51
|
Seth A, Ourmanov I, Schmitz JE, Kuroda MJ, Lifton MA, Nickerson CE, Wyatt L, Carroll M, Moss B, Venzon D, Letvin NL, Hirsch VM. Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge. J Virol 2000; 74:2502-9. [PMID: 10684264 PMCID: PMC111738 DOI: 10.1128/jvi.74.6.2502-2509.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity and protective efficacy of a modified vaccinia virus Ankara (MVA) recombinant expressing the simian immunodeficiency virus (SIV) Gag-Pol proteins (MVA-gag-pol) was explored in rhesus monkeys expressing the major histocompatibility complex (MHC) class I allele, MamuA*01. Macaques received four sequential intramuscular immunizations with the MVA-gag-pol recombinant virus or nonrecombinant MVA as a control. Gag-specific cytotoxic T-lymphocyte (CTL) responses were detected in all MVA-gag-pol-immunized macaques by both functional assays and flow cytometric analyses of CD8(+) T cells that bound a specific MHC complex class I-peptide tetramer, with levels peaking after the second immunization. Following challenge with uncloned SIVsmE660, all macaques became infected; however, viral load set points were lower in MVA-gag-pol-immunized macaques than in the MVA-immunized control macaques. MVA-gag-pol-immunized macaques exhibited a rapid and substantial anamnestic CTL response specific for the p11C, C-M Gag epitope. The level at which CTL stabilized after resolution of primary viremia correlated inversely with plasma viral load set point (P = 0.03). Most importantly, the magnitude of reduction in viremia in the vaccinees was predicted by the magnitude of the vaccine-elicited CTL response prior to SIV challenge.
Collapse
Affiliation(s)
- A Seth
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ourmanov I, Brown CR, Moss B, Carroll M, Wyatt L, Pletneva L, Goldstein S, Venzon D, Hirsch VM. Comparative efficacy of recombinant modified vaccinia virus Ankara expressing simian immunodeficiency virus (SIV) Gag-Pol and/or Env in macaques challenged with pathogenic SIV. J Virol 2000; 74:2740-51. [PMID: 10684290 PMCID: PMC111764 DOI: 10.1128/jvi.74.6.2740-2751.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/1999] [Accepted: 12/23/1999] [Indexed: 11/20/2022] Open
Abstract
Prior studies demonstrated that immunization of macaques with simian immunodeficiency virus (SIV) Gag-Pol and Env recombinants of the attenuated poxvirus modified vaccinia virus Ankara (MVA) provided protection from high levels of viremia and AIDS following challenge with a pathogenic strain of SIV (V. M. Hirsch et al., J. Virol. 70:3741-3752, 1996). This MVA-SIV recombinant expressed relatively low levels of the Gag-Pol portion of the vaccine. To optimize protection, second-generation recombinant MVAs that expressed high levels of either Gag-Pol (MVA-gag-pol) or Env (MVA-env), alone or in combination (MVA-gag-pol-env), were generated. A cohort of 24 macaques was immunized with recombinant or nonrecombinant MVA (four groups of six animals) and was challenged with 50 times the dose at which 50% of macaques are infected with uncloned pathogenic SIVsmE660. Although all animals became infected postchallenge, plasma viremia was significantly reduced in animals that received the MVA-SIV recombinant vaccines as compared with animals that received nonrecombinant MVA (P = 0.0011 by repeated-measures analysis of variance). The differences in the degree of virus suppression achieved by the three MVA-SIV vaccines were not significant. Most importantly, the reduction in levels of viremia resulted in a significant increase in median (P < 0.05 by Student's t test) and cumulative (P = 0.010 by log rank test) survival. These results suggest that recombinant MVA has considerable potential as a vaccine vector for human AIDS.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/biosynthesis
- Antigens, Viral/immunology
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Cell Line
- Chlorocebus aethiops
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Expression
- Gene Products, env/biosynthesis
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors/genetics
- HIV Envelope Protein gp120/biosynthesis
- HIV Envelope Protein gp120/immunology
- Macaca mulatta
- Membrane Glycoproteins
- Recombination, Genetic
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/blood
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/ultrastructure
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- Viral Envelope Proteins
- Viral Load
- Viral Matrix Proteins/biosynthesis
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- I Ourmanov
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Ramírez JC, Gherardi MM, Esteban M. Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 2000; 74:923-33. [PMID: 10623755 PMCID: PMC111613 DOI: 10.1128/jvi.74.2.923-933.2000] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 10/07/1999] [Indexed: 02/03/2023] Open
Abstract
The modified vaccinia virus Ankara (MVA) strain is a candidate vector for vaccination against pathogens and tumors, due to safety concerns and the proven ability of recombinants based on this vector to trigger protection against pathogens in animals. In this study we addressed the fate of the MVA vector in BALB/c mice after intraperitoneal inoculation in comparison with that of the replication-competent Western Reserve (WR) strain by measuring levels of expression of the reporter luciferase gene, the capability to infect target tissues from the site of inoculation, and the length of time of virus persistence. We evaluated the extent of humoral and cellular immune responses induced against the virus antigens and a recombinant product (beta-galactosidase). We found that MVA infects the same target tissues as the WR strain; surprisingly, within 6 h postinoculation the levels of expression of antigens were higher in tissues from MVA-infected mice than in tissues from mice infected with wild-type virus but at later times postinoculation were 2 to 4 log units higher in tissues from WR-infected mice. In spite of this, antibodies and cellular immune responses to viral vector antigens were considerably lower in MVA-inoculated mice than in WR virus-inoculated mice. In contrast, the cellular immune response to a foreign antigen expressed from MVA was similar to and even higher than that triggered by the recombinant WR virus. MVA elicited a Th1 type of immune response, and the main proinflammatory cytokines induced were interleukin-6 and tumor necrosis factor alpha. Our findings have defined the biological characteristics of MVA infection in tissues and the immune parameters activated in the course of virus infection. These results are of significance with respect to optimal use of MVA as a vaccine.
Collapse
Affiliation(s)
- J C Ramírez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autonoma, 28049 Madrid, Spain
| | | | | |
Collapse
|
54
|
Dégano P, Schneider J, Hannan CM, Gilbert SC, Hill AV. Gene gun intradermal DNA immunization followed by boosting with modified vaccinia virus Ankara: enhanced CD8+ T cell immunogenicity and protective efficacy in the influenza and malaria models. Vaccine 1999; 18:623-32. [PMID: 10547421 DOI: 10.1016/s0264-410x(99)00278-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In influenza and malaria, CD8+ T cells play an important role in protective immunity in mice. An immunization strategy consisting of DNA priming followed by boosting with recombinant modified vaccinia virus Ankara (MVA) induces complete protection, associated with high levels of CD8+ T cells, against Plasmodium berghei sporozoite challenge in mice. Intradermal delivery of DNA with a gene gun requires smaller amounts of DNA than intramuscular injection, in order to induce similar levels of immune responses. The present study compares both routes for the induction of specific CD8+ T cell responses and protection using different prime-boost immunization regimes in the influenza and the malaria models. In the DNA/MVA regime, equally high CD8+ T cell responses and levels of protection are achieved using ten times less DNA when delivered with a gene gun compared to intramuscular injection.
Collapse
MESH Headings
- Animals
- Biolistics
- CD8-Positive T-Lymphocytes/immunology
- DNA, Protozoan/administration & dosage
- DNA, Protozoan/genetics
- DNA, Viral/administration & dosage
- DNA, Viral/genetics
- Female
- Immunization, Secondary
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Malaria/immunology
- Malaria/prevention & control
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Plasmodium berghei/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- P Dégano
- PowderJect Pharmaceuticals plc, 4 Robert Robinson Avenue, The Oxford Science Park, Oxford, UK.
| | | | | | | | | |
Collapse
|
55
|
Ramsay AJ, Kent SJ, Strugnell RA, Suhrbier A, Thomson SA, Ramshaw IA. Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol Rev 1999; 171:27-44. [PMID: 10582164 DOI: 10.1111/j.1600-065x.1999.tb01341.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this article, we describe several novel genetic vaccination strategies designed to facilitate the development of different types of immune responses. These include: i) the consecutive use of DNA and fowlpoxvirus vectors in "prime-boost" strategies which induce greatly enhanced and sustained levels of both cell-mediated immunity and humoral immunity, including mucosal responses; ii) the co-expression of genes encoding cytokines and cell-surface receptors, and the use of immunogenic carrier molecules, for immune modulation and/or improved targeting of vector-expressed vaccine antigens; and iii) the expression of minimal immunogenic amino acid sequences, particularly cytotoxic CD8+ T-cell determinants, in "polytope" vector vaccines. The capacity to modulate and enhance specific immune responses by the use of approaches such as these may underpin the development of vaccines against diseases for which no effective strategies are currently available.
Collapse
Affiliation(s)
- A J Ramsay
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
56
|
Desmézières E, Jacob Y, Saron MF, Delpeyroux F, Tordo N, Perrin P. Lyssavirus glycoproteins expressing immunologically potent foreign B cell and cytotoxic