath of patients with gastric cancer has been reported by several studies; however, the origin of these compounds remains controversial. In vitro studies, involving gastric cancer cells may address this problem and aid in revealing the biochemical pathways underlying the production and metabolism of gastric cancer volatile indicators. Gas chromatography with mass spectrometric detection, coupled with headspace needle trap extraction as the pre-concentration technique, has been applied to map the volatilomic footprints of human HGC-27 and CLS-145 gastric cancer cell lines and normal Human Stomach Epithelial Cells (HSEC). In total, 27 volatile compounds are found to be associated with metabolism occurring in HGC-27, CLS-145, and HSEC. Amongst these, the headspace concentrations of 12 volatiles were found to be reduced compared to those above just the cultivating medium, namely there was an observed uptake of eight aldehydes (2-methylpropanal, 2-methyl-2-propenal, 2-methylbutanal, 3-methylbutanal, hexanal, heptanal, nonanal, and benzaldehyde), three heterocyclic compounds (2-methyl-furan, 2-ethyl-furan, and 2-pentyl-furan), and one sulfur-containing compound (dimethyl disulphide). For the other 15 volatiles, the headspace concentrations above the healthy and cancerous cells were found to be higher than those found above the cultivating medium, namely the cells were found to release three esters (ethyl acetate, ethyl propanoate, and ethyl 2-methylbutyrate), seven ketones (2-pentanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, 2-pentadecanone, and 2-heptadecanone), three alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, and 2-ethyl-1-hexanol), one aromatic compound (toluene), and one sulfur containing compound [2-methyl-5-(methylthio) furan]. In comparison to HSEC, HGC-27 cancer cell lines were found to have significantly altered metabolism, manifested by an increased production of methyl ketones containing an odd number of carbons. Amongst these species, three volatiles were found exclusively to be produced by this cell line, namely 2-undecanone, 2-tridecanone, and 2-heptadecanone. Another interesting feature of the HGC-27 footprint is the lowered level of alcohols and esters. The CLS-145 cells exhibited less pronounced changes in their volatilomic pattern compared to HSEC. Their footprint was characterized by the upregulated production of esters and 2-ethyl-hexanol and downregulated production of other alcohols. We have therefore demonstrated that it is possible to differentiate between cancerous and healthy gastric cells using biochemical volatile signatures.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Medical Central Laboratories, Feldkirch, Austria
| | - Daria Ślefarska
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Axel Mündlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Ilze Kikuste
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Molecular Physics Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
60
|
Attia H, Smyth E. Evolving therapies in advanced oesophago-gastric cancers and the increasing role of immunotherapy. Expert Rev Anticancer Ther 2021; 21:535-546. [PMID: 33349073 DOI: 10.1080/14737140.2021.1866548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Esophagogastric cancers remain a considerable health burden and among the top causes of global cancer-related deaths. Chemotherapy remains the cornerstone of treatment for patients with advanced disease. Doublet platinum/fluoropyrimidine therapy is established as first-line treatment with the option of adding a taxane in selected patients. Irinotecan, taxanes, and ramucirumab are approved as second-line treatments. Results from the trials KEYNOTE-059, ATTRACTION-2, and TAGS have established the use of immune checkpoint inhibitors and trifluridine/tipiracil as a third-line treatment. High PD-L1 expression, microsatellite instability, tumor mutational burden, and Epstein-Barr virus status may also be used to enrich for responses to immunotherapy. AREAS COVERED In this review, we discuss the outcome of recent trials in the later lines of therapy for esophagogastric cancer and place these in the context of current treatment paradigms. We also discuss the biology of esophagogastric cancers and how this might inform the development of new treatments. Finally, we comment on promising new drugs in development. EXPERT OPINION Recent advances in the treatment of chemo-refractory esophagogastric cancer add to the improving survival of patients with this disease. Further research is needed to improve patient selection to therapies and the earlier incorporation of these agents in the treatment journey.
Collapse
Affiliation(s)
- Hossameldin Attia
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Elizabeth Smyth
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
61
|
Chen T, Liu T, Li T, Zhao H, Chen Q. Exhaled breath analysis in disease detection. Clin Chim Acta 2021; 515:61-72. [PMID: 33387463 DOI: 10.1016/j.cca.2020.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Investigating the use of exhaled breath analysis to diagnose and monitor different diseases has attracted much interest in recent years. This review introduces conventionally used methods and some emerging technologies aimed at breath analysis and their relevance to lung disease, airway inflammation, gastrointestinal disorders, metabolic disorders and kidney diseases. One section correlates breath components and specific diseases, whereas the other discusses some unique ideas, strategies, and devices to analyze exhaled breath for the diagnosis of some common diseases. This review aims to briefly introduce the potential application of exhaled breath analysis for the diagnosis and screening of various diseases, thereby providing a new avenue for the detection of non-invasive diseases.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiannan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ting Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
62
|
Progress in Screening for Barrett's Esophagus: Beyond Standard Upper Endoscopy. Gastrointest Endosc Clin N Am 2021; 31:43-58. [PMID: 33213799 DOI: 10.1016/j.giec.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rapid increase in the incidence of esophageal adenocarcinoma in Western populations over the past 4 decades and its associated poor prognosis, unless detected early has generated great interest in screening for the precursor lesion Barrett's esophagus (BE). Recently, there have been significant developments in imaging-based modalities and esophageal cell-sampling devices coupled with biomarker assays. In this review, the authors discuss the rationale for screening for BE and the factors to consider for targeting the at-risk population. They also explore future avenues for research in this area.
Collapse
|
63
|
Wen Q, Boshier P, Myridakis A, Belluomo I, Hanna GB. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites 2020; 11:17. [PMID: 33383923 PMCID: PMC7824454 DOI: 10.3390/metabo11010017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The analysis of urinary volatile organic compounds (VOCs) is a promising field of research with the potential to discover new biomarkers for cancer early detection. This systematic review aims to summarise the published literature concerning cancer-associated urinary VOCs. A systematic online literature search was conducted to identify studies reporting urinary VOC biomarkers of cancers in accordance with the recommendations of the Cochrane Library and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Thirteen studies comprising 1266 participants in total were included in the review. Studies reported urinary VOC profiles of five cancer subtypes: prostate cancer, gastrointestinal cancer, leukaemia/lymphoma, lung cancer, and bladder cancer. Forty-eight urinary VOCs belonging to eleven chemical classes were identified with high diagnostic performance. VOC profiles were distinctive for each cancer type with limited cross-over. The metabolic analysis suggested distinctive phenotypes for prostate and gastrointestinal cancers. The heterogenicity of study design, methodological and reporting quality may have contributed to inconsistencies between studies. Urinary VOC analysis has shown promising performance for non-invasive diagnosis of cancer. However, limitations in study design have resulted in inconsistencies between studies. These limitations are summarised and discussed in order to support future studies.
