51
|
Takigahira T, Suwito A, Kimura MT. Assessment of fitness costs of resistance against the parasitoid Leptopilina victoriae in Drosophila bipectinata. Ecol Res 2014. [DOI: 10.1007/s11284-014-1190-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
52
|
Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infect Immun 2014; 82:4169-81. [PMID: 25047850 DOI: 10.1128/iai.02318-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the innate immune response against microbial infections in Drosophila melanogaster involve mutant strains and their reference strains that act as experimental controls. We used five standard D. melanogaster laboratory reference strains (Oregon R, w1118, Canton-S, Cinnabar Brown, and Yellow White [YW]) and investigated their response against two pathogenic bacteria (Photorhabdus luminescens and Enterococcus faecalis) and two nonpathogenic bacteria (Escherichia coli and Micrococcus luteus). We detected high sensitivity among YW flies to bacterial infections and increased bacterial growth compared to the other strains. We also found variation in the transcription of certain antimicrobial peptide genes among strains, with Oregon and YW infected flies showing the highest and lowest gene transcription levels in most cases. We show that Oregon and w1118 flies possess more circulating hemocytes and higher levels of phenoloxidase activity than the other strains upon infection with the nonpathogenic bacteria. We further observed reduced fat accumulation in YW flies infected with the pathogenic bacteria, which suggests a possible decline in physiological condition. Finally, we found that nitrite levels are significantly lower in infected and uninfected YW flies compared to w1118 flies and that nitric oxide synthase mutant flies in YW background are more susceptible to bacterial infection compared to mutants in w1118 background. Therefore, increased sensitivity of YW flies to bacterial infections can be partly attributed to lower levels of nitric oxide. Such studies will significantly contribute toward a better understanding of the genetic variation between D. melanogaster reference strains.
Collapse
|
53
|
Jalvingh KM, Chang PL, Nuzhdin SV, Wertheim B. Genomic changes under rapid evolution: selection for parasitoid resistance. Proc Biol Sci 2014; 281:20132303. [PMID: 24500162 PMCID: PMC3924063 DOI: 10.1098/rspb.2013.2303] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
In this study, we characterize changes in the genome during a swift evolutionary adaptation, by combining experimental selection with high-throughput sequencing. We imposed strong experimental selection on an ecologically relevant trait, parasitoid resistance in Drosophila melanogaster against Asobara tabida. Replicated selection lines rapidly evolved towards enhanced immunity. Larval survival after parasitization increased twofold after just five generations of selection. Whole-genome sequencing revealed that the fast and strong selection response in innate immunity produced multiple, highly localized genomic changes. We identified narrow genomic regions carrying a significant signature of selection, which were present across all chromosomes and covered in total less than 5% of the whole D. melanogaster genome. We identified segregating sites with highly significant changes in frequency between control and selection lines that fell within these narrow 'selected regions'. These segregating sites were associated with 42 genes that constitute possible targets of selection. A region on chromosome 2R was highly enriched in significant segregating sites and may be of major effect on parasitoid defence. The high genetic variability and small linkage blocks in our base population are likely responsible for allowing this complex trait to evolve without causing widespread erosive effects in the genome, even under such a fast and strong selective regime.
Collapse
Affiliation(s)
- Kirsten M. Jalvingh
- Evolutionary Genetics Group, University of Groningen, Groningen, The Netherlands
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Peter L. Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sergey V. Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bregje Wertheim
- Evolutionary Genetics Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
54
|
Kimura MT, Suwito A. What determines host acceptance and suitability in tropical Asian Drosophila parasitoids? ENVIRONMENTAL ENTOMOLOGY 2014; 43:123-130. [PMID: 24472204 DOI: 10.1603/en13141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For successful parasitism, parasitoid females must oviposit and the progeny must develop in individual hosts. Here, we investigated the determinants of host acceptance for oviposition and host suitability for larval development of Drosophila parasitoids from Bogor and Kota Kinabalu (≍1,800 km northeast of Bogor), Indonesia, in tropical Asia. Asobara pleuralis (Ashmead) from both localities oviposited frequently (>60%) in all of the drosophilid species tested, except the strain from Kota Kinabalu oviposited rarely (10%) in Drosophila eugracilis Bock & Wheeler. Leptopilina victoriae Nordlander from both localities only oviposited frequently (>77%) in species from the Drosophila melanogaster species group except D. eugracilis (<3.7%), whereas Leptopilina pacifica Novković & Kimura from Bogor oviposited frequently (>85%) only in species from the Drosophila immigrans species group. Thus, host acceptance appeared to be affected by host taxonomy, at least in Leptopilina species. Host suitability varied considerably, even among closely related drosophilid species, which suggests that the host suitability is at least in part independent of host taxonomy and that it has been determined via parasitoid-host coevolutionary interactions (i.e., arms race). Host acceptance did not always coincide with host suitability, i.e., parasitoids sometimes oviposited in unsuitable host species. Geographic origin strongly affected the host acceptance and suitability in the A. pleuralis-D. eugracilis parasitoid-host pair, whereas it only weakly affected the acceptability and suitability in other parasitoid-host combinations.
