51
|
Lung bioengineering: advances and challenges in lung decellularization and recellularization. Curr Opin Organ Transplant 2019; 23:673-678. [PMID: 30300330 DOI: 10.1097/mot.0000000000000584] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Bioengineering the lung based on its natural extracellular matrix (ECM) offers novel opportunities to overcome the shortage of donors, to reduce chronic allograft rejections, and to improve the median survival rate of transplanted patients. During the last decade, lung tissue engineering has advanced rapidly to combine scaffolds, cells, and biologically active molecules into functional tissues to restore or improve the lung's main function, gas exchange. This review will inspect the current progress in lung bioengineering using decellularized and recellularized lung scaffolds and highlight future challenges in the field. RECENT FINDINGS Lung decellularization and recellularization protocols have provided researchers with tools to progress toward functional lung tissue engineering. However, there is continuous evolution and refinement particularly for optimization of lung recellularization. These further the possibility of developing a transplantable bioartificial lung. SUMMARY Bioengineering the lung using recellularized scaffolds could offer a curative option for patients with end-stage organ failure but its accomplishment remains unclear in the short-term. However, the state-of-the-art of techniques described in this review will increase our knowledge of the lung ECM and of chemical and mechanical cues which drive cell repopulation to improve the advances in lung regeneration and lung tissue engineering.
Collapse
|
52
|
Gorman DE, Wu T, Gilpin SE, Ott HC. A Fully Automated High-Throughput Bioreactor System for Lung Regeneration. Tissue Eng Part C Methods 2019; 24:671-678. [PMID: 30362896 DOI: 10.1089/ten.tec.2018.0259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT This work presents methods for ex vivo lung recellularization and biomimetic culture in a high-throughput and consistent manner. These methods allow for the testing of multiple variables, all of which are simultaneously controlled and monitored on a single fully automated pump system, and subsequent assessment of both epithelial and endothelial repair and tissue regeneration. This system provides a controlled environment for tissue repair, wherein key variables can be modified, monitored, reproduced, and optimized to advance the goal of ex vivo tissue regeneration based on native organ scaffolds.
Collapse
Affiliation(s)
- Daniel E Gorman
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Tong Wu
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Sarah E Gilpin
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Harald C Ott
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
53
|
Min S, Ko IK, Yoo JJ. State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs. Vasc Specialist Int 2019; 35:77-89. [PMID: 31297357 PMCID: PMC6609020 DOI: 10.5758/vsi.2019.35.2.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Engineering three-dimensional (3D) implantable tissue constructs is a promising strategy for replacing damaged or diseased tissues and organs with functional replacements. However, the efficient vascularization of new 3D organs is a major scientific and technical challenge since large tissue constructs or organs require a constant blood supply to survive in vivo. Current approaches to solving this problem generally fall into the following three major categories: (a) cell-based, (b) angiogenic factor-based, and (c) scaffold-based. In this review, we summarize state-of-the-art technologies that are used to develop complex, stable, and functional vasculature for engineered 3D tissue constructs and organs; additionally, we have suggested directions for future research.
Collapse
Affiliation(s)
- Sangil Min
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
54
|
Lee E, Kim HJ, Shaker MR, Ryu JR, Ham MS, Seo SH, Kim DH, Lee K, Jung N, Choe Y, Son GH, Rhyu IJ, Kim H, Sun W. High-Performance Acellular Tissue Scaffold Combined with Hydrogel Polymers for Regenerative Medicine. ACS Biomater Sci Eng 2019; 5:3462-3474. [PMID: 33405730 DOI: 10.1021/acsbiomaterials.9b00219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Decellularization of tissues provides extracellular matrix (ECM) scaffolds for regeneration therapy and an experimental model to understand ECM and cellular interactions. However, decellularization often causes microstructure disintegration and reduction of physical strength, which greatly limits the use of this technique in soft organs or in applications that require maintenance of physical strength. Here, we present a new tissue decellularization procedure, namely CASPER (Clinically and Experimentally Applicable Acellular Tissue Scaffold Production for Tissue Engineering and Regenerative Medicine), which includes infusion and hydrogel polymerization steps prior to robust chemical decellularization treatments. Polymerized hydrogels serve to prevent excessive damage to the ECM while maintaining the sophisticated structures and biological activities of ECM components in various organs, including soft tissues such as brains and embryos. CASPERized tissues were successfully recellularized to stimulate a tissue-regeneration-like process after implantation without signs of pathological inflammation or fibrosis in vivo, suggesting that CASPERized tissues can be used for monitoring cell-ECM interactions and for surrogate organ transplantation.