Collapse
Affiliation(s)
| | | | | | | | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London W2 1NY, UK; (Q.W.); (P.B.); (A.M.); (I.B.)
| |
Collapse
|
64
|
Altomare DF, Picciariello A, Rotelli MT, De Fazio M, Aresta A, Zambonin CG, Vincenti L, Trerotoli P, De Vietro N. Chemical signature of colorectal cancer: case-control study for profiling the breath print. BJS Open 2020; 4:1189-1199. [PMID: 32990407 PMCID: PMC8444279 DOI: 10.1002/bjs5.50354] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Effective screening for colorectal cancer can reduce mortality by early detection of tumours and colonic polyps. An altered pattern of volatile organic compounds (VOCs) in exhaled breath has been proposed as a potential non-invasive diagnostic tool for detection of cancer. The aim of this study was to evaluate the reliability of breath-testing for colorectal cancer screening and early diagnosis using an advanced breath sampler. METHODS The exhaled breath of patients with colorectal cancer and non-cancer controls with negative findings on colonoscopy was collected using the ReCIVA® Breath Sampler. This portable device is able to capture the alveolar breath fraction without environmental contamination. VOCs were desorbed thermally and analysed by gas chromatography-mass spectrometry. The discriminatory ability of VOCs in detecting colorectal cancer was evaluated by receiver operating characteristic (ROC) curve analysis for each VOC, followed by cross-validation by the leave-one-out method, and by applying stepwise logistic regression analysis. RESULTS The study included 83 patients with colorectal cancer and 90 non-cancer controls. Fourteen VOCs were found to have significant discriminatory ability in detecting patients with colorectal cancer. The model with the diagnosis of cancer versus no cancer resulted in a statistically significant likelihood of discrimination of 173·45 (P < 0·001), with an area under the ROC curve of 0·979. Cross-validation of the model resulted in a true predictive value for colorectal cancer of 93 per cent overall. Reliability of the breath analysis was maintained irrespective of cancer stage. CONCLUSION This study demonstrated that analysis of exhaled VOCs can discriminate patients with colorectal cancer from those without. This finding may eventually lead to the creation of a smart online sensory device, capable of providing a binary answer (cancer/no cancer) and directing to further screening.
Collapse
Affiliation(s)
- D. F. Altomare
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
- Apulian Breath Analysis Centre (CeRBA)Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo IIBariItaly
| | - A. Picciariello
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
| | - M. T. Rotelli
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
| | - M. De Fazio
- Surgical Unit ‘M. Rubino’, Department of Emergency and Organ TransplantationBariItaly
| | - A. Aresta
- Department of ChemistryUniversity Aldo Moro of BariBariItaly
| | - C. G. Zambonin
- Department of ChemistryUniversity Aldo Moro of BariBariItaly
| | - L. Vincenti
- Surgical UnitAzienda Ospedaliero‐Universitaria Policlinico BariBariItaly
| | - P. Trerotoli
- Statistical Unit, Department of Biomedical Sciences and Human OncologyBariItaly
| | - N. De Vietro
- Department of ChemistryUniversity Aldo Moro of BariBariItaly
| |
Collapse
|
65
|
Peters Y, Schrauwen RWM, Tan AC, Bogers SK, de Jong B, Siersema PD. Detection of Barrett's oesophagus through exhaled breath using an electronic nose device. Gut 2020; 69:1169-1172. [PMID: 32098798 DOI: 10.1136/gutjnl-2019-320273] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Timely detection of oesophageal adenocarcinoma (OAC) and even more so its precursor Barrett's oesophagus (BO) could contribute to decrease OAC incidence and mortality. An accurate, minimally-invasive screening method for BO for widespread use is currently not available. In a proof-of-principle study in 402 patients, we developed and cross-validated a BO prediction model using volatile organic compounds (VOCs) analysis with an electronic nose device. This electronic nose was able to distinguish between patients with and without BO with good diagnostic accuracy (sensitivity 91% specificity 74%) and seemed to be independent of proton pump inhibitor use, the presence of hiatal hernia, and reflux. This technique may enable an efficient, well-tolerated, and sensitive and specific screening method to select high-risk individuals to undergo upper endoscopy.
Collapse
Affiliation(s)
- Yonne Peters
- Gastroenterology and Hepatology, Radboudumc, Nijmegen, Gelderland, The Netherlands
| | - Ruud W M Schrauwen
- Gastroenterology and Hepatology, Ziekenhuis Bernhoven, Uden, Noord-Brabant, The Netherlands
| | - Adriaan C Tan
- Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Sanne K Bogers
- Gastroenterology and Hepatology, Ziekenhuis Bernhoven, Uden, Noord-Brabant, The Netherlands
| | - Bart de Jong
- Gastroenterology and Hepatology, Radboudumc, Nijmegen, Gelderland, The Netherlands
| | - Peter D Siersema
- Gastroenterology and Hepatology, Radboudumc, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
66
|
Franklin J, Jankowski J. Recent advances in understanding and preventing oesophageal cancer. F1000Res 2020; 9. [PMID: 32399195 PMCID: PMC7194479 DOI: 10.12688/f1000research.21971.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Oesophageal cancer is a common cancer that continues to have a poor survival. This is largely in part due to its late diagnosis and early metastatic spread. Currently, screening is limited to patients with multiple risk factors via a relatively invasive technique. However, there is a large proportion of patients diagnosed with oesophageal cancer who have not been screened. This has warranted the development of new screening techniques that could be implemented more widely and lead to earlier identification and subsequently improvements in survival rates. This article also explores progress in the surveillance of Barrett’s oesophagus, a pre-malignant condition for the development of oesophageal adenocarcinoma. In recent years, advances in early endoscopic intervention have meant that more patients are considered at an earlier stage for potentially curative treatment.
Collapse
Affiliation(s)
- James Franklin
- Gastroenterology and Endoscopy Department, Kings Mill Hospital NHS Foundation Trust, Sutton-in-Ashfield, Nottinghamshire, NG17 4JL, UK
| | - Janusz Jankowski
- Gastroenterology and Endoscopy Department, Kings Mill Hospital NHS Foundation Trust, Sutton-in-Ashfield, Nottinghamshire, NG17 4JL, UK
- University of Liverpool, Liverpool, UK
- University of Roehampton, London, UK
| |
Collapse
|
67
|
van Keulen KE, Jansen ME, Schrauwen RWM, Kolkman JJ, Siersema PD. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment Pharmacol Ther 2020; 51:334-346. [PMID: 31858615 PMCID: PMC7003780 DOI: 10.1111/apt.15622] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer diagnosis in the Western world. AIM To evaluate exhaled volatile organic compounds (VOCs) as a non-invasive biomarker for the detection of CRC and precursor lesions using an electronic nose. METHODS In this multicentre study adult colonoscopy patients, without inflammatory bowel disease or (previous) malignancy, were invited for breath analysis. Two-thirds of the breath tests were randomly assigned to develop training models which were used to predict the diagnosis of the remaining patients (external validation). In the end, all data were used to develop final-disease models to further improve the discriminatory power of the algorithms. RESULTS Five hundred and eleven breath samples were collected. Sixty-four patients were excluded due to an inadequate breath test (n = 51), incomplete colonoscopy (n = 8) or colitis (n = 5). Classification was based on the most advanced lesion found; CRC (n = 70), advanced adenomas (AAs) (n = 117), non-advanced adenoma (n = 117), hyperplastic polyp (n = 15), normal colonoscopy (n = 125). Training models for CRC and AAs had an area under the curve (AUC) of 0.76 and 0.71 and blind validation resulted in an AUC of 0.74 and 0.61 respectively. Final models for CRC and AAs yielded an AUC of 0.84 (sensitivity 95% and specificity 64%) and 0.73 (sensitivity and specificity 79% and 59%) respectively. CONCLUSIONS This study suggests that exhaled VOCs could potentially serve as a non-invasive biomarker for the detection of CRC and AAs. Future studies including more patients could further improve the discriminatory potential of VOC analysis for the detection of (pre-)malignant colorectal lesions. (https://clinicaltrials.gov Identifier NCT03488537).