Collapse
Affiliation(s)
- Masahito T Kimura
- Division of Biosphere Science, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | |
Collapse
|
55
|
Abstract
The melanotic encapsulation response mounted by Drosophila melanogaster against macroparasites, which is based on haemocyte binding to foreign objects, is poorly characterized relative to its humoral immune response against microbes, and appears to be variable across insect lineages. The genus Zaprionus is a diverse clade of flies embedded within the genus Drosophila. Here we characterize the immune response of Zaprionus indianus against endoparasitoid wasp eggs, which elicit the melanotic encapsulation response in D. melanogaster. We find that Z. indianus is highly resistant to diverse wasp species. Although Z. indianus mounts the canonical melanotic encapsulation response against some wasps, it can also potentially fight off wasp infection using two other mechanisms: encapsulation without melanization and a non-cellular form of wasp killing. Zaprionus indianus produces a large number of haemocytes including nematocytes, which are large fusiform haemocytes absent in D. melanogaster, but which we found in several other species in the subgenus Drosophila. Several lines of evidence suggest these nematocytes are involved in anti-wasp immunity in Z. indianus and in particular in the encapsulation of wasp eggs. Altogether, our data show that the canonical anti-wasp immune response and haemocyte make-up of the model organism D. melanogaster vary across the genus Drosophila.
Collapse
|
56
|
Bashir-Tanoli S, Tinsley MC. Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12236] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Matthew C. Tinsley
- Biological and Environmental Sciences; University of Stirling; Stirling FK9 4LA UK
| |
Collapse
|
57
|
Reavey CE, Warnock ND, Vogel H, Cotter SC. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav Ecol 2014. [DOI: 10.1093/beheco/art127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
58
|
Urbański A, Czarniewska E, Baraniak E, Rosiński G. Developmental changes in cellular and humoral responses of the burying beetle Nicrophorus vespilloides (Coleoptera, Silphidae). JOURNAL OF INSECT PHYSIOLOGY 2014; 60:98-103. [PMID: 24295868 DOI: 10.1016/j.jinsphys.2013.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
Necrophagous beetles of the genus Nicrophorus have developed various defence mechanisms that reduce the negative effects of adverse environmental conditions. However, many physiological and ecological aspects, including the functioning of the immune system in burying beetles, are still unknown. In this study, we show developmental changes in cellular and humoral responses of larvae, pupae, and adults of Nicrophorus vespilloides. We assessed changes in total haemocyte count, phenoloxidase activity, and phagocytic ability of haemocytes. We found that during larval development there is a progressive increase in humoral and cellular activities, and these responses are correlated with alterations of total haemocyte counts in the haemolymph. In the pupal stage, a sharp drop in the number of phagocytic haemocytes and an increase in phenoloxidase activity were observed. In adults, cellular and humoral responses remained at a lower level. It is probable that high lytic activity of anal and oral secretions produced by parents supports a lower response of the immune system in the initial phase of larval development. In the studied stages, we also observed differences in polymerisation of F-actin cytoskeleton of haemocytes, number of haemocytes forming filopodia, and filopodia length. These results suggest that the differences in immune responses during various stages of development of N. vespilloides are associated with a dynamically changing environment and different risks of infection. For the first time a detailed analysis of stage-specific alterations in immune system activity during development of the burying beetle is presented.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Systematic Zoology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Elżbieta Czarniewska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Edward Baraniak
- Department of Systematic Zoology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
59
|
Bryant WB, Michel K. Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles. ACTA ACUST UNITED AC 2013; 217:1238-45. [PMID: 24363411 DOI: 10.1242/jeb.094573] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malaria is a global public health problem, especially in sub-Saharan Africa, where the mosquito Anopheles gambiae Giles serves as the major vector for the protozoan Plasmodium falciparum Welch. One determinant of malaria vector competence is the mosquito's immune system. Hemocytes are a critical component as they produce soluble immune factors that either support or prevent malaria parasite development. However, despite their importance in vector competence, understanding of their basic biology is just developing. Applying novel technologies to the study of mosquito hemocytes, we investigated the effect of blood meal on hemocyte population dynamics, DNA replication and cell cycle progression. In contrast to prevailing published work, the data presented here demonstrate that hemocytes in adult mosquitoes continue to undergo low basal levels of replication. In addition, blood ingestion caused significant changes in hemocytes within 24 h. Hemocytes displayed an increase in cell number, size, granularity and Ras-MAPK signaling as well as altered cell surface moieties. As these changes are well-known markers of immune cell activation in mammals and Drosophila melanogaster Meigen, we further investigated whether a blood meal changes the expression of hemocyte-derived immune factors. Indeed, hemocytes 24 h post-blood meal displayed higher levels of critical components of the complement and melanization immune reactions in mosquitoes. Taken together, this study demonstrates that the normal physiological process of a blood meal activates the innate immune response in mosquitoes. This process is likely in part regulated by Ras-MAPK signaling, highlighting a novel mechanistic link between blood feeding and immunity.
Collapse
Affiliation(s)
- William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
60
|
Hemocyte density increases with developmental stage in an immune-challenged forest caterpillar. PLoS One 2013; 8:e70978. [PMID: 23940679 PMCID: PMC3735507 DOI: 10.1371/journal.pone.0070978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/25/2013] [Indexed: 01/11/2023] Open
Abstract
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.
Collapse
|
61
|
Verdú JR, Casas JL, Cortez V, Gallego B, Lobo JM. Acorn consumption improves the immune response of the dung beetle Thorectes lusitanicus. PLoS One 2013; 8:e69277. [PMID: 23874934 PMCID: PMC3712924 DOI: 10.1371/journal.pone.0069277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
Thorectes lusitanicus, a typically coprophagous species is also actively attracted to oak acorns, consuming, burying them, and conferring ecophysiological and reproductive advantages to both the beetle and the tree. In this study, we explored the possible relation between diet shift and the health status of T. lusitanicus using a generalist entomopathogenic fungus (Metarhizium anisopliae) as a natural pathogen. To measure the health condition and immune response of beetles, we analysed the protein content in the haemolymph, prophenoloxidase (proPO) content, phenoloxidase (PO) activity and mortality of beetles with diets based on either acorns or cow dung. Protein content, proPO levels and PO levels in the haemolymph of T. lusitanicus were found to be dependent on the type of diet. Furthermore, the beetles fed with acorns developed a more effective proPO-PO system than the beetles fed with cow dung. Furthermore, a significant decrease in mortality was observed when infected individuals were submitted to an acorn-based diet. In addition to enhancing an understanding of the relevance of dietary change to the evolutionary biology of dung beetles, these results provide a more general understanding of the ecophysiological implications of differential dietary selection in the context of fitness.
Collapse
Affiliation(s)
- José R Verdú
- IUI Centro Iberoamericano de la Biodiversidad, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain.
| | | | | | | | | |
Collapse
|
62
|
Moreno-García M, Córdoba-Aguilar A, Condé R, Lanz-Mendoza H. Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:127-139. [PMID: 22929006 DOI: 10.1017/s000748531200048x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The field of ecological immunology currently relies on using a number of immune effectors or markers. These markers are usually used to infer ecological trade-offs (via conflicts in resource allocation), though physiological nature of these markers remains elusive. Here, we review markers frequently used in insect evolutionary ecology research: cuticle darkening, haemocyte density, nodule/capsule formation, phagocytosis and encapsulation/melanization via use of nylon filaments and beads, phenoloxidase activity, nitric oxide production, lysozyme and antimicrobial peptide production. We also provide physiologically based information that may shed light on the probable trade-offs inferred when these markers are used. In addition, we provide a number of methodological suggestions to improve immune marker assessment.
Collapse
Affiliation(s)
- M Moreno-García
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|
63
|
Gerritsma S, Haan AD, Zande LVD, Wertheim B. Natural variation in differentiated hemocytes is related to parasitoid resistance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:148-158. [PMID: 23123513 DOI: 10.1016/j.jinsphys.2012.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
As a measure of parasitoid resistance, hemocyte load and encapsulation ability were measured in lines collected from natural populations of Drosophila melanogaster in Europe. Results show large geographic variation in resistance against the parasitoid wasp Asobara tabida among the field lines, but there was no clear correlation between resistance and total hemocyte load, neither before nor after parasitization. This was in contrast to the patterns that had been found in a comparison among species of Drosophila, where total hemocyte counts were positively correlated to encapsulation rates. This suggests that the mechanisms underlying between-species variation in parasitoid resistance do not extend to the natural variation that exists within a species. Although hemocyte counts did not correspond to encapsulation ability within D. melanogaster, the ratios of lamellocytes and crystal cells were very similar in lines with successful encapsulation responses. Apart from variation in the hemocytic response of the different hemocyte types, within-species variation was also observed for accurate targeting of the foreign body by the hemocytes. These results are discussed in the context of possible causes of variation in immune functions among natural populations.
Collapse
Affiliation(s)
- Sylvia Gerritsma
- Evolutionary Genetics, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | | | | | | |
Collapse
|
64
|
Richards EH, Dani MP, Bradish H. Immunosuppressive properties of a protein (rVPr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca: Mechanism of action and potential use for improving biological control strategies. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:213-222. [PMID: 22698823 DOI: 10.1016/j.jinsphys.2012.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Previously, it was determined that the presence of rVPr1 (a recombinant Pimpla hypochondriaca venom protein), in the haemocoel of two lepidopteran larvae, significantly increases their susceptibility to the biological control agents (BCAs), Bacillus thuringiensis (Bt) and Beauveria bassiana (Richards and Dani, 2010; Richards et al., 2011). The current work examines the mechanism of action of rVPr1 and demonstrates that it binds to the surface of some haemocytes and disrupts the organization of the haemocyte cytoskeleton. This binding is associated with a reduction in the ability of haemocytes to extend pseudopods, and to move and form aggregates in vitro over an 18 h period. Moreover, rVPr1 exerts these effects after a relatively short incubation period (1.5 h) and the haemocytes do not recover their ability to form aggregates after rVPr1 has been removed. In addition, rVPr1 significantly reduces haemocyte-mediated phagocytosis of Bt and B. bassiana in vitro (p < 0.05) and, following injection into the insect haemocoel, rVPr1 reduces the number of circulating haemocytes per ml of haemolymph (this being significantly different to the controls 3 h after injection [p = 0.05]). The finding that rVPr1 has an adverse effect on haemocyte function and number in vivo, supports the hypothesis that this wasp protein significantly increases the susceptibility of lepidopteran larvae to Bt and B. bassiana, by suppressing haemocyte-mediated immune responses in the insects which otherwise would be directed against these BCAs.
Collapse
Affiliation(s)
- E H Richards
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom.
| | | | | |
Collapse
|
65
|
Tien RJ, Ellner SP. Variable cost of prey defense and coevolution in predator–prey systems. ECOL MONOGR 2012. [DOI: 10.1890/11-2168.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
66
|
Drosophila melanogaster Selection for Survival of Bacillus cereus Infection: Life History Trait Indirect Responses. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:935970. [PMID: 23094195 PMCID: PMC3474238 DOI: 10.1155/2012/935970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/26/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023]
Abstract
To study evolved resistance/tolerance in an insect model, we carried out an
experimental evolution study using D. melanogaster and the opportunistic
pathogen B. cereus as the agent of selection. The selected lines evolved a
3.0- to 3.3-log increase in the concentration of spores required for 50% mortality
after 18–24 generations of selection. In the absence of any treatment, selected
lines evolved an increase in egg production and delayed development time. The
latter response could be interpreted as a cost of evolution. Alternatively, delayed
development might have been a target of selection resulting in increased
adult fat body function including production of antimicrobial peptides, and,
incidentally, yolk production for oocytes and eggs. When treated with autoclaved
spores, the egg production difference between selected and control lines was
abolished, and this response was consistent with the hypothesis of a cost of an
induced immune response. Treatment with autoclaved spores also reduced life span
in some cases and elicited early-age mortality in the selected and wound-control
lines both of which were consistent with the hypothesis of a cost associated with
induction of immune responses. In general, assays on egg production yielded key
outcomes including the negative effect of autoclaved spores on egg production.
Collapse
|
67
|
Affiliation(s)
- Alison M. Triggs
- School of Biological and Chemical Sciences, Queen Mary; University of London; Mile End Road London E14NS UK
| | - Robert J. Knell
- School of Biological and Chemical Sciences, Queen Mary; University of London; Mile End Road London E14NS UK
| |
Collapse
|
68
|
Auld SKJR, Edel KH, Little TJ. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose. Evolution 2012; 66:3287-93. [PMID: 23025616 DOI: 10.1111/j.1558-5646.2012.01671.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity.
Collapse
Affiliation(s)
- Stuart K J R Auld
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | |
Collapse
|
69
|
Martinez J, Duplouy A, Woolfit M, Vavre F, O'Neill SL, Varaldi J. Influence of the virus LbFV and of Wolbachia in a host-parasitoid interaction. PLoS One 2012; 7:e35081. [PMID: 22558118 PMCID: PMC3338833 DOI: 10.1371/journal.pone.0035081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/08/2012] [Indexed: 01/12/2023] Open
Abstract
Symbionts are widespread and might have a substantial effect on the outcome of interactions between species, such as in host-parasitoid systems. Here, we studied the effects of symbionts on the outcome of host-parasitoid interactions in a four-partner system, consisting of the parasitoid wasp Leptopilina boulardi, its two hosts Drosophila melanogaster and D. simulans, the wasp virus LbFV, and the endosymbiotic bacterium Wolbachia. The virus is known to manipulate the superparasitism behavior of the parasitoid whereas some Wolbachia strains can reproductively manipulate and/or confer pathogen protection to Drosophila hosts. We used two nuclear backgrounds for both Drosophila species, infected with or cured of their respective Wolbachia strains, and offered them to L. boulardi of one nuclear background, either infected or uninfected by the virus. The main defence mechanism against parasitoids, i.e. encapsulation, and other important traits of the interaction were measured. The results showed that virus-infected parasitoids are less frequently encapsulated than uninfected ones. Further experiments showed that this viral effect involved both a direct protective effect against encapsulation and an indirect effect of superparasitism. Additionally, the Wolbachia strain wAu affected the encapsulation ability of its Drosophila host but the direction of this effect was strongly dependent on the presence/absence of LbFV. Our results confirmed the importance of heritable symbionts in the outcome of antagonistic interactions.
Collapse
Affiliation(s)
- Julien Martinez
- CNRS UMR5558 Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Villeurbanne, France
- * E-mail: (JM); (AD)
| | - Anne Duplouy
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (JM); (AD)
| | - Megan Woolfit
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Fabrice Vavre
- CNRS UMR5558 Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Villeurbanne, France
| | - Scott L. O'Neill
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Julien Varaldi
- CNRS UMR5558 Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
70
|
Kacsoh BZ, Schlenke TA. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 2012; 7:e34721. [PMID: 22529929 PMCID: PMC3328493 DOI: 10.1371/journal.pone.0034721] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol.
Collapse
Affiliation(s)
- Balint Z. Kacsoh
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| | - Todd A. Schlenke
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
71
|
Auld SKJR, Graham AL, Wilson PJ, Little TJ. Elevated haemocyte number is associated with infection and low fitness potential in wild Daphnia magna. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2011.01959.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
72
|
Vijendravarma RK, Narasimha S, Kawecki TJ. Adaptation to abundant low quality food improves the ability to compete for limited rich food in Drosophila melanogaster. PLoS One 2012; 7:e30650. [PMID: 22292007 PMCID: PMC3265517 DOI: 10.1371/journal.pone.0030650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
The rate of food consumption is a major factor affecting success in scramble competition for a limited amount of easy-to-find food. Accordingly, several studies report positive genetic correlations between larval competitive ability and feeding rate in Drosophila; both become enhanced in populations evolving under larval crowding. Here, we report the experimental evolution of enhanced competitive ability in populations of D. melanogaster previously maintained for 84 generations at low density on an extremely poor larval food. In contrast to previous studies, greater competitive ability was not associated with the evolution of higher feeding rate; if anything, the correlation between the two traits across lines tended to be negative. Thus, enhanced competitive ability may be favored by nutritional stress even when competition is not intense, and competitive ability may be decoupled from the rate of food consumption.
Collapse
|
73
|
|
74
|
Nebel S, Bauchinger U, Buehler DM, Langlois LA, Boyles M, Gerson AR, Price ER, McWilliams SR, Guglielmo CG. Constitutive immune function in European starlings, Sturnus vulgaris, is decreased immediately after an endurance flight in a wind tunnel. J Exp Biol 2012; 215:272-8. [DOI: 10.1242/jeb.057885] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Life-history theory predicts that animals face a trade-off in energy allocation between performing strenuous exercise, such as migratory flight, and mounting an immune response. We experimentally tested this prediction by studying immune function in European starlings, Sturnus vulgaris, flown in a wind tunnel. Specifically, we predicted that constitutive immune function decreases in response to training and, additionally, in response to immediate exercise. We compared constitutive immune function among three groups: (1) ‘untrained’ birds that were kept in cages and were not flown; (2) ‘trained’ birds that received flight training over a 15 day period and performed a 1-4 h continuous flight, after which they rested for 48 h before being sampled; and (3) ‘post-flight’ birds that differed from the ‘trained’ group only in being sampled immediately after the final flight. A bird in our trained group represents an individual during migration that has been resting between migratory flights for at least 2 days. A bird in our post-flight group represents an individual that has just completed a migratory flight and has not yet had time to recover. Three of our four indicators (haptoglobin, agglutination and lysis) showed the predicted decrease in immune function in the post-flight group, and two indicators (haptoglobin, agglutination) showed the predicted decreasing trend from the untrained to trained to post-flight group. Haptoglobin levels were negatively correlated with flight duration. No effect of training or flight was detected on leukocyte profiles. Our results suggest that in European starlings, constitutive immune function is decreased more as a result of immediate exercise than of exercise training. Because of the recent emergence of avian-borne diseases, understanding the trade-offs and challenges faced by long-distance migrants has gained a new level of relevance and urgency.
Collapse
Affiliation(s)
- Silke Nebel
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Ulf Bauchinger
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Deborah M. Buehler
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park Circle, Toronto, Ontario, Canada M5S 2C6
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Lillie A. Langlois
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Michelle Boyles
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Alexander R. Gerson
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Edwin R. Price
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Scott R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
75
|
Lankau RA. Rapid Evolutionary Change and the Coexistence of Species. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145100] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard A. Lankau
- Department of Plant Biology, University of Georgia, Athens, Georgia 30606;
| |
Collapse
|
76
|
Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella marina) in Australia. Biol Invasions 2011. [DOI: 10.1007/s10530-011-0135-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
77
|
Abstract
SUMMARYVariability of immune responses is an essential aspect of ecological immunology, yet how much of this variability is due to differences among parasite genotypes remains unknown. Here, variation in immune response of the crab, Macrophthalmus hirtipes, is examined as a function of experimental exposure to 10 clonal cercarial lineages of the trematode Maritrema novaezealandensis. Our goals were (1) to assess the variability of the host immune reaction elicited by 10 parasite clones, (2) to test if the heterozygosity–fitness correlation, whereby organisms with higher heterozygosities achieve a higher fitness than those with lower heterozygosities, applies to heterozygous parasites eliciting weak immune responses, and (3) to see how concomitant infections by other macroparasites influence the crab's immune response to cercariae. Parasite clones were distinguished and heterozygosities calculated using 20 microsatellite markers. We found that exposure to cercariae resulted in increased haemocyte counts, and that although interclonal differences in immune response elicited were detected, parasite heterozygosity did not correlate with host immune response. Additionally, the presence of other pre-existing parasites in hosts did not influence their immune response following experimental exposure to cercariae. Overall, the existence of variability in immune response elicited by different parasite clones is promising for future ecological immunology studies using this system.
Collapse
|
78
|
Triggs A, Knell RJ. Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella. J Anim Ecol 2011; 81:386-94. [PMID: 21999965 DOI: 10.1111/j.1365-2656.2011.01920.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Animals raised in good environmental conditions are expected to have more resources to invest in immunity than those raised in poor conditions. Variation in immune activity and parasite resistance in response to changes in environmental temperature, population density and food quality have been shown in many invertebrate species. 2. Almost all studies to date have examined the effects of individual variables in isolation. The aim of this study was to address whether environmental factors interact to produce synergistic effects on phenoloxidase (PO) activity and haemocyte count, both indicators of immune system activity. Temperature, food quality and density were varied in a fully factorial design for a total of eight treatment combinations. 3. Strong interactions between the three environmental variables led to the magnitude and in some cases the direction of the effect of most variables changing as the other environmental factors were altered. Overall, food quality had the most important and consistent influence, larvae raised on a good-quality diet having substantially higher PO activity in every case and substantially higher haemocyte counts in all treatments except unheated/low density. 4. When food quality was good, the larvae showed 'density-dependent prophylaxis': raising their investment in immunity when population density is high. When food quality was poor and the temperature low, however, those larvae raised at high densities invested less in immunity. 5. Increased temperature is often thought to lead to increased immune reactivity in ectotherms, but we found that the effect of temperature was strongly dependent on the values of other environmental variables. PO activity increased with temperature when larvae were raised on good food or when density was high, but when food was poor and density low, a higher temperature led to reduced PO activity. A higher temperature led to higher haemocyte counts when density was high and food quality was poor, but in all other cases, the effect of increased temperature was either close to zero or somewhat negative. 6. Although PO activity and haemocyte count were weakly correlated across the whole data set, there were a number of treatments where the two measures responded in different ways to environmental change. Overall, effect sizes for PO activity were substantially higher than those for haemocyte count, indicating that the different components of the immune system vary in their sensitivity to environmental change. 7. Predictions of the effect of environmental or population change on immunity and disease dynamics based on laboratory experiments that only investigate the effects of single variable are likely to be inaccurate or even entirely wrong.
Collapse
Affiliation(s)
- Alison Triggs
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | | |
Collapse
|
79
|
Kraaijeveld AR, Elrayes NP, Schuppe H, Newland PL. L-arginine enhances immunity to parasitoids in Drosophila melanogaster and increases NO production in lamellocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:857-864. [PMID: 21527285 DOI: 10.1016/j.dci.2011.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
Drosophila melanogaster was used as a model system to explore the link between nutrition and immunity, and to investigate the role of nitric oxide (NO) in enhancing immunity following dietary enhancement with L-arginine. First, we show that adding L-arginine to the food medium increases the ability of D. melanogaster larvae to encapsulate the eggs of the parasitoid Asobara tabida. Secondly, we show that the increase in immunity is specific to L-arginine, and not to an enhanced calorific content, and that immunity decreases when larvae are fed food with added L-NAME, an inhibitor of nitric oxide synthase. Finally, we show that parasitised larvae fed L-arginine have increased haemocyte numbers, and that the lamellocytes (haemocytes which play a key role in encapsulation) show evidence of an increased production of NO. These results suggest that NO plays a key role in immunity and that the effect of NO is mostly targeted via the lamellocytes.
Collapse
Affiliation(s)
- Alex R Kraaijeveld
- School of Biological Sciences, University of Southampton, Highfield Campus, United Kingdom.
| | | | | | | |
Collapse
|
80
|
Duncan AB, Fellous S, Kaltz O. REVERSE EVOLUTION: SELECTION AGAINST COSTLY RESISTANCE IN DISEASE-FREE MICROCOSM POPULATIONS OF PARAMECIUM CAUDATUM. Evolution 2011; 65:3462-74. [DOI: 10.1111/j.1558-5646.2011.01388.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Harvey JA, Tanaka T, Kruidhof M, Vet LE, Gols R. The ‘usurpation hypothesis’ revisited: dying caterpillar repels attack from a hyperparasitoid wasp. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
Poelman EH, Gols R, Snoeren TAL, Muru D, Smid HM, Dicke M. Indirect plant-mediated interactions among parasitoid larvae. Ecol Lett 2011; 14:670-6. [DOI: 10.1111/j.1461-0248.2011.01629.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
83
|
WERTHEIM BREGJE, KRAAIJEVELD ALEXR, HOPKINS MEIRIONG, WALTHER BOER MARK, GODFRAY HCHARLESJ. Functional genomics of the evolution of increased resistance to parasitism in Drosophila. Mol Ecol 2010; 20:932-49. [DOI: 10.1111/j.1365-294x.2010.04911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
84
|
Auld SKJR, Scholefield JA, Little TJ. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite. Proc Biol Sci 2010; 277:3291-7. [PMID: 20534618 PMCID: PMC2981931 DOI: 10.1098/rspb.2010.0772] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.
Collapse
Affiliation(s)
- Stuart K J R Auld
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
85
|
Anagnostou C, LeGrand EA, Rohlfs M. Friendly food for fitter flies? - Influence of dietary microbial species on food choice and parasitoid resistance inDrosophila. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2009.18001.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Valtonen TM, Kleino A, Rämet M, Rantala MJ. Starvation Reveals Maintenance Cost of Humoral Immunity. Evol Biol 2009. [DOI: 10.1007/s11692-009-9078-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Dubuffet A, Colinet D, Anselme C, Dupas S, Carton Y, Poirié M. Variation of Leptopilina boulardi success in Drosophila hosts: what is inside the black box? ADVANCES IN PARASITOLOGY 2009; 70:147-88. [PMID: 19773070 DOI: 10.1016/s0065-308x(09)70006-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Interactions between Drosophila hosts and parasitoid wasps are among the few examples in which occurrence of intraspecific variation of parasite success has been studied in natural populations. Such variations can originate from three categories of factors: environmental, host and parasitoid factors. Under controlled laboratory conditions, it is possible to focus on the two last categories, and, using specific reference lines, to analyze their respective importance. Parasitoid and host contributions to variations in parasite success have largely been studied in terms of evolutionary and mechanistic aspects in two Drosophila parasitoids, Asobara tabida and, in more details, in Leptopilina boulardi. This chapter focuses on the physiological and molecular aspects of L. boulardi interactions with two Drosophila host species, while most of the evolutionary hypotheses and models are presented in Chapter 11 of Dupas et al.
Collapse
Affiliation(s)
- A Dubuffet
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
88
|
Kraaijeveld AR, Godfray HCJ. Evolution of host resistance and parasitoid counter-resistance. ADVANCES IN PARASITOLOGY 2009; 70:257-80. [PMID: 19773074 DOI: 10.1016/s0065-308x(09)70010-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
By their nature, parasitoids will exert a selection pressure on their hosts to evolve a mechanism through which to resist parasitoid attack. In turn, such a resistance mechanism will lead to parasitoids evolving counter-resistance. In this chapter, we present an overview of the research on the (co)evolutionary interaction between Drosophila and their parasitoids, with the main focus on the cellular immune response of D. melanogaster, and the counter-resistance mechanism of one of its main parasitoids, Asobara tabida. A key aspect of this interaction is the existence of genetic variation: in the field, host resistance and parasitoid counter-resistance vary, both between and within populations. Host resistance and parasitoid counter-resistance are costly, and both these costs turn out to be density dependent. These tradeoffs can explain the existence of genetic variation. We briefly touch upon behavioral aspects of the interaction and the parasites and pathogens that the parasitoids themselves suffer from. We end this chapter by considering the data coming from gene chip experiments: early indications suggest that the genes involved in the actual immune response against parasitoids are mostly different from the genes involved in the evolution of resistance.
Collapse
Affiliation(s)
- Alex R Kraaijeveld
- University of Southampton, School of Biological Sciences, Southampton SO16 7PX, United Kingdom
| | | |
Collapse
|
89
|
Fleury F, Gibert P, Ris N, Allemand R. Ecology and life history evolution of frugivorous Drosophila parasitoids. ADVANCES IN PARASITOLOGY 2009; 70:3-44. [PMID: 19773065 DOI: 10.1016/s0065-308x(09)70001-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parasitoids and their hosts are linked by intimate and harmful interactions that make them well suited to analyze fundamental ecological and evolutionary processes with regard to life histories evolution of parasitic association. Drosophila aspects of what parasitoid Hymenoptera have become model organisms to study aspects that cannot be investigated with other associations. These include the genetic bases of fitness traits variations, physiology and genetics of resistance/virulence, and coevolutionary dynamics leading to local adaptation. Recent research on evolutionary ecology of Drosophila parasitoids were performed mainly on species that thrive in fermenting fruits (genera Leptopilina and Asobara). Here, we review information and add original data regarding community ecology of these parasitoids, including species distribution, pattern of abundance and diversity, host range and the nature and intensity of species interactions. Biology and the evolution of life histories in response to habitat heterogeneity and possible local adaptations leading to specialization of these wasps are reported with special emphasis on species living in southern Europe. We expose the diversity and intensity of selective constraints acting on parasitoid life history traits, which vary geographically and highlight the importance of considering both biotic and abiotic factors with their interactions to understand ecological and evolutionary dynamics of host-parasitoid associations.
Collapse
Affiliation(s)
- Frédéric Fleury
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | | | | | | |
Collapse
|
90
|
Eslin P, Prévost G, Havard S, Doury G. Immune resistance of Drosophila hosts against Asobara parasitoids: cellular aspects. ADVANCES IN PARASITOLOGY 2009; 70:189-215. [PMID: 19773071 DOI: 10.1016/s0065-308x(09)70007-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immunity of Drosophila relies on a variety of defenses cooperating to fight parasites and pathogens. The encapsulation reaction is the main hemocytic response neutralizing large parasites like endophagous parasitoids. The diversity of the mechanisms of immunoevasion evolved by Asobara parasitoids, together with the wide spectrum of Drosophila host species they can parasitize, make them ideal models to study and unravel the physiological and cellular aspects of host immunity. This chapter summarizes what could be learnt on the cellular features of the encapsulation process in various Drosophila spp., and also on the major role played by Drosophila hosts hemocytes subpopulations, both in a quantitative and qualitative manner, regarding the issue of the immune Asobara-Drosophila interactions.
Collapse
Affiliation(s)
- Patrice Eslin
- Laboratoire de Biologie des Entomophages, EA 3900 BioPI, Université de Picardie-Jules Verne, 80039 Amiens cedex, France
| | | | | | | |
Collapse
|
91
|
Best A, White A, Boots M. The implications of coevolutionary dynamics to host-parasite interactions. Am Nat 2009; 173:779-91. [PMID: 19374557 DOI: 10.1086/598494] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the importance of infectious disease, there is a large body of theory on the evolution of either hosts or, more commonly, parasites. Here we present a fully coevolutionary model of a host-parasite system that includes ecological dynamics that feed back into the coevolutionary outcome, and we show that highly virulent parasites may evolve due to the coevolutionary process. Parasite evolution is very sensitive to evolution in the host, and virulence fluctuates substantially when mutation rates vary between host and parasite. Evolutionary branching in the host leads to parasites increasing their virulence, and small changes in host resistance drive large changes in parasite virulence. Evolutionary branching in one species does not cause branching in the other. Our work emphasizes the importance of considering coevolutionary dynamics and shows that certain highly virulent parasites may result from responses to host evolution.
Collapse
Affiliation(s)
- Alex Best
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, England, United Kingdom.
| | | | | |
Collapse
|
92
|
Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 2009; 160:299-308. [DOI: 10.1007/s00442-009-1308-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
93
|
Nunn CL, Lindenfors P, Pursall ER, Rolff J. On sexual dimorphism in immune function. Philos Trans R Soc Lond B Biol Sci 2009; 364:61-9. [PMID: 18926977 DOI: 10.1098/rstb.2008.0148] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual dimorphism in immune function is a common pattern in vertebrates and also in a number of invertebrates. Most often, females are more 'immunocompetent' than males. The underlying causes are explained by either the role of immunosuppressive substances, such as testosterone, or by fundamental differences in male and female life histories. Here, we investigate some of the main predictions of the immunocompetence handicap hypothesis (ICHH) in a comparative framework using mammals. We focus specifically on the prediction that measures of sexual competition across species explain the observed patterns of variation in sex-specific immunocompetence within species. Our results are not consistent with the ICHH, but we do find that female mammals tend to have higher white blood cell counts (WBC), with some further associations between cell counts and longevity in females. We also document positive covariance between sexual dimorphism in immunity, as measured by a subset of WBC, and dimorphism in the duration of effective breeding. This is consistent with the application of 'Bateman's principle' to immunity, with females maximizing fitness by lengthening lifespan through greater investment in immune defences. Moreover, we present a meta-analysis of insect immunity, as the lack of testosterone in insects provides a means to investigate Bateman's principle for immunity independently of the ICHH. Here, we also find a systematic female bias in the expression of one of the two components of insect immune function that we investigated (phenoloxidase). From these analyses, we conclude that the mechanistic explanations of the ICHH lack empirical support. Instead, fitness-related differences between the sexes are potentially sufficient to explain many natural patterns in immunocompetence.
Collapse
Affiliation(s)
- Charles L Nunn
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
94
|
Abstract
Defending self against nonself is a major problem in a world in which individuals are under constant pressure from parasites that gain fitness benefits at a cost to their host. Defences that have evolved are diverse, and range from behavioural adaptations to physiochemical barriers. The immune defence is a final line of protection and is therefore of great importance. Given this importance, variability in immune defence would seem counterintuitive, yet that is what is observed. Ecological immunology attempts to explain this variation by invoking costs and trade-offs, and in turn proposing that the optimal immune defence will vary over environments. Studies in this field have been highly successful in establishing an evolutionary ecology framework around immunology. However, in order enrich our understanding of this area, it is perhaps time to broaden the focus to include parasites as more than simply elicitors of immune responses. In essence, to view immunity as produced by the host, the environment, and the active involvement of parasites.
Collapse
Affiliation(s)
- Ben M Sadd
- Institute for Integrative Biology (IBZ), Experimental Ecology ETH Zentrum, CHN, Zurich, Switzerland
| | - Paul Schmid-Hempel
- Institute for Integrative Biology (IBZ), Experimental Ecology ETH Zentrum, CHN, Zurich, Switzerland
| |
Collapse
|
95
|
Dalesman S, Rundle SD, Cotton PA. Crawl-out behaviour in response to predation cues in an aquatic gastropod: insights from artificial selection. Evol Ecol 2008. [DOI: 10.1007/s10682-008-9280-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Wilson-Rich N, Dres ST, Starks PT. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1392-1399. [PMID: 18761014 DOI: 10.1016/j.jinsphys.2008.07.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.
Collapse
Affiliation(s)
- Noah Wilson-Rich
- Department of Biology, Dana Laboratories, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
97
|
Abstract
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
Collapse
Affiliation(s)
- Marlene Zuk
- Department of Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
98
|
ZBINDEN M, HAAG CR, EBERT D. Experimental evolution of field populations ofDaphnia magnain response to parasite treatment. J Evol Biol 2008; 21:1068-78. [DOI: 10.1111/j.1420-9101.2008.01541.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Szczerbina T, Banach Z, Tylko G, Pyza E. Toxic effects of acrylamide on survival, development and haemocytes of Musca domestica. Food Chem Toxicol 2008; 46:2316-9. [DOI: 10.1016/j.fct.2008.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/25/2007] [Accepted: 02/24/2008] [Indexed: 11/26/2022]
|
100
|
Abstract
Central to most theories that explain the diversity of life is the concept that organisms face trade-offs. Theoretical work has shown that the precise shape of a trade-off relationship affects evolutionary predictions. One common trade-off is that between competitive ability and resistance to predators, parasitoids, pathogens or herbivores. We used a microbial experimental system to elucidate the shape of the relationship between parasitoid resistance and competitive ability. For each of 86 bacteriophage-resistant isolates of the bacterium Escherichia coli B, we measured the degree of resistance to bacteriophage T2 (a viral parasitoid) and relative competitive ability in both the resource environment in which strains were isolated and in two alternate environments. We observed that environmental change can alter trade-off shape, and that different physiological mechanisms can lead to different trade-off shapes and different sensitivities to environmental change. These results highlight the important interaction between environment and trade-off shape in affecting ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Christine M Jessup
- Department of Biological Sciences, Stanford University, Stanford, CA, USA 94305, USA.
| | | |
Collapse
|