Collapse
Affiliation(s)
- Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jae Ryun Ryu
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Seok Ham
- Department of Dermatology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Hong Seo
- Department of Dermatology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dai Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Department of Dermatology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kiwon Lee
- Logos Biosystems, Inc., Anyang-si, Gyunggi-do 431-755, Republic of Korea
| | - Neoncheol Jung
- Logos Biosystems, Inc., Anyang-si, Gyunggi-do 431-755, Republic of Korea
| | - Youngshik Choe
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu 701-300, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences and Department of Legal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
55
|
Skolasinski SD, Panoskaltsis-Mortari A. Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Rev Respir Med 2019; 13:665-678. [PMID: 31164014 DOI: 10.1080/17476348.2019.1624163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) affects more than 380 million people, causing more than 3 million deaths annually worldwide. Despite this enormous burden, currently available therapies are largely limited to symptom control. Lung transplant is considered for end-stage disease but is severely limited by the availability of human organs. Furthermore, the pre-transplant course is a complex orchestration of locating and harvesting suitable lungs, and the post-transplant course is complicated by rejection and infection. Lung tissue bioengineering has the potential to relieve the organ shortage and improve the post-transplant course by generating patient-specific lungs for transplant. Additionally, emerging progenitor cell therapies may facilitate in vivo regeneration of pulmonary tissue, obviating the need for transplant. Areas Covered: We review several lung tissue bioengineering approaches including the recellularization of decellularized scaffolds, 3D bioprinting, genetically-engineered xenotransplantation, blastocyst complementation, and direct therapy with progenitor cells. Articles were identified by searching relevant terms (see Key Words) in the PubMed database and selected for inclusion based on novelty and uniqueness of their approach. Expert Opinion: Lung tissue bioengineering research is in the early stages. Of the methods reviewed, only direct cell therapy has been investigated in humans. We anticipate a minimum of 5-10 years before human therapy will be feasible.
Collapse
Affiliation(s)
- Steven D Skolasinski
- a Division of Pulmonary, Allergy, Critical Care and Sleep Medicine , University of Minnesota , Minneapolis , MN , USA
| | | |
Collapse
|
56
|
Williams DF. Challenges With the Development of Biomaterials for Sustainable Tissue Engineering. Front Bioeng Biotechnol 2019; 7:127. [PMID: 31214584 PMCID: PMC6554598 DOI: 10.3389/fbioe.2019.00127] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has tantalizingly offered the possibility of regenerating new tissue in order to treat a multitude of diseases and conditions within the human body. Nevertheless, in spite of significant progress with in vitro and small animal studies, progress toward realizing the clinical and commercial endpoints has been slow and many would argue that ultimate goals, especially in treating those conditions which, as yet, do not have acceptable conventional therapies, may never be reached because of flawed scientific rationale. In other words, sustainable tissue engineering may not be achievable with current approaches. One of the major factors here is the choice of biomaterial that is intended, through its use as a "scaffold," to guide the regeneration process. For many years, effective specifications for these biomaterials have not been well-articulated, and the requirements for biodegradability and prior FDA approval for use in medical devices, have dominated material selection processes. This essay argues that these considerations are not only wrong in principle but counter-productive in practice. Materials, such as many synthetic bioabsorbable polymers, which are designed to have no biological activity that could stimulate target cells to express new and appropriate tissue, will not be effective. It is argued here that a traditional 'scaffold' represents the wrong approach, and that tissue-engineering templates that are designed to replicate the niche, or microenvironment, of these target cells are much more likely to succeed.
Collapse
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, United States
- Strait Access Technologies, Cape Town, South Africa
| |
Collapse
|
57
|
Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa). Transplantation 2019; 103:237-249. [DOI: 10.1097/tp.0000000000002370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
58
|
Bioengineering the innate vasculature of complex organs: what have we learned so far. Curr Opin Organ Transplant 2018; 23:657-663. [DOI: 10.1097/mot.0000000000000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
59
|
Chen-Yoshikawa TF, Okabe R. Novel insights into lung regenerative medicine. J Thorac Cardiovasc Surg 2018; 157:421-422. [PMID: 30385027 DOI: 10.1016/j.jtcvs.2018.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ryo Okabe
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
60
|
Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun 2018; 9:4286. [PMID: 30327457 PMCID: PMC6191423 DOI: 10.1038/s41467-018-06385-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes. Combining decellularised scaffolds with patient-derived cells holds promise for bioengineering of functional tissues. Here the authors develop a two-stage approach to engineer an oesophageal graft that retains the structural organisation of native oesophagus.
Collapse
|
61
|
Metabolic glycan labeling and chemoselective functionalization of native biomaterials. Biomaterials 2018; 182:127-134. [PMID: 30118980 DOI: 10.1016/j.biomaterials.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.
Collapse
|
62
|
De Santis MM, Bölükbas DA, Lindstedt S, Wagner DE. How to build a lung: latest advances and emerging themes in lung bioengineering. Eur Respir J 2018; 52:13993003.01355-2016. [PMID: 29903859 DOI: 10.1183/13993003.01355-2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases remain a major cause of morbidity and mortality worldwide. The only option at end-stage disease is lung transplantation, but there are not enough donor lungs to meet clinical demand. Alternative options to increase tissue availability for lung transplantation are urgently required to close the gap on this unmet clinical need. A growing number of tissue engineering approaches are exploring the potential to generate lung tissue ex vivo for transplantation. Both biologically derived and manufactured scaffolds seeded with cells and grown ex vivo have been explored in pre-clinical studies, with the eventual goal of generating functional pulmonary tissue for transplantation. Recently, there have been significant efforts to scale-up cell culture methods to generate adequate cell numbers for human-scale bioengineering approaches. Concomitantly, there have been exciting efforts in designing bioreactors that allow for appropriate cell seeding and development of functional lung tissue over time. This review aims to present the current state-of-the-art progress for each of these areas and to discuss promising new ideas within the field of lung bioengineering.
Collapse
Affiliation(s)
- Martina M De Santis
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Lung Repair and Regeneration (LRR), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Deniz A Bölükbas
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Dept of Cardiothoracic Surgery, Heart and Lung Transplantation, Lund University Hospital, Lund, Sweden
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden .,Lung Repair and Regeneration (LRR), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
63
|
Lung transplantation for non-small cell lung cancer and multifocal bronchioalveolar cell carcinoma. Lancet Oncol 2018; 19:e351-e358. [DOI: 10.1016/s1470-2045(18)30297-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
|
64
|
Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev 2018; 27:27/148/180021. [PMID: 29875137 PMCID: PMC9488127 DOI: 10.1183/16000617.0021-2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/05/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in whole lung bioengineering have opened new doors for studying lung repair and regeneration ex vivo using acellular human derived lung tissue scaffolds. Methods to decellularise whole human lungs, lobes or resected segments from normal and diseased human lungs have been developed using both perfusion and immersion based techniques. Immersion based techniques allow laboratories without access to intact lobes the ability to generate acellular human lung scaffolds. Acellular human lung scaffolds can be further processed into small segments, thin slices or extracellular matrix extracts, to study cell behaviour such as viability, proliferation, migration and differentiation. Recent studies have offered important proof of concept of generating sufficient primary endothelial and lung epithelial cells to recellularise whole lobes that can be maintained for several days ex vivo in a bioreactor to study regeneration. In parallel, acellular human lung scaffolds have been increasingly used for studying cell–extracellular environment interactions. These studies have helped provide new insights into the role of the matrix and the extracellular environment in chronic human lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Acellular human lung scaffolds are a versatile new tool for studying human lung repair and regeneration ex vivo. Acellular human lung scaffolds can be used as diverse tools to study lung disease and tissue regeneration ex vivohttp://ow.ly/ZS0l30k9MEH
Collapse
Affiliation(s)
- Sarah E Gilpin
- Laboratory for Organ Engineering and Regeneration, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Darcy E Wagner
- Lund University, Dept of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund, Sweden .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| |
Collapse
|
65
|
Pellegata AF, Tedeschi AM, De Coppi P. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits. Front Bioeng Biotechnol 2018; 6:56. [PMID: 29868573 PMCID: PMC5960678 DOI: 10.3389/fbioe.2018.00056] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro, a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Collapse
Affiliation(s)
- Alessandro F Pellegata
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alfonso M Tedeschi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, University College London, London, United Kingdom
| |
Collapse
|
66
|
Gerli MFM, Guyette JP, Evangelista-Leite D, Ghoshhajra BB, Ott HC. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery. PLoS One 2018; 13:e0191497. [PMID: 29352303 PMCID: PMC5774802 DOI: 10.1371/journal.pone.0191497] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacques Paul Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniele Evangelista-Leite
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian Burns Ghoshhajra
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Harald Christian Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
67
|
Abstract
Congenital diaphragmatic hernia (CDH) remains a major challenge and associated mortality is still significant. Patients have benefited from current therapeutic options, but most severe cases are still associated to poor outcome. Regenerative medicine is emerging as a valid option in many diseases and clinical trials are currently happening for various conditions in children and adults. We report here the advancement in the field which will help both in the understanding of further CDH development and in offering new treatment options for the difficult situations such as repair of large diaphragmatic defects and lung hypoplasia. The authors believe that advancements in regenerative medicine may lead to increase of CDH patients׳ survival.
Collapse
Affiliation(s)
- Paolo De Coppi
- Institute of Women׳s Health, Great Ormond Street, Institute of Child Health, University College London, London, UK; Academic Department of Development and Regeneration, Clinical Specialties Research Groups, Biomedical Sciences, KU Leuven, Leuven, Belgium.
| | - Jan Deprest
- Institute of Women׳s Health, Great Ormond Street, Institute of Child Health, University College London, London, UK; Academic Department of Development and Regeneration, Clinical Specialties Research Groups, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|