Collapse
Affiliation(s)
- Kelly E. van Keulen
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Maud E. Jansen
- Department of Gastroenterology and HepatologyMedisch Spectrum TwenteEnschedeThe Netherlands,University Medical Center GroningenGroningenThe Netherlands
| | | | - Jeroen J. Kolkman
- Department of Gastroenterology and HepatologyMedisch Spectrum TwenteEnschedeThe Netherlands,University Medical Center GroningenGroningenThe Netherlands
| | - Peter D. Siersema
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
68
|
Song L, Dou K, Wang R, Leng P, Luo L, Xi Y, Kaun CC, Han N, Wang F, Chen Y. Sr-Doped Cubic In 2O 3/Rhombohedral In 2O 3 Homojunction Nanowires for Highly Sensitive and Selective Breath Ethanol Sensing: Experiment and DFT Simulation Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1270-1279. [PMID: 31822058 DOI: 10.1021/acsami.9b15928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, it is urgent and challenging to fabricate highly sensitive and selective gas sensors for breath analyses. In this work, Sr-doped cubic In2O3/rhombohedral In2O3 homojunction nanowires (NWs) are synthesized by one-step electrospun technology. The Sr doping alters the cubic phase of pure In2O3 into the rhombohedral phase, which is verified by the high-resolution transmittance electron microscopy, X-ray diffraction, and Raman spectroscopy, and is attributable to the low cohesive energy as calculated by the density functional theory (DFT). As a proof-of-concept of fatty liver biomarker sensing, ethanol sensors are fabricated using the electrospun In2O3 NWs. The results show that 8 wt % Sr-doped In2O3 shows the highest ethanol sensing performance with a high response of 21-1 ppm, a high selectivity over other interfering gases such as methanol, acetone, formaldehyde, toluene, xylene, and benzene, a high stability measured in 6 weeks, and also a high resistance to high humidity of 80%. The outstanding ethanol sensing performance is attributable to the enhanced ethanol adsorption by Sr doping as calculated by DFT, the stable rhombohedral phase and the preferred (104) facet exposure, and the formed homojunctions favoring the electron transfer. All these results show the effective structural modification of In2O3 by Sr doping, and also the great potency of the homojunction Sr-doped In2O3 NWs for highly sensitive, selective, and stable breath ethanol sensing.
Collapse
Affiliation(s)
- Longfei Song
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Kunpeng Dou
- College of Information Science and Engineering , Ocean University of China , Qingdao 266100 , China
| | - Rongrong Wang
- Department of Pharmacy , The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | - Ping Leng
- Department of Pharmacy , The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | - Linqu Luo
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Yan Xi
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Chao-Cheng Kaun
- Research Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Fengyun Wang
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
69
|
Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann Surg 2020; 269:903-910. [PMID: 29194085 DOI: 10.1097/sla.0000000000002539] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE BACKGROUND:: Breath VOCs have the potential to noninvasively diagnose cancer. METHODS Exhaled breath samples were collected using 2-L double-layered Nalophan bags, and were analyzed using selected-ion-flow-tube mass-spectrometry. Gold-standard test for comparison was endoscopy for luminal inspection and computed tomography (CT) to confirm cancer recurrence. Three studies were conducted: RESULTS:: CONCLUSION:: This study suggests the association of a single breath biomarker with the primary presence and recurrence of CRCa. Further multicenter validation studies are required to validate these findings.
Collapse
|
70
|
Graça G, Lau CHE, Gonçalves LG. Exploring Cancer Metabolism: Applications of Metabolomics and Metabolic Phenotyping in Cancer Research and Diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:367-385. [PMID: 32130709 DOI: 10.1007/978-3-030-34025-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered metabolism is one of the key hallmarks of cancer. The development of sensitive, reproducible and robust bioanalytical tools such as Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry techniques offers numerous opportunities for cancer metabolism research, and provides additional and exciting avenues in cancer diagnosis, prognosis and for the development of more effective and personalized treatments. In this chapter, we introduce the current state of the art of metabolomics and metabolic phenotyping approaches in cancer research and clinical diagnostics.
Collapse
Affiliation(s)
- Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| | - Chung-Ho E Lau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Luís G Gonçalves
- Proteomics of Non-Model Organisms Lab, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
71
|
Singh T, Sanghi V, Thota PN. Current management of Barrett esophagus and esophageal adenocarcinoma. Cleve Clin J Med 2019; 86:724-732. [PMID: 31710585 DOI: 10.3949/ccjm.86a.18106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barrett esophagus is found in 5% to 15% of patients with gastroesophageal reflux disease and is a precursor of esophageal adenocarcinoma, yet the condition often goes undiagnosed. Patients with reflux disease who are male, over age 50, or white, and who smoke or have central obesity or a family history of Barrett esophagus or esophageal adenocarcinoma, should undergo initial screening endoscopy and, if no dysplasia is noted, surveillance endoscopy every 3 to 5 years. Dysplasia is treated with endoscopic eradication by ablation, resection, or both. Chemoprotective agents are being studied to prevent progression to dysplasia in Barrett esophagus. The authors discuss current recommendations for screening and management.
Collapse
Affiliation(s)
- Tavankit Singh
- Department of Gastroenterology and Hepatology, Cleveland Clinic
| | - Vedha Sanghi
- Department of Internal Medicine, Cleveland Clinic; Clinical Instructor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Prashanthi N Thota
- Medical Director, Esophageal Center, Digestive Disease and Surgery Institute, Cleveland Clinic; Clinical Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
72
|
Lu D, Liu X, Feng S, Dong X, Shi X, Ren P, Diao D, Wu H, Xiong G, Wang H, Li M, Rao S, Molena D, Wu AJ, Cai K. The Current Situation of Esophageal Cancer Staging and Perioperative Strategies Determination in Central and Southern China: A Cross Sectional Survey. Front Oncol 2019; 9:1098. [PMID: 31696056 PMCID: PMC6817579 DOI: 10.3389/fonc.2019.01098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: We aim to investigate the current esophageal cancer staging according to the 7th edition TNM classification for esophageal carcinoma proposed by American Joint Committee on Cancer (AJCC) among oncology-related physicians in China. Methods: A specifically-designed 14-item questionnaire was distributed to 366 doctors who were working with esophageal cancer patients. We collected and analyzed the feedbacks and explored the possible associations within different departments, including thoracic surgery, the internal medicine of gastroenterology, oncology, and/ radiotherapy in eight different hospitals from central and southern China. Results: Among all the responses, 31.42% of them were from thoracic surgery department, 40.44% were from oncology and/or radiation therapy and 28.14% were from the internal medicine of gastroenterology, respectively. Surprisingly, in total 66.12% of all the physicians were unaware that the 7th edition of esophageal carcinoma TNM classification was released in 2009; only 21.86 and 16.67% of physicians recognized cervical nodes and celiac nodes as regional lymph nodes. Furthermore, 67.21% physicians didn't know that tumor location, histologic grade, and histopathology were accepted as new prognostic factors in the latest TNM system; and 51.37% physicians could not determine the correct TNM classification of esophagogastric junction cancers. Intriguingly, over 50% of them could still design appropriate perioperative strategies. Conclusions: The 7th edition of the TNM classification for esophageal carcinoma is poorly recognized and understood in central and southern China, which might contribute to the relatively low rates of appropriate perioperative procedures applied for esophageal cancer patients.
Collapse
Affiliation(s)
- Di Lu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyang Feng
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoying Dong
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshun Shi
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengfei Ren
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingwei Diao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gang Xiong
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haofei Wang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Li
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Daniela Molena
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
73
|
Markar SR, Wiggins T, Antonowicz S, Chin ST, Romano A, Nikolic K, Evans B, Cunningham D, Mughal M, Lagergren J, Hanna GB. Assessment of a Noninvasive Exhaled Breath Test for the Diagnosis of Oesophagogastric Cancer. JAMA Oncol 2019; 4:970-976. [PMID: 29799976 PMCID: PMC6145735 DOI: 10.1001/jamaoncol.2018.0991] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Question What is the diagnostic accuracy of a breath test for esophagogastric cancer? Findings In a multicenter diagnostic study of 335 patients, including 172 patients with esophagogastric cancer, the breath test demonstrated good diagnostic accuracy. Meaning This study suggests the potential of breath analysis as a noninvasive tool in the diagnosis of esophagogastric cancer. Importance Early esophagogastric cancer (OGC) stage presents with nonspecific symptoms. Objective The aim of this study was to determine the accuracy of a breath test for the diagnosis of OGC in a multicenter validation study. Design, Setting, and Participants Patient recruitment for this diagnostic validation study was conducted at 3 London hospital sites, with breath samples returned to a central laboratory for selected ion flow tube mass spectrometry (SIFT-MS) analysis. Based on a 1:1 cancer:control ratio, and maintaining a sensitivity and specificity of 80%, the sample size required was 325 patients. All patients with cancer were on a curative treatment pathway, and patients were recruited consecutively. Among the 335 patients included; 172 were in the control group and 163 had OGC. Interventions Breath samples were collected using secure 500-mL steel breath bags and analyzed by SIFT-MS. Quality assurance measures included sampling room air, training all researchers in breath sampling, regular instrument calibration, and unambiguous volatile organic compounds (VOCs) identification by gas chromatography mass spectrometry. Main Outcomes and Measures The risk of cancer was identified based on a previously generated 5-VOCs model and compared with histopathology-proven diagnosis. Results Patients in the OGC group were older (median [IQR] age 68 [60-75] vs 55 [41-69] years) and had a greater proportion of men (134 [82.2%]) vs women (81 [47.4%]) compared with the control group. Of the 163 patients with OGC, 123 (69%) had tumor stage T3/4, and 106 (65%) had nodal metastasis on clinical staging. The predictive probabilities generated by this 5-VOCs diagnostic model were used to generate a receiver operator characteristic curve, with good diagnostic accuracy, area under the curve of 0.85. This translated to a sensitivity of 80% and specificity of 81% for the diagnosis of OGC. Conclusions and Relevance This study shows the potential of breath analysis in noninvasive diagnosis of OGC in the clinical setting. The next step is to establish the diagnostic accuracy of the test among the intended population in primary care where the test will be applied.
Collapse
Affiliation(s)
- Sheraz R Markar
- Department Surgery & Cancer, Imperial College London, United Kingdom
| | - Tom Wiggins
- Department Surgery & Cancer, Imperial College London, United Kingdom
| | - Stefan Antonowicz
- Department Surgery & Cancer, Imperial College London, United Kingdom
| | - Sung-Tong Chin
- Department Surgery & Cancer, Imperial College London, United Kingdom
| | - Andrea Romano
- Department Surgery & Cancer, Imperial College London, United Kingdom
| | - Konstantin Nikolic
- Institute of Biomedical Engineering, Imperial College London, United Kingdom
| | - Benjamin Evans
- Institute of Biomedical Engineering, Imperial College London, United Kingdom
| | - David Cunningham
- Department of Oncology, Royal Marsden Hospital, London, United Kingdom
| | - Muntzer Mughal
- Department of Surgery, University College London Hospital, United Kingdom
| | - Jesper Lagergren
- Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| | - George B Hanna
- Department Surgery & Cancer, Imperial College London, United Kingdom
| |
Collapse
|
74
|
Rondanelli M, Perdoni F, Infantino V, Faliva MA, Peroni G, Iannello G, Nichetti M, Alalwan TA, Perna S, Cocuzza C. Volatile Organic Compounds as Biomarkers of Gastrointestinal Diseases and Nutritional Status. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:7247802. [PMID: 31583160 PMCID: PMC6754926 DOI: 10.1155/2019/7247802] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 05/30/2023]
Abstract
PURPOSE The purpose of this review was to identify the best solution for rapid and noninvasive diagnosis and long-term monitoring of patients affected by inflammatory gastrointestinal diseases, colon and gastric cancer, obesity in correlation to diet, and breast milk to evaluate exposure to VOCs in women and infants. METHODS This review included 20 previously published eligible studies. VOC analysis has allowed us to highlight differences in lifestyles, intestinal microbiota, and metabolism. New innovative methods have been described that allow the detection and quantification of a broad spectrum of metabolites present in exhaled breath even at very low levels, some of which have been shown to be indicators of pathological conditions. RESULTS Five studies were analyzed that involved VOC analysis in relation to type of diet. All of them showed that the type of diet can have an impact on metabolites excreted and therefore can be a useful tool in the nutritional studies related to metabolism and health and disease status. Two studies concerned VOC analysis in inflammatory bowel diseases, and the results showed that VOCs can distinguish active disease from remission; VOC profile is clearly different in patients. In particular, C15H30 1-pentadecene, 3-methyl-1-butanal, octane, acetic acid, alpha-pinene, and m-cymene are elevated in active ulcerative colitis. Four studies examined VOCs in gastric and colorectal tumors showing a change in metabolic biomarkers of cancer patients compared to the control group. Finally, the study of VOCs in breast milk has improved the understanding of the potential health risks of exposure of children to chemical pollutants. CONCLUSIONS VOC analysis allowed to highlight differences in behavior, lifestyle, and metabolism of individuals. Analytical methods are continuously developed to allow for better detection and quantification of metabolites, thus enabling the detection of a broader spectrum of pathophysiology and disease biomarkers.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia 27100, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy
| | - Federica Perdoni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Vittoria Infantino
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari 70121, Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona “Istituto Santa Margherita”, Pavia 27100, Italy
| | - Mara Nichetti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Tariq A. Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P.O. Box 32038, Zallaq, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P.O. Box 32038, Zallaq, Bahrain
| | - Clementina Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano 20126, Italy
| |
Collapse
|
75
|
Staniek ME, Sedda L, Gibson TD, de Souza CF, Costa EM, Dillon RJ, Hamilton JGC. eNose analysis of volatile chemicals from dogs naturally infected with Leishmania infantum in Brazil. PLoS Negl Trop Dis 2019; 13:e0007599. [PMID: 31386662 PMCID: PMC6697360 DOI: 10.1371/journal.pntd.0007599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/16/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) in Brazil is a neglected, vector-borne, tropical parasitic disease that is responsible for several thousand human deaths every year. The transmission route involves sand flies becoming infected after feeding on infected reservoir host, mainly dogs, and then transmitting the Leishmania infantum parasites while feeding on humans. A major component of the VL control effort is the identification and euthanasia of infected dogs to remove them as a source of infection. A rapid, non-invasive, point-of-care device able to differentiate between the odours of infected and uninfected dogs may contribute towards the accurate diagnosis of canine VL. METHODOLOGY/PRINCIPAL FINDINGS We analysed the headspace volatile chemicals from the hair of two groups of dogs collected in 2017 and 2018 using a bench-top eNose volatile organic chemical analyser. The dogs were categorised as infected or uninfected by PCR analysis of blood samples taken by venepuncture and the number of parasites per ml of blood was calculated for each dog by qPCR analysis. We demonstrated using a robust clustering analysis that the eNose data could be discriminated into infected and uninfected categories with specificity >94% and sensitivity >97%. The eNose device and data analysis were sufficiently sensitive to be able to identify infected dogs even when the Leishmania population in the circulating blood was very low. CONCLUSIONS/SIGNIFICANCE The study illustrates the potential of the eNose to rapidly and accurately identify dogs infected with Le. infantum. Future improvements to eNose analyser sensor sensitivity, sampling methodology and portability suggest that this approach could significantly improve the diagnosis of VL infected dogs in Brazil with additional potential for effective diagnosis of VL in humans as well as for the diagnosis of other parasitic diseases.
Collapse
Affiliation(s)
- Monica E. Staniek
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - Luigi Sedda
- Centre for Health Informatics Computation and Statistics, Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - Tim D. Gibson
- RoboScientific Ltd., Espace North, Littleport, Cambridgeshire
| | | | - Erika M. Costa
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rod J. Dillon
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| |
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW There has been an exponential increase in the incidence of esophageal adenocarcinoma (EAC) over the last half century. Barrett's esophagus (BE) is the only known precursor lesion of EAC. Screening for BE in high-risk populations has been advocated with the aim of identifying BE, followed by endoscopic surveillance to detect dysplasia and early stage cancer, with the intent that treatment can improve outcomes. We aimed to review BE screening methodologies currently recommended and in development. RECENT FINDINGS Unsedated transnasal endoscopy allows for visualization of the distal esophagus, with potential for biopsy acquisition, and can be done in the office setting. Non-endoscopic screening methods being developed couple the use of swallowable esophageal cell sampling devices with BE specific biomarkers, as well as trefoil factor 3, methylated DNA markers, and microRNAs. This approach has promising accuracy. Circulating and exhaled volatile organic compounds and the foregut microbiome are also being explored as means of detecting EAC and BE in a non-invasive manner. Non-invasive diagnostic techniques have shown promise in the detection of BE and may be effective methods of screening high-risk patients.
Collapse
Affiliation(s)
- Don C Codipilly
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
77
|
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV, Azaryan AA, Dmitrieva EV. Evaluation of the Possibility of Volatile Organic Compounds Determination in Exhaled Air by Gas Chromatography for the Noninvasive Diagnostics of Lung Cancer. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
78
|
Wang KH, Hsieh JC, Chen CC, Zan HW, Meng HF, Kuo SY, Nguyễn MTN. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens Bioelectron 2019; 132:352-359. [DOI: 10.1016/j.bios.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/31/2023]
|
79
|
Marzorati D, Mainardi L, Sedda G, Gasparri R, Spaggiari L, Cerveri P. A review of exhaled breath: a key role in lung cancer diagnosis. J Breath Res 2019; 13:034001. [DOI: 10.1088/1752-7163/ab0684] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
80
|
Abstract
OBJECTIVE To identify patient factors that are associated with emergency presentation of esophageal and gastric cancer, and further to evaluate long-term prognosis in this cohort. BACKGROUND The incidence of emergency presentation is variable, with the prognosis of patients stabilized and discharged to return for elective surgery unknown. METHODS The primary admission of patients with esophageal or gastric cancer within the Hospital Episode Statistics database (1997-2012) was used to classify as emergency or elective diagnosis. Multivariate regression analyses were used to identify patient factors associated with emergency diagnosis and prognosis. RESULTS A total of 35,807 (29.4%) and 45,866 (39.6%) patients with esophageal and gastric cancer presented as an emergency over the study period. Age ≥70, female sex, non-white ethnicity, Charlson comorbidity index score ≥3 and more deprived Townsend index were independent predictors of emergency cancer diagnosis. Emergency diagnosis was an independent predictor of increased 5-year mortality for all patients with esophageal cancer [hazard ratio (HR) = 1.63, 95% confidence interval (CI) 1.61-1.65] and gastric cancer (HR = 1.20, 95% CI 1.16-1.23). Specifically patients receiving surgery on an elective follow-up admission with an initial emergency diagnosis had a poorer prognosis (esophageal cancer: HR = 1.35, 95% CI 1.27-1.44, gastric cancer: HR = 1.13. 95% CI 1.04-1.22), with a significant increase in liver recurrence (esophageal cancer: 7.1% vs 4.9%; P < 0.001, gastric cancer: 7.0% vs 4.8%; P < 0.001) compared to patients referred electively. CONCLUSIONS Emergency presentation of esophageal and gastric cancer is associated with a poor prognosis, due to the increased incidence of metastatic disease at diagnosis and a higher recurrence rate after surgery.
Collapse
|
81
|
Sanghi V, Thota PN. Barrett's esophagus: novel strategies for screening and surveillance. Ther Adv Chronic Dis 2019; 10:2040622319837851. [PMID: 30937155 PMCID: PMC6435879 DOI: 10.1177/2040622319837851] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Barrett’s esophagus is the precursor lesion for esophageal adenocarcinoma. Screening and surveillance of Barrett’s esophagus are undertaken with the goal of earlier detection and lowering the mortality from esophageal adenocarcinoma. The widely used technique is standard esophagogastroduodenoscopy with biopsies per the Seattle protocol for screening and surveillance of Barrett’s esophagus. Surveillance intervals vary depending on the degree of dysplasia with endoscopic eradication therapy confined to patients with Barrett’s esophagus and confirmed dysplasia. In this review, we present various novel techniques for screening of Barrett’s esophagus such as unsedated transnasal endoscopy, cytosponge with trefoil factor-3, balloon cytology, esophageal capsule endoscopy, liquid biopsy, electronic nose, and oral microbiome. In addition, advanced imaging techniques such as narrow band imaging, dye-based chromoendoscopy, confocal laser endomicroscopy, volumetric laser endomicroscopy, and wide-area transepithelial sampling with computer-assisted three-dimensional analysis developed for better detection of dysplasia are also reviewed.
Collapse
Affiliation(s)
- Vedha Sanghi
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Prashanthi N Thota
- Esophageal Center, Department of Gastroenterology and Hepatology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
82
|
Konda VJA, Souza RF. Barrett's Esophagus and Esophageal Carcinoma: Can Biomarkers Guide Clinical Practice? Curr Gastroenterol Rep 2019; 21:14. [PMID: 30868278 DOI: 10.1007/s11894-019-0685-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE OF REVIEW Despite gastrointestinal societal recommendations for endoscopic screening and surveillance of Barrett's esophagus, the rates of esophageal adenocarcinoma continue to rise. Furthermore, this current practice is costly to patients and the medical system without clear evidence of reduction in cancer mortality. The use of biomarkers to guide screening, surveillance, and treatment strategies might alleviate some of these issues. RECENT FINDINGS Incredible advances in biomarker identification, biomarker assays, and minimally-invasive modalities to acquire biomarkers have shown promising results. We will highlight recently published, key studies demonstrating where we are with using biomarkers for screening and surveillance in clinical practice, and what is on the horizon regarding novel non-invasive and minimally invasive methods to acquire biomarkers. Proof-of principle studies using in silico models demonstrate that biomarker-guided screening, surveillance, and therapeutic intervention strategies can be cost-effective and can reduce cancer deaths in patients with Barrett's esophagus.
Collapse
Affiliation(s)
- Vani J A Konda
- Department of Medicine and the Center for Esophageal Diseases, Baylor University Medical Center, Dallas, TX, 75246, USA
- The Center for Esophageal Research, Baylor Scott and White Research Institute, Baylor University Medical Center, 2 Hoblitzelle, Suite 250, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Rhonda F Souza
- Department of Medicine and the Center for Esophageal Diseases, Baylor University Medical Center, Dallas, TX, 75246, USA.
- The Center for Esophageal Research, Baylor Scott and White Research Institute, Baylor University Medical Center, 2 Hoblitzelle, Suite 250, 3500 Gaston Avenue, Dallas, TX, 75246, USA.
| |
Collapse
|
83
|
Adam ME, Fehervari M, Boshier PR, Chin ST, Lin GP, Romano A, Kumar S, Hanna GB. Mass-Spectrometry Analysis of Mixed-Breath, Isolated-Bronchial-Breath, and Gastric-Endoluminal-Air Volatile Fatty Acids in Esophagogastric Cancer. Anal Chem 2019; 91:3740-3746. [PMID: 30699297 DOI: 10.1021/acs.analchem.9b00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A noninvasive breath test has the potential to improve survival from esophagogastric cancer by facilitating earlier detection. This study aimed to investigate the production of target volatile fatty acids (VFAs) in esophagogastric cancer through analysis of the ex vivo headspace above underivatized tissues and in vivo analysis within defined anatomical compartments, including analysis of mixed breath, isolated bronchial breath, and gastric-endoluminal air. VFAs were measured by PTR-ToF-MS and GC-MS. Levels of VFAs (acetic, butyric, pentanoic, and hexanoic acids) and acetone were elevated in ex vivo experiments in the headspace above esophagogastric cancer compared with the levels in samples from control subjects with morphologically normal and benign conditions of the upper gastrointestinal tract. In 25 patients with esophagogastric cancer and 20 control subjects, receiver-operating-characteristic analysis for the cancer-specific VFAs butyric acid ( P < 0.001) and pentatonic acid ( P = 0.005) within in vivo gastric-endoluminal air gave an area under the curve of 0.80 (95% confidence interval of 0.65 to 0.93, P = 0.01). Compared with mixed- and bronchial-breath samples, all examined VFAs were found in highest concentrations within esophagogastric-endoluminal air. In addition, VFAs were higher in all samples derived from cancer patients compared with in the controls. Equivalence of VFA levels within the mixed and bronchial breath of cancer patients suggests that their origin within breath is principally derived from the lungs and, by inference, from the systemic circulation as opposed to direct passage from the upper gastrointestinal tract. These findings highlight the potential to utilize VFAs for endoluminal-gas biopsies and noninvasive mixed-exhaled-breath testing for esophagogastric-cancer detection.
Collapse
Affiliation(s)
- Mina E Adam
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Matyas Fehervari
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Piers R Boshier
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Sung-Tong Chin
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Geng-Ping Lin
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Andrea Romano
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Sacheen Kumar
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
- Department of Upper Gastrointestinal Surgery , The Royal Marsden Hospital , London SW3 6JJ , United Kingdom
| | - George B Hanna
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| |
Collapse
|
84
|
Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Meta-analysis. JAMA Oncol 2019; 5:e182815. [PMID: 30128487 PMCID: PMC6439770 DOI: 10.1001/jamaoncol.2018.2815] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022]
Abstract
Importance The detection and quantification of volatile organic compounds (VOCs) within exhaled breath have evolved gradually for the diagnosis of cancer. The overall diagnostic accuracy of proposed tests remains unknown. Objectives To determine the diagnostic accuracy of VOC breath tests for the detection of cancer and to review sources of methodologic variability. Data Sources An electronic search (title and abstract) was performed using the Embase and MEDLINE databases (January 1, 2000, to May 28, 2017) through the OVID platform. The search terms cancer, neoplasm, malignancy, volatile organic compound, VOC, breath, and exhaled were used in combination with the Boolean operators AND and OR. A separate MEDLINE search that used the search terms breath AND methodology was also performed for studies that reported factors that influenced the concentration of VOCs within exhaled breath in humans. Study Selection The search was limited to human studies published in the English language. Trials that analyzed named endogenous VOCs within exhaled breath to diagnose or assess cancer were included in this review. Data Extraction and Synthesis Systematic review and pooled analysis were conducted in accordance with the recommendations of the Cochrane Library and Meta-analysis of Observational Studies in Epidemiology guidelines. Bivariate meta-analyses were performed to generate pooled point estimates of the hierarchal summary receiver operating characteristic curve of breath VOC analysis. Included studies were assessed according to the Standards for Reporting of Diagnostic Accuracy Studies checklist and Quality Assessment of Diagnostic Accuracy Studies 2 tool. Main Outcomes and Measures The principal outcome measure was pooled diagnostic accuracy of published VOC breath tests for cancer. Results The review identified 63 relevant publications and 3554 patients. All reports constituted phase 1 biomarker studies. Pooled analysis of findings found a mean (SE) area under the receiver operating characteristic analysis curve of 0.94 (0.01), sensitivity of 79% (95% CI, 77%-81%), and specificity of 89% (95% CI, 88%-90%). Factors that may influence variability in test results included breath collection method, patient physiologic condition, test environment, and method of analysis. Conclusions and Relevance The findings of our review suggest that standardization of breath collection methods and masked validation of breath test accuracy for cancer diagnosis is needed among the intended population in multicenter clinical trials. We propose a framework to guide the conduct of future breath tests in cancer studies.
Collapse
Affiliation(s)
- George B. Hanna
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Piers R. Boshier
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sheraz R. Markar
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Andrea Romano
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
85
|
Ganeev AA, Gubal AR, Lukyanov GN, Arseniev AI, Barchuk AA, Jahatspanian IE, Gorbunov IS, Rassadina AA, Nemets VM, Nefedov AO, Korotetsky BA, Solovyev ND, Iakovleva E, Ivanenko NB, Kononov AS, Sillanpaa M, Seeger T. Analysis of exhaled air for early-stage diagnosis of lung cancer: opportunities and challenges. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
86
|
Romano A, Doran S, Belluomo I, Hanna GB. High-Throughput Breath Volatile Organic Compound Analysis Using Thermal Desorption Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Anal Chem 2018; 90:10204-10210. [DOI: 10.1021/acs.analchem.8b01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andrea Romano
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| | - Sophie Doran
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| | - George Bushra Hanna
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| |
Collapse
|
87
|
Oakley-Girvan I, Davis SW. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark 2018; 21:29-39. [PMID: 29060925 DOI: 10.3233/cbm-170177] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Detecting volatile organic compounds (VOCs) could provide a rapid, noninvasive, and inexpensive screening tool for detecting cancer. OBJECTIVE In this systematic review, we identified specific exhaled breath VOCs correlated with lung, colorectal, and breast cancer. METHODS We identified relevant studies published in 2015 and 2016 by searching Pubmed and Web of Science. The protocol for this systematic review was registered in PROSPERO and the PRISMA guidelines were used in reporting. VOCs and performance data were extracted. RESULTS Three hundred and thirty three records were identified and 43 papers were included in the review, of which 20 were review articles themselves. We identified 17 studies that listed the VOCs with at least a subset of statistics on detection cutoff levels, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and gradient. CONCLUSIONS Breath analysis for cancer screening and early detection shows promise, because samples can be collected easily, safely, and frequently. While gas chromatography-mass spectrometry is considered the gold standard for identifying specific VOCs, breath analysis has moved into analyzing patterns of VOCs using a variety of different multiple sensor techniques, such as eNoses and nanomaterials. Further development of VOCs for early cancer detection requires clinical trials with standardized breath sampling methods.
Collapse
|
88
|
Shah AK, Hartel G, Brown I, Winterford C, Na R, Cao KAL, Spicer BA, Dunstone MA, Phillips WA, Lord RV, Barbour AP, Watson DI, Joshi V, Whiteman DC, Hill MM. Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett's Esophagus. Mol Cell Proteomics 2018; 17:2324-2334. [PMID: 30097534 DOI: 10.1074/mcp.ra118.000734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is thought to develop from asymptomatic Barrett's esophagus (BE) with a low annual rate of conversion. Current endoscopy surveillance of BE patients is probably not cost-effective. Previously, we discovered serum glycoprotein biomarker candidates which could discriminate BE patients from EAC. Here, we aimed to validate candidate serum glycoprotein biomarkers in independent cohorts, and to develop a biomarker candidate panel for BE surveillance. Serum glycoprotein biomarker candidates were measured in 301 serum samples collected from Australia (4 states) and the United States (1 clinic) using previously established lectin magnetic bead array (LeMBA) coupled multiple reaction monitoring mass spectrometry (MRM-MS) tier 3 assay. The area under receiver operating characteristic curve (AUROC) was calculated as a measure of discrimination, and multivariate recursive partitioning was used to formulate a multi-marker panel for BE surveillance. Complement C9 (C9), gelsolin (GSN), serum paraoxonase/arylesterase 1 (PON1) and serum paraoxonase/lactonase 3 (PON3) were validated as diagnostic glycoprotein biomarkers in lectin pull-down samples for EAC across both cohorts. A panel of 10 serum glycoprotein biomarker candidates discriminated BE patients not requiring intervention (BE± low grade dysplasia) from those requiring intervention (BE with high grade dysplasia (BE-HGD) or EAC) with an AUROC value of 0.93. Tissue expression of C9 was found to be induced in BE, dysplastic BE and EAC. In longitudinal samples from subjects that have progressed toward EAC, levels of serum C9 were significantly (p < 0.05) increased with disease progression in EPHA (erythroagglutinin from Phaseolus vulgaris) and NPL (Narcissus pseudonarcissus lectin) pull-down samples. The results confirm alteration of complement pathway glycoproteins during BE-EAC pathogenesis. Further prospective clinical validation of the confirmed biomarker candidates in a large cohort is warranted, prior to development of a first-line BE surveillance blood test.
Collapse
Affiliation(s)
- Alok K Shah
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian Brown
- Envoi Pathology, Brisbane, Queensland, Australia
| | - Clay Winterford
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Renhua Na
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Melbourne Integrative Genomics and School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia
| | - Bradley A Spicer
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Reginald V Lord
- St Vincent's Centre for Applied Medical Research and University of Notre Dame School of Medicine, Sydney, Australia
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David I Watson
- Discipline of Surgery, Flinders University, Adelaide, South Australia, Australia
| | - Virendra Joshi
- Ochsner Health System, Gastroenterology, New Orleans, LA
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
89
|
Abstract
New improved methods are required for the early detection of esophageal adenocarcinoma in order to reduce mortality from this aggressive cancer. In this review we discuss different screening methods which are currently under evaluation ranging from image-based methods to cell collection devices coupled with biomarkers. As Barrett's esophagus is a low prevalence disease, potential screening tests must be applied to an enriched population to reduce the false-positive rate and improve the cost-effectiveness of the program.
Collapse
Affiliation(s)
- Maria O'Donovan
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
90
|
Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, Mitrovics J, Mayhew CA, Haick H. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res 2018; 12:046005. [PMID: 29893713 DOI: 10.1088/1752-7163/aacbfb] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of certain volatile organic compounds (VOCs) in the breath of patients with gastric cancer has been reported by a number of research groups; however, the source of these compounds remains controversial. Comparison of VOCs emitted from gastric cancer tissue to those emitted from non-cancerous tissue would help in understanding which of the VOCs are associated with gastric cancer and provide a deeper knowledge on their generation. Gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap extraction (HS-NTE) as the pre-concentration technique, was used to identify and quantify VOCs released by gastric cancer and non-cancerous tissue samples collected from 41 patients during surgery. Excluding contaminants, a total of 32 VOCs were liberated by the tissue samples. The emission of four of them (carbon disulfide, pyridine, 3-methyl-2-butanone and 2-pentanone) was significantly higher from cancer tissue, whereas three compounds (isoprene, γ-butyrolactone and dimethyl sulfide) were in greater concentration from the non-cancerous tissues (Wilcoxon signed-rank test, p < 0.05). Furthermore, the levels of three VOCs (2-methyl-1-propene, 2-propenenitrile and pyrrole) were correlated with the occurrence of H. pylori; and four compounds (acetonitrile, pyridine, toluene and 3-methylpyridine) were associated with tobacco smoking. Ex vivo analysis of VOCs emitted by human tissue samples provides a unique opportunity to identify chemical patterns associated with a cancerous state and can be considered as a complementary source of information on volatile biomarkers found in breath, blood or urine.
Collapse
Affiliation(s)
- Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Markar SR, Brodie B, Chin ST, Romano A, Spalding D, Hanna GB. Profile of exhaled-breath volatile organic compounds to diagnose pancreatic cancer. Br J Surg 2018; 105:1493-1500. [DOI: 10.1002/bjs.10909] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/01/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022]
Abstract
Abstract
Background
Pancreatic cancer has a very poor prognosis as most patients are diagnosed at an advanced stage when curative treatments are not possible. Breath volatile organic compounds (VOCs) have shown potential as novel biomarkers to detect cancer. The aim of the study was to quantify differences in exhaled breath VOCs of patients with pancreatic cancers compared with cohorts without cancer.
Methods
Patients were recruited to an initial development cohort and a second validation cohort. The cancer group included patients with localized and metastatic cancers, whereas the control group included patients with benign pancreatic disease or normal pancreas. The reference test for comparison was radiological imaging using abdominal CT, ultrasound imaging or endoscopic ultrasonography, confirmed by histopathological examination as appropriate. Breath was collected from the development cohort with steel bags, and from the validation cohort using the ReCIVA™ system. Analysis was performed using gas chromatography–mass spectrometry.
Results
A total of 68 patients were recruited to the development cohort (25 with cancer, 43 no cancer) and 64 to the validation cohort (32 with cancer, 32 no cancer). Of 66 VOCs identified, 12 were significantly different between groups in the development cohort on univariable analysis. Receiver operating characteristic (ROC) curve analysis using significant volatile compounds and the validation cohort produced an area under the curve of 0·736 (sensitivity 81 per cent, specificity 58 per cent) for differentiating cancer from no cancer, and 0·744 (sensitivity 70 per cent, specificity 74 per cent) for differentiating adenocarcinoma from no cancer.
Conclusion
Breath VOCs may distinguish patients with pancreatic cancer from those without cancer.
Collapse
Affiliation(s)
- S R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Brodie
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - S-T Chin
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - A Romano
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - D Spalding
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - G B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
92
|
Shestivska V, Olšinová M, Sovová K, Kubišta J, Smith D, Cebecauer M, Španěl P. Evaluation of lipid peroxidation by the analysis of volatile aldehydes in the headspace of synthetic membranes using Selected Ion Flow Tube Mass Spectrometry, SIFT-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1617-1628. [PMID: 29935123 DOI: 10.1002/rcm.8212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Oxidative stress of cell membranes leads to a number of pathological processes associated with some diseases and is accompanied by the release of volatile aldehydes, which, potentially, can be used as biomarkers. Thus, the aim was to investigate peroxidation of defined synthetic membranes by direct quantitative analysis of volatile aldehydes. METHODS The concentration spectra of volatile compounds present in the headspace of synthetic membranes under peroxidation stress and following mechanical stress due to sonication were obtained using solid phase microextraction (SPME) in combination with Gas Chromatography Mass Spectrometry (SPME/GC/MS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). The focus was on the direct, real time quantification of volatile aldehydes. In addition, the total aldehydes in the aqueous membrane suspensions were quantified using the TBARS method. RESULTS Propanal, butanal, pentanal, hexanal, heptanal and malondialdehyde were detected and quantified in the humid headspace of the media containing the synthetic membranes following peroxidation. The composition and concentration of these saturated aldehydes strongly depend on the unsaturated fatty acids representation in the liposomes. Some protective effect of cholesterol was observed especially for membranes peroxidised by Fenton reagents and after application of a mechanical stress. CONCLUSIONS This study demonstrates that peroxidation of model synthetic membranes in vitro can be tracked in real time using direct quantification by SIFT-MS of several specific aldehydes in the headspace of the membrane suspensions. Cholesterol plays an important role in retaining membrane structure and can indirectly protect membranes from lipid peroxidation.
Collapse
Affiliation(s)
- Violetta Shestivska
- J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
| | - Marie Olšinová
- Imaging Methods Core Facility at BIOCEV, Biology Section, Faculty of Science, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Kristýna Sovová
- J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
| | - Jiří Kubišta
- J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
| | - David Smith
- J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
| | - Marek Cebecauer
- J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
| |
Collapse
|
93
|
Zamuruyev KO, Schmidt AJ, Borras E, McCartney MM, Schivo M, Kenyon NJ, Delplanque JP, Davis CE. Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 2018; 12:036020. [PMID: 29771240 PMCID: PMC6015477 DOI: 10.1088/1752-7163/aac5a5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, we present a hydrophilic self-cleaning condenser surface for the collection of biological and environmental aerosol samples. The condenser is installed in a battery-operated hand-held breath sampling device. The device performance is characterized by the collection and analysis of exhaled breath samples from a group of volunteers. The exhaled breath condensate is collected on a subcooled condenser surface, transferred into a storage vial, and its chemical content is analyzed using mass spectrometric methods. The engineered surface supports upon it a continuous condensation cycle, and this allows the collection of liquid samples exceeding the saturation mass/area limit of a plain hydrophilic surface. The condenser surface employs two constituent parameters: a low surface energy barrier to enhance nucleation and condensation efficiency, and a network of surface microstructures to create a self-cleaning mechanism for fluid aggregation into a reservoir. Removal of the liquid condensate from the condenser surface prevents the formation of a thick liquid layer, and thus maintains a continuous condensation cycle with a minimum decrease in heat transfer efficiency as condensation occurs on the surface. The self-cleaning condenser surfaces may have a number of applications in the collection of biological, chemical, or environmental aerosol samples. Sample phase conversion to liquid can facilitate sample manipulation and chemical analysis of matrices with low concentrations. Here, we demonstrate the use of a self-cleaning microcondenser for the collection of exhaled breath condensate with a hand-held portable device. All breath collections with the two devices were performed with the same group of volunteers under UC Davis IRB protocol 63701-3.
Collapse
Affiliation(s)
- Konstantin O Zamuruyev
- Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California 95616, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Spechler SJ, Katzka DA, Fitzgerald RC. New Screening Techniques in Barrett's Esophagus: Great Ideas or Great Practice? Gastroenterology 2018; 154:1594-1601. [PMID: 29577931 DOI: 10.1053/j.gastro.2018.03.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stuart J Spechler
- Divisions of Gastroenterology and Hepatology, Baylor University Medical Center at Dallas, Dallas, Texas
| | | | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchinson/MRC Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
95
|
Krilaviciute A, Stock C, Leja M, Brenner H. Potential of non-invasive breath tests for preselecting individuals for invasive gastric cancer screening endoscopy. J Breath Res 2018. [DOI: 10.1088/1752-7163/aab5be] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
96
|
Chin ST, Romano A, Doran SLF, Hanna GB. Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer. Sci Rep 2018; 8:5139. [PMID: 29572531 PMCID: PMC5865157 DOI: 10.1038/s41598-018-22890-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Disease breathomics is gaining importance nowadays due to its usefulness as non-invasive early cancer detection. Mass spectrometry (MS) technique is often used for analysis of volatile organic compounds (VOCs) associated with cancer in the exhaled breath but a long-standing challenge is the uncertainty in mass peak annotation for potential volatile biomarkers. This work describes a cross-platform MS strategy employing selected-ion flow tube mass spectrometry (SIFT-MS), high resolution gas chromatography-mass spectrometry (GC-MS) retrofitted with electron ionisation (EI) and GC-MS retrofitted with positive chemical ionisation (PCI) as orthogonal analytical approaches in order to provide facile identification of the oxygenated VOCs from breath of cancer patients. In addition, water infusion was applied as novel efficient PCI reagent in breathomics analysis, depicting unique diagnostic ions M+ or [M-17]+ for VOC identification. Identity confirmation of breath VOCs was deduced using the proposed multi-platform workflow, which reveals variation in breath oxygenated VOC composition of oesophageal-gastric (OG) cancer patients with dominantly ketones, followed by aldehydes, alcohols, acids and phenols in decreasing order of relative abundance. Accurate VOC identification provided by cross-platform approach would be valuable for the refinement of diagnostic VOC models and the understanding of molecular drivers of VOC production.
Collapse
Affiliation(s)
- Sung-Tong Chin
- Department of Surgery and Cancer, Division of Surgery, Imperial College London, London, W2 1NY, United Kingdom
| | - Andrea Romano
- Department of Surgery and Cancer, Division of Surgery, Imperial College London, London, W2 1NY, United Kingdom
| | - Sophie L F Doran
- Department of Surgery and Cancer, Division of Surgery, Imperial College London, London, W2 1NY, United Kingdom
| | - George B Hanna
- Department of Surgery and Cancer, Division of Surgery, Imperial College London, London, W2 1NY, United Kingdom.
| |
Collapse
|
97
|
Davidson M, Chau I. Multimodality treatment of operable gastric and oesophageal adenocarcinoma: evaluating neoadjuvant, adjuvant and perioperative approaches. Expert Rev Anticancer Ther 2018; 18:327-338. [PMID: 29431018 DOI: 10.1080/14737140.2018.1438271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Treatment patterns for locally advanced operable gastric and oesophageal adenocarcinoma vary, with the optimal approach an area of debate within oncology. Strategies for treatment include a variety of neo-adjuvant, adjuvant and peri-operative regimens involving differing chemotherapy and radiotherapy combinations. Areas covered: This review will critically appraise the evidence base underpinning the main treatment approaches in operable oesophagogastric adenocarcinoma, highlighting variations in treatment by factors such as geographical area and primary tumor site. Expert commentary: The expert commentary will focus on the optimal evidence-based approaches for clinicians at the present time and explore how increased understanding of the molecular and genetic determinants of the disease may lead to refinements in treatment through the development of both biomarker-driven approaches and the application of novel targeted and immune-modulating agents to early treatment.
Collapse
Affiliation(s)
- Michael Davidson
- a Department of Medical Oncology , The Royal Marsden Hospital NHS Foundation Trust , Sutton , UK
| | - Ian Chau
- a Department of Medical Oncology , The Royal Marsden Hospital NHS Foundation Trust , Sutton , UK
| |
Collapse
|
98
|
Janfaza S, Banan Nojavani M, Khorsand B, Nikkhah M, Zahiri J. Cancer Odor Database (COD): a critical databank for cancer diagnosis research. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4061478. [PMID: 29220448 PMCID: PMC5737198 DOI: 10.1093/database/bax055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Abstract
Database URL http://bioinf.modares.ac.ir/software/cod/.
Collapse
Affiliation(s)
- Sajjad Janfaza
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Maryam Banan Nojavani
- Department of Biomaterials, Faculty of Interdisciplinary Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
99
|
Abstract
OPINION STATEMENT PURPOSE OF REVIEW: There is a pressing need for effective strategies to halt the increase in both the incidence and mortality of esophageal adenocarcinoma (EAC). Screening for Barrett's esophagus, which is the only known precursor of EAC, remains a ripe area for research, particularly with regard to identifying the target population, screening tools, and management of screen-detected populations. This review aims to explore in depth the rationale for screening for Barrett's esophagus, recent biotechnological advances which may have the potential of making screening feasible, and also highlight the challenges which will have to be overcome in order make screening for BE a realistic prospect. RECENT FINDINGS Imaging techniques such as portable transnasal endoscopy have the advantage of providing an immediate diagnosis of Barrett's esophagus as well as other significant pathologies such as reflux esophagitis and cancer; however, larger studies in non-enriched community screening populations are required to evaluate their feasibility. The capsule sponge is a cell-sampling device coupled with a biomarker, which has been most extensively evaluated with very promising results as regards feasibility, acceptability, accuracy, and cost-effectiveness. Its effectiveness in increasing the detection of Barrett's esophagus in primary care is currently being evaluated. Several Barrett's esophagus risk prediction scores have been developed with variable degrees of accuracy. Several minimally and non-invasive screening techniques have been studied including imaging and cell-sampling devices. Barrett's risk assessment models need to be further validated in independent, relevant screening populations with clear cut-offs for recommending screening to be defined.
Collapse
Affiliation(s)
- Sarmed S Sami
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Prasad G Iyer
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
100
|
Coleman HG, Xie SH, Lagergren J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology 2018; 154:390-405. [PMID: 28780073 DOI: 10.1053/j.gastro.2017.07.046] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
The incidence of esophageal adenocarcinoma (EAC) has increased in many Western countries and is higher in men than women. Some risk factors for EAC have been identified-mainly gastroesophageal reflux disease, Barrett's esophagus, obesity, and tobacco smoking. It is not clear whether interventions to address these factors can reduce risk of EAC, although some evidence exists for smoking cessation. Although consumption of alcohol is not associated with EAC risk, other exposures, such as physical activity, nutrition, and medication use, require further study. Genetic variants have been associated with risk for EAC, but their overall contribution is low. Studies are needed to investigate associations between risk factors and the molecular subtypes of EAC. The prognosis for patients with EAC has slightly improved, but remains poor-screening and surveillance trials of high-risk individuals are needed.
Collapse
Affiliation(s)
- Helen G Coleman
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, UK.
| | - Shao-Hua Xie
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Lagergren
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Cancer Studies, King's College London, United Kingdom
| |
Collapse
|