51
|
Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019; 41:261-307. [DOI: 10.1097/ftd.0000000000000640] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen MT, Elens L, Johnson-Davis KL, Kunicki PK, MacPhee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DJAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019. [DOI: 10.1097/ftd.0000000000000640
expr 845143713 + 809233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
53
|
Polasek TM, Rostami-Hodjegan A, Yim DS, Jamei M, Lee H, Kimko H, Kim JK, Nguyen PTT, Darwich AS, Shin JG. What Does it Take to Make Model-Informed Precision Dosing Common Practice? Report from the 1st Asian Symposium on Precision Dosing. AAPS JOURNAL 2019; 21:17. [PMID: 30627939 DOI: 10.1208/s12248-018-0286-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Model-informed precision dosing (MIPD) is modeling and simulation in healthcare to predict the drug dose for a given patient based on their individual characteristics that is most likely to improve efficacy and/or lower toxicity in comparison to traditional dosing. This paper describes the background and status of MIPD and the activities at the 1st Asian Symposium of Precision Dosing. The theme of the meeting was the question, "What does it take to make MIPD common practice?" Formal presentations highlighted the distinction between genetic and non-genetic sources of variability in drug exposure and response, the use of modeling and simulation as decision support tools, and the facilitators to MIPD implementation. A panel discussion addressed the types of models used for MIPD, how the pharmaceutical industry views MIPD, ways to upscale MIPD beyond academic hospital centers, and the essential role of healthcare professional education as a way to progress. The meeting concluded with an ongoing commitment to use MIPD to improve patient care.
Collapse
Affiliation(s)
- Thomas M Polasek
- Certara, 100 Overlook Center, Suite 101, Princeton, New Jersey, 08540, USA. .,Centre for Medicines Use and Safety, Monash University, Melbourne, Australia.
| | - Amin Rostami-Hodjegan
- Certara, 100 Overlook Center, Suite 101, Princeton, New Jersey, 08540, USA.,Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Dong-Seok Yim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Masoud Jamei
- Certara, 100 Overlook Center, Suite 101, Princeton, New Jersey, 08540, USA
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Holly Kimko
- Janssen Research and Development, Lower Gwynedd Township, Pennsylvania, USA
| | - Jae Kyoung Kim
- Korea Advanced Institute of Advanced Technology, Daedoek Innopolis, Daejeon, South Korea
| | - Phuong Thi Thu Nguyen
- Department of Pharmacology and Clinical Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Faculty of Pharmacy, Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
54
|
|
55
|
Neely M, Bayard D, Desai A, Kovanda L, Edginton A. Pharmacometric Modeling and Simulation Is Essential to Pediatric Clinical Pharmacology. J Clin Pharmacol 2018; 58 Suppl 10:S73-S85. [DOI: 10.1002/jcph.1316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/17/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Michael Neely
- Children's Hospital Los Angeles; University of Southern California; Los Angeles CA USA
| | - David Bayard
- Children's Hospital Los Angeles; University of Southern California; Los Angeles CA USA
| | - Amit Desai
- Astellas Pharma Global Development, Inc.; Northbrook IL USA
| | - Laura Kovanda
- Astellas Pharma Global Development, Inc.; Northbrook IL USA
| | | |
Collapse
|
56
|
Dong OM, Howard RM, Church R, Cottrell M, Forrest A, Innocenti F, Mosedale M, Kashuba A, Gonzalez D, Wiltshire T. Challenges and Solutions for Future Pharmacy Practice in the Era of Precision Medicine. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2018; 82:6652. [PMID: 30181675 PMCID: PMC6116878 DOI: 10.5688/ajpe6652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
As precision medicine research and its clinical applications continue to advance, it is critical for pharmacists to be involved in these developments to deliver optimal, tailored drug therapies for patients. To ensure pharmacists remain leaders in the field, the annual Pharmaceutical Sciences Conference convened by the University of North Carolina at Chapel Hill Eshelman School of Pharmacy focused on the role of pharmacy within precision medicine. This is a summary of the conference, highlighting the major challenges and solutions that will help advance individualized pharmacological methods within practice and research.
Collapse
Affiliation(s)
- Olivia M. Dong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel M. Howard
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel Church
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mackenzie Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan Forrest
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Angela Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
57
|
Zhang X, Lin G, Tan L, Li J. Current progress of tacrolimus dosing in solid organ transplant recipients: Pharmacogenetic considerations. Biomed Pharmacother 2018; 102:107-114. [DOI: 10.1016/j.biopha.2018.03.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
|
58
|
Kuypers DRJ. “What do we know about tacrolimus pharmacogenetics in transplant recipients?”. Pharmacogenomics 2018; 19:593-597. [DOI: 10.2217/pgs-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dirk RJ Kuypers
- Department of Nephrology & Renal Transplantation, University Hospitals Leuven, Brabant, Belgium
- Department of Microbiology & Immunology, University of Leuven, Brabant, Belgium
| |
Collapse
|
59
|
Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, Bestard O, Torras J, Cruzado JM, Grinyó JM, Lloberas N. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clin Pharmacokinet 2018; 56:963-975. [PMID: 28050888 DOI: 10.1007/s40262-016-0491-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in the CYP3A5 and CYP3A4 genes have been reported to be an important cause of variability in the pharmacokinetics of tacrolimus in renal transplant patients. The aim of this study was to merge all of the new genetic information available with tacrolimus pharmacokinetics to generate a more robust population model with data from renal transplant recipients. METHODS Tacrolimus exposure data from 304 renal transplant recipients were collected throughout the first year after transplantation and were simultaneously analyzed with a population pharmacokinetic approach using NONMEM® version 7.2. RESULTS The tacrolimus whole-blood concentration versus time data were best described by a two-open-compartment model with inter-occasion variability assigned to plasma clearance. The following factors led to the final model, which significantly decreased the minimum objective function value (p < 0.001): a new genotype cluster variable combining the CYP3A5*3 and CYP3A4*22 SNPs defined as extensive, intermediate, and poor metabolizers; the standardization of tacrolimus whole blood concentrations to a hematocrit value of 45%; and age included as patients <63 years versus patients ≥63 years. External validation confirmed the prediction ability of the model with median bias and precision values of 1.17 ng/mL (95% confidence interval [CI] -3.68 to 4.50) and 1.64 ng/mL (95% CI 0.11-5.50), respectively. Simulations showed that, for a given age and hematocrit at the same fixed dose, extensive metabolizers required the highest doses followed by intermediate metabolizers and then poor metabolizers. CONCLUSIONS Tacrolimus disposition in renal transplant recipients was described using a new population pharmacokinetic model that included the CYP3A5*3 and CYP3A4*22 genotype, age, and hematocrit.
Collapse
Affiliation(s)
- Franc Andreu
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laure Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ronald H N van Schaik
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Oriol Bestard
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Grinyó
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Nuria Lloberas
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
60
|
Woillard JB, Saint-Marcoux F, Debord J, Åsberg A. Pharmacokinetic models to assist the prescriber in choosing the best tacrolimus dose. Pharmacol Res 2018; 130:316-321. [DOI: 10.1016/j.phrs.2018.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/10/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
|
61
|
Tacrolimus Trough Concentration Variability and Disparities in African American Kidney Transplantation. Transplantation 2017; 101:2931-2938. [PMID: 28658199 DOI: 10.1097/tp.0000000000001840] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Low tacrolimus concentrations have been associated with higher risk of acute rejection, particularly within African American (AA) kidney transplant recipients; little is known about intrapatient tacrolimus variabilities impact on racial disparities. METHODS Ten year, single-center, longitudinal cohort study of kidney recipients. Intrapatient tacrolimus variability was assessed using the coefficient of variation (CV) measured between 1 month posttransplant and the clinical event, with a comparable period assessed in those without events. Pediatrics, nontacrolimus/mycophenolate regimens, and nonrenal transplants were excluded. Multivariable Cox regression models were used to analyze data. RESULTS One thousand four hundred eleven recipients were included (54.4% AA) with 39 521 concentrations used to assess intrapatient tacrolimus CV. Overall, intrapatient tacrolimus CV was higher in AAs versus non-AAs (39.9 ± 19.8 % vs 34.8 ± 15.8% P < 0.001). Tacrolimus variability was a significant risk factor for deleterious clinical outcomes. A 10% increase in tacrolimus CV augmented the risk of acute rejection by 20% (adjusted hazard ratio, 1.20, 1.13-1.28; P < 0.001) and the risk of graft loss by 30% (adjusted hazard ratio, 1.30, 1.23-1.37; P < 0.001), with significant effect modification by race for acute rejection, but not graft loss. High tacrolimus variability (CV >40%) was a significant explanatory variable for disparities in AAs; the crude relative risk of acute rejection in AAs was reduced by 46% when including tacrolimus variability in modeling and reduced by 40% for graft loss. CONCLUSIONS These data demonstrate that intrapatient tacrolimus variability is strongly associated with acute rejection in AAs and graft loss in all patients. Tacrolimus variability is a significant explanatory variable for disparities in AA recipients.
Collapse
|
62
|
Hole K, Størset E, Olastuen A, Haslemo T, Kro GB, Midtvedt K, Åsberg A, Molden E. Recovery of CYP3A Phenotype after Kidney Transplantation. Drug Metab Dispos 2017; 45:1260-1265. [PMID: 28928137 DOI: 10.1124/dmd.117.078030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022] Open
Abstract
End-stage renal disease impairs drug metabolism via cytochrome P450 CYP3A; however, it is unclear whether CYP3A activity recovers after kidney transplantation. Therefore, the aim of this study was to evaluate the change in CYP3A activity measured as 4β-hydroxycholesterol (4βOHC) concentration after kidney transplantation. In total, data from 58 renal transplant recipients with 550 prospective 4βOHC measurements were included in the study. One sample per patient was collected before transplantation, and 2-12 samples per patient were collected 1-82 days after transplantation. The measured pretransplant 4βOHC concentrations ranged by >7-fold, with a median value of 22.8 ng/ml. Linear mixed-model analysis identified a 0.16-ng/ml increase in 4βOHC concentration per day after transplantation (P < 0.001), indicating a regain in CYP3A activity. Increasing estimated glomerular filtration rate after transplantation was associated with increasing 4βOHC concentration (P < 0.001), supporting that CYP3A activity increases with recovering uremia. In conclusion, this study indicates that CYP3A activity is regained subsequent to kidney transplantation.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Ane Olastuen
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Grete Birkeland Kro
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Karsten Midtvedt
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Anders Åsberg
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| |
Collapse
|
63
|
Vanhove T, Hasan M, Annaert P, Oswald S, Kuypers DRJ. Pretransplant 4β-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. Br J Clin Pharmacol 2017; 83:2406-2415. [PMID: 28603840 DOI: 10.1111/bcp.13343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
AIMS The CYP3A metric 4β-hydroxycholesterol (4βOHC) has been shown to correlate with tacrolimus steady-state apparent oral clearance (CL/F). Recently, pretransplant 4βOHC was shown not to predict tacrolimus CL/F after transplantation in a cohort of renal recipients (n = 79). The goal of the current study was determine whether these findings could be validated in a substantially larger cohort. METHODS In a retrospective analysis of 279 renal recipients, tacrolimus trough concentrations (C0), daily dose, haematocrit and other relevant covariates were registered every day for the first 14 days after transplantation. 4βOHC and cholesterol were quantified on plasma collected immediately pretransplant using liquid chromatography tandem-mass spectrometry. Patients were genotyped for CYP3A5*1 and CYP3A4*22. RESULTS A total of 3551 tacrolimus C0 concentrations were registered. In a linear mixed model for the 14-day period, determinants of tacrolimus C0 were CYP3A5 genotype, haematocrit, age and weight (overall R2 = 0.179). Determinants of daily dose were CYP3A5 genotype, age, methylprednisolone dose, tacrolimus formulation, ALT and estimated glomerular filtration rate (overall R2 = 0.242). Considering each of the first 5 days separately, 4βOHC had a limited effect on tacrolimus C0 on day 3 only (-1.00 ng ml-1 per ln, P = 0.035) but not on any other day, and no effect on dose or C0/dose. During the first 5 days, haematocrit and age, which were previously established as determinants of tacrolimus disposition under steady-state conditions, never explained more than 17.7% of between-subject variability in tacrolimus C0/dose. CONCLUSIONS The CYP3A metric 4βOHC cannot be used to predict tacrolimus dose requirements in the first days after transplantation.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Mahmoud Hasan
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Hospital Greifswald, Greifswald, Germany
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Stefan Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Hospital Greifswald, Greifswald, Germany
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
64
|
Woillard JB, Mourad M, Neely M, Capron A, van Schaik RH, van Gelder T, Lloberas N, Hesselink DA, Marquet P, Haufroid V, Elens L. Tacrolimus Updated Guidelines through popPK Modeling: How to Benefit More from CYP3A Pre-emptive Genotyping Prior to Kidney Transplantation. Front Pharmacol 2017. [PMID: 28642710 PMCID: PMC5462973 DOI: 10.3389/fphar.2017.00358] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tacrolimus (Tac) is a profoundly effective immunosuppressant that reduces the risk of rejection after solid organ transplantation. However, its use is hampered by its narrow therapeutic window along with its highly variable pharmacological (pharmacokinetic [PK] and pharmacodynamic [PD]) profile. Part of this variability is explained by genetic polymorphisms affecting the metabolic pathway. The integration of CYP3A4 and CY3A5 genotype in tacrolimus population-based PK (PopPK) modeling approaches has been proven to accurately predict the dose requirement to reach the therapeutic window. The objective of the present study was to develop an accurate PopPK model in a cohort of 59 kidney transplant patients to deliver this information to clinicians in a clear and actionable manner. We conducted a non-parametric non-linear effects PopPK modeling analysis in Pmetrics®. Patients were genotyped for the CYP3A4∗22 and CYP3A5∗3 alleles and were classified into 3 different categories [poor-metabolizers (PM), Intermediate-metabolizers (IM) or extensive-metabolizers (EM)]. A one-compartment model with double gamma absorption route described very accurately the tacrolimus PK. In covariate analysis, only CYP3A genotype was retained in the final model (Δ-2LL = -73). Our model estimated that tacrolimus concentrations were 33% IC95%[20–26%], 41% IC95%[36–45%] lower in CYP3A IM and EM when compared to PM, respectively. Virtually, we proved that defining different starting doses for PM, IM and EM would be beneficial by ensuring better probability of target concentrations attainment allowing us to define new dosage recommendations according to patient CYP3A genetic profile.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, Centre Hospitalier Universitaire à LimogesLimoges, France
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrussels, Belgium
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics, Children's Hospital Los Angeles, Los AngelesCA, United States
| | - Arnaud Capron
- Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrussels, Belgium
| | - Ron H van Schaik
- Department of Clinical Chemistry, Erasmus MC-University Medical Centre RotterdamRotterdam, Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC-University Medical Centre RotterdamRotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC-University Medical Centre RotterdamRotterdam, Netherlands
| | - Nuria Lloberas
- Nephrology Service and Laboratory of Experimental Nephrology, University of BarcelonaBarcelona, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC-University Medical Centre RotterdamRotterdam, Netherlands
| | - Pierre Marquet
- Department of Pharmacology and Toxicology, Centre Hospitalier Universitaire à LimogesLimoges, France
| | - Vincent Haufroid
- Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium
| | - Laure Elens
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de LouvainBrussels, Belgium.,Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université catholique de LouvainBrussels, Belgium
| |
Collapse
|
65
|
Størset E, Hole K, Midtvedt K, Bergan S, Molden E, Åsberg A. Response to: 'Response to: Bodyweight-adjustments introduce significant correlations between CYP3A metrics and tacrolimus clearance'. Br J Clin Pharmacol 2017; 83:1357-1358. [PMID: 28374426 DOI: 10.1111/bcp.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stein Bergan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
66
|
Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, Daali Y, Fairman D, Cook J, Lesko LJ, McCune JS, Knibbe CAJ, de Wildt SN, Leeder JS, Neely M, Zuppa AF, Vicini P, Aarons L, Johnson TN, Boiani J, Rostami-Hodjegan A. Why Has Model-Informed Precision Dosing Not Yet Become Common Clinical Reality? Lessons From the Past and a Roadmap for the Future. Clin Pharmacol Ther 2017; 101:646-656. [DOI: 10.1002/cpt.659] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Affiliation(s)
- A S Darwich
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry; University of Manchester; Manchester UK
| | - K Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry; University of Manchester; Manchester UK
| | - A A Vinks
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio USA
- Department of Pediatrics; University of Cincinnati School of medicine; Cincinnati Ohio USA
| | - J R Powell
- Eshelman School of Pharmacy; University of North Carolina; Chapel Hill North Carolina USA
| | - J-L Reny
- Geneva Platelet Group, School of Medicine; University of Geneva; Geneva Switzerland
- Department of Internal Medicine, Rehabilitation and Geriatrics; Geneva University Hospitals; Geneva Switzerland
| | - N Marsousi
- Clinical Pharmacology and Toxicology; Geneva University Hospitals; Geneva Switzerland
| | - Y Daali
- Geneva Platelet Group, School of Medicine; University of Geneva; Geneva Switzerland
- Clinical Pharmacology and Toxicology; Geneva University Hospitals; Geneva Switzerland
| | - D Fairman
- Clinical Pharmacology Modeling and Simulation, GSK Stevenage; UK
| | - J Cook
- Clinical Pharmacology, Pfizer Inc; Groton Connecticut USA
| | - L J Lesko
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology; University of Florida at Lake Nona (Orlando); Orlando Florida USA
| | - J S McCune
- University of Washington Department of Pharmaceutics and Fred Hitchinson Cancer Research Center Clinical Research Division; Seattle Washington USA
| | - C A J Knibbe
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands and Division of Pharmacology, Leiden Academic Centre for Drug Research; Leiden University; the Netherlands
| | - S N de Wildt
- Department of Pharmacology and Toxicology; Radboud University; Nijmegen the Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital; Rotterdam the Netherlands
| | - J S Leeder
- Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics; Kansas City Missouri USA
- Department of Pharmacology; University of Missouri-Kansas City; Kansas City Missouri USA
| | - M Neely
- University of Southern California and the Children's Hospital of Los Angeles; Los Angeles California USA
| | - A F Zuppa
- Children's Hospital of Philadelphia; Philadelphia Pennsylvania USA
| | - P Vicini
- Clinical Pharmacology, Pharmacometrics and DMPK, MedImmune; Cambridge UK
| | - L Aarons
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry; University of Manchester; Manchester UK
| | - T N Johnson
- Certara, Blades Enterprise Centre; Sheffield UK
| | - J Boiani
- Epstein Becker & Green; Washington DC USA
| | - A Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry; University of Manchester; Manchester UK
- Epstein Becker & Green; Washington DC USA
| |
Collapse
|
67
|
Størset E, Hole K, Midtvedt K, Bergan S, Molden E, Åsberg A. The CYP3A biomarker 4β-hydroxycholesterol does not improve tacrolimus dose predictions early after kidney transplantation. Br J Clin Pharmacol 2017; 83:1457-1465. [PMID: 28146606 DOI: 10.1111/bcp.13248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/16/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Tacrolimus is a cornerstone in modern immunosuppressive therapy after kidney transplantation. Tacrolimus dosing is challenged by considerable pharmacokinetic variability, both between patients and over time after transplantation, partly due to variability in cytochrome P450 3A (CYP3A) activity. The aim of this study was to assess the value of the endogenous CYP3A marker 4β-hydroxycholesterol (4βOHC) for tacrolimus dose individualization early after kidney transplantation. METHODS Data were obtained from 79 adult kidney transplant recipients who contributed a total of 625 4βOHC measurements and 1999 tacrolimus whole blood concentrations during the first 2 months after transplantation. The relationships between 4βOHC levels and individual estimates of tacrolimus apparent plasma clearance (CL/Fplasma ) at different time points after transplantation were investigated using scatterplots and population pharmacokinetic modelling. RESULTS There was no significant correlation between pre-transplant 4βOHC levels and tacrolimus CL/Fplasma the first week (r = 0.19 [95% CI -0.03-0.40]) or between 4βOHC and tacrolimus CL/Fplasma 1 week (r = 0.20 [-0.11-0.47]), 4 weeks (r = 0.21 [-0.07-0.46]) or 2 months (r = 0.24 [-0.03-0.48]) after transplantation (P ≥ 0.06). In the population analysis, time-varying 4βOHC was not a statistically significant covariate on tacrolimus CL/Fplasma , neither in terms of absolute values (P = 0.11) nor in terms of changes from baseline (P = 0.17). 4βOHC values increased between 1 week and 2 months after transplantation (median change +57% [IQR +22-83%], P < 0.001), indicating increasing CYP3A activity. Contradictorily, tacrolimus CL/Fplasma decreased over the same period (median change -13% [IQR -3 to -26%], P < 0.001). CONCLUSIONS 4βOHC does not appear to have a clinical potential to improve individualization of tacrolimus doses early after kidney transplantation.
Collapse
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stein Bergan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
68
|
Vanhove T, Annaert P, Kuypers DRJ. Response to: 'Bodyweight-adjustments introduce significant correlations between CYP3A metrics and tacrolimus clearance'. Br J Clin Pharmacol 2017; 83:1353-1356. [PMID: 28168728 DOI: 10.1111/bcp.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
69
|
Neely M. Scalpels not hammers: The way forward for precision drug prescription. Clin Pharmacol Ther 2017; 101:368-372. [PMID: 27984653 DOI: 10.1002/cpt.593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
Affiliation(s)
- M Neely
- Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
70
|
Knight SR. Intrapatient variability in tacrolimus exposure - a useful tool for clinical practice? Transpl Int 2016; 29:1155-1157. [DOI: 10.1111/tri.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Simon R. Knight
- Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
- Centre for Evidence in Transplantation; Royal College of Surgeons of England; London UK
| |
Collapse
|
71
|
Burris JF, Tortorici MA, Mandic M, Neely M, Reed MD. Dosage Adjustments Related to Young or Old Age and Organ Impairment. J Clin Pharmacol 2016; 56:1461-1473. [PMID: 27539787 DOI: 10.1002/jcph.816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/11/2022]
Abstract
Differences in physiology related to young or old age and/or organ system impairment alter the absorption, distribution, metabolism, and excretion of many medications and consequently their effectiveness and toxicity. This module discusses common alterations in medication use and dosage that are required in the pediatric age group, in the elderly, and in patients with renal or hepatic disease.
Collapse
Affiliation(s)
- James F Burris
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Maja Mandic
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Neely
- Children's Hospital of Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael D Reed
- Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
72
|
Størset E, Åsberg A, Hartmann A, Reisaeter AV, Holdaas H, Skauby M, Bergan S, Midtvedt K. Low-target tacrolimus in de novo standard risk renal transplant recipients: A single-centre experience. Nephrology (Carlton) 2016; 21:821-7. [DOI: 10.1111/nep.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - Anders Åsberg
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
- School of Pharmacy; University of Oslo; Oslo Norway
| | - Anders Hartmann
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
| | - Anna V. Reisaeter
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
| | - Hallvard Holdaas
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
| | - Morten Skauby
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
| | - Stein Bergan
- School of Pharmacy; University of Oslo; Oslo Norway
- Department of Pharmacology; Oslo University Hospital; Oslo Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine; Oslo University Hospital Rikshospitalet; Oslo Norway
| |
Collapse
|
73
|
Pallet N, Etienne I, Buchler M, Bailly E, Hurault de Ligny B, Choukroun G, Colosio C, Thierry A, Vigneau C, Moulin B, Le Meur Y, Heng AE, Legendre C, Beaune P, Loriot MA, Thervet E. Long-Term Clinical Impact of Adaptation of Initial Tacrolimus Dosing to CYP3A5 Genotype. Am J Transplant 2016; 16:2670-5. [PMID: 26990694 DOI: 10.1111/ajt.13788] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/12/2016] [Accepted: 03/03/2016] [Indexed: 01/25/2023]
Abstract
Pretransplantation adaptation of the daily dose of tacrolimus to CYP3A5 genotype is associated with improved achievement of target trough concentration (C0 ), but whether this improvement affects clinical outcomes is unknown. In the present study, we have evaluated the long-term clinical impact of the adaptation of initial tacrolimus dosing according to CYP3A5 genotype: The transplantation outcomes of the 236 kidney transplant recipients included in the Tactique study were retrospectively investigated over a period of more than 5 years. In the Tactique study, patients were randomly assigned to receive tacrolimus at either a fixed dosage or a dosage determined by their genotype, and the primary efficacy end point was the proportion of patients for whom tacrolimus C0 was within target range (10-15 ng/mL) at day 10. Our results indicate that the incidence of biopsy-proven acute rejection and graft survival were similar between the control and the adapted tacrolimus dose groups, as well as between the patients who achieve the tacrolimus C0 target ranges earlier. Patients' death, cancer, cardiovascular events, and infections were also similar, and renal function did not change. We conclude that optimization of initial tacrolimus dose using pharmacogenetic testing does not improve clinical outcomes.
Collapse
Affiliation(s)
- N Pallet
- Clinical Chemistry Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Department of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Descartes University, Paris, France.,Sorbonne Paris Cité, INSERM UMRS 1147, Paris, France
| | - I Etienne
- Department of Nephrology-Clinical Immmunology, CHU Rouen, Rouen, France
| | - M Buchler
- Department of Nephrology, CHU Tours, Tours, France
| | - E Bailly
- Department of Nephrology, CHU Tours, Tours, France
| | | | - G Choukroun
- Department of Nephrology, CHU Amiens, Amiens, France
| | - C Colosio
- Department of Nephrology, CHU Reims, Reims, France
| | - A Thierry
- Department of Nephrology, CHU Poitiers, Poitiers, France
| | - C Vigneau
- Department of Nephrology, CHU Rennes, Rennes, France
| | - B Moulin
- Department of Nephrology, CHU Strasbourg, Strasbourg, France
| | - Y Le Meur
- Department of Nephrology, CHU Brest, Brest, France
| | - A-E Heng
- Department of Nephrology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - C Legendre
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - P Beaune
- Clinical Chemistry Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Descartes University, Paris, France.,Sorbonne Paris Cité, INSERM UMRS 1147, Paris, France
| | - M A Loriot
- Clinical Chemistry Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Descartes University, Paris, France.,Sorbonne Paris Cité, INSERM UMRS 1147, Paris, France
| | - E Thervet
- Department of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.,Paris Descartes University, Paris, France.,Sorbonne Paris Cité, INSERM UMRS 1147, Paris, France
| |
Collapse
|
74
|
Jelliffe R. Optimal methodology is important for optimal pharmacokinetic studies, therapeutic drug monitoring and patient care. Clin Pharmacokinet 2016; 54:887-92. [PMID: 25948018 DOI: 10.1007/s40262-015-0280-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Roger Jelliffe
- Professor of Medicine Emeritus, Founder and Director Emeritus, Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, CA, USA,
| |
Collapse
|
75
|
Brooks E, Tett SE, Isbel NM, Staatz CE. Population Pharmacokinetic Modelling and Bayesian Estimation of Tacrolimus Exposure: Is this Clinically Useful for Dosage Prediction Yet? Clin Pharmacokinet 2016; 55:1295-1335. [DOI: 10.1007/s40262-016-0396-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
76
|
Tang JT, Andrews LM, van Gelder T, Shi YY, van Schaik RHN, Wang LL, Hesselink DA. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol 2016; 12:555-65. [PMID: 27010623 DOI: 10.1517/17425255.2016.1170808] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Tacrolimus (Tac) is effective in preventing acute rejection but has considerable toxicity and inter-individual variability in pharmacokinetics and pharmacodynamics. Part of this is explained by polymorphisms in genes encoding Tac-metabolizing enzymes and transporters. A better understanding of Tac pharmacokinetics and pharmacodynamics may help to minimize different outcomes amongst transplant recipients by personalizing immunosuppression. AREAS COVERED The pharmacogenetic contribution of Tac metabolism will be examined, with a focus on recent discoveries, new developments and ethnic considerations. EXPERT OPINION The strongest and most consistent association in pharmacogenetics is between the CYP3A5 genotype and Tac dose requirement, with CYP3A5 expressers having a ~ 40-50% higher dose requirement compared to non-expressers. Two recent randomized-controlled clinical trials using CYP3A5 genotype, however, did not show a decrease in acute rejections nor reduced toxicity. CYP3A4*22, CYP3A4*26, and POR*28 are also associated with Tac dose requirements and may be included to provide the expected improvement of Tac therapy. Studies focusing on the intracellular drug concentrations and on calcineurin inhibitor-induced nephrotoxicity also seem promising. For all studies, however, the ethnic prevalence of genotypes should be taken into account, as this may significantly impact the effect of pre-emptive genotyping.
Collapse
Affiliation(s)
- J T Tang
- a Department of Laboratory Medicine , West China Hospital of Sichuan University , Chengdu , China.,b Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - L M Andrews
- b Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - T van Gelder
- b Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,c Department of Internal Medicine, Division of Nephrology and Renal Transplantation , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Y Y Shi
- d Department of Nephrology , West China Hospital of Sichuan University , Chengdu , China
| | - R H N van Schaik
- e Department of Clinical Chemistry , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - L L Wang
- a Department of Laboratory Medicine , West China Hospital of Sichuan University , Chengdu , China
| | - D A Hesselink
- c Department of Internal Medicine, Division of Nephrology and Renal Transplantation , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| |
Collapse
|
77
|
Abstract
BACKGROUND Individualization of drug doses is essential in kidney transplant recipients. For many drugs, the individual dose is better predicted when using fat-free mass (FFM) as a scaling factor. Multiple equations have been developed to predict FFM based on healthy subjects. These equations have not been evaluated in kidney transplant recipients. The objectives of this study were to develop a kidney transplant specific equation for FFM prediction and to evaluate its predictive performance compared with previously published equations. METHODS Ten weeks after transplantation, FFM was measured by dual-energy X-ray absorptiometry. Data from a consecutive cohort of 369 kidney transplant recipients were randomly assigned to an equation development data set (n = 245) or an evaluation data set (n = 124). Prediction equations were developed using linear and nonlinear regression analysis. The predictive performance of the developed equation and previously published equations in the evaluation data set was assessed. RESULTS The following equation was developed: FFM (kg) = {FFMmax × body weight (kg)/[81.3 + body weight (kg)]} × [1 + height (cm) × 0.052] × [1-age (years) × 0.0007], where FFMmax was estimated to be 11.4 in males and 10.2 in females. This equation provided an unbiased, precise prediction of FFM in the evaluation data set: mean error (ME) (95% CI), -0.71 kg (-1.60 to 0.19 kg) in males and -0.36 kg (-1.52 to 0.80 kg) in females, root mean squared error 4.21 kg (1.65-6.77 kg) in males and 3.49 kg (1.15-5.84 kg) in females. Using previously published equations, FFM was systematically overpredicted in kidney-transplanted males [ME +1.33 kg (0.40-2.25 kg) to +5.01 kg (4.06-5.95 kg)], but not in females [ME -2.99 kg (-4.07 to -1.90 kg) to +3.45 kg (2.29-4.61) kg]. CONCLUSIONS A new equation for FFM prediction in kidney transplant recipients has been developed. The equation may be used for population pharmacokinetic modeling and clinical dose selection in kidney transplant recipients.
Collapse
|
78
|
Cattaneo D, Alffenaar JW, Neely M. Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones. Expert Opin Drug Metab Toxicol 2016; 12:533-44. [DOI: 10.1517/17425255.2016.1166204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angels, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angels, CA, USA
| |
Collapse
|
79
|
Moes DJAR, Swen JJ, van der Bent SAS, van der Straaten T, Inderson A, Olofsen E, Verspaget HW, Guchelaar HJ, den Hartigh J, van Hoek B. Response: Limited sampling strategies for once daily tacrolimus exposure monitoring. Eur J Clin Pharmacol 2016; 72:775-6. [PMID: 26931555 DOI: 10.1007/s00228-016-2036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/01/2022]
Affiliation(s)
- D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - S A S van der Bent
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van der Straaten
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Inderson
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J den Hartigh
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - B van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
80
|
Li Z, Sun F, Zhang Y, Chen H, He N, Chen H, Song P, Wang Y, Yan S, Zheng S. Tacrolimus Induces Insulin Resistance and Increases the Glucose Absorption in the Jejunum: A Potential Mechanism of the Diabetogenic Effects. PLoS One 2015; 10:e0143405. [PMID: 26599323 PMCID: PMC4657894 DOI: 10.1371/journal.pone.0143405] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022] Open
Abstract
Background The use of the immunosuppressive drug tacrolimus (TAC) is related to new onset diabetes after transplantation. Herein, we examined the effect of intraperitoneal administered TAC on intestinal glucose absorption in mice. Methods Animals received low, medium, or high dose TAC (0.5, 1, or 5 mg/kg/d, respectively), or 0.9% saline solution (control) for 14 days. Oral glucose tolerance test (OGTT), insulin concentration test, and serum TAC concentration measurements was performed after 14 days of TAC exposure. Plasma insulin was assessed and electrogenic glucose absorption were measured by the sodium-dependent increase of the short-circuit current. Expression levels of the glucose transporters sodium glucose co-transporter (SGLT) 1, glucose transporter (GLUT) 2, and GLUT5 were also determined. Results Oral glucose absorption assessed by OGTT was significantly enhanced in the low, medium, and high groups. Serum insulin was elevated in the medium and high group compared with the control. Moreover, glucose-induced Isc was significantly higher in TAC administrated groups, which indicates that SGLT1 activity increased. Transcription levels and protein abundance of SGLT1 in the experimental groups also increased compared with the control. Conclusions TAC induced insulin resistance and strengthened intestinal glucose absorption by increasing the activity and expression of the glucose transporter, SGLT1.
Collapse
Affiliation(s)
- Zhiwei Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaohui Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ningning He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- * E-mail:
| |
Collapse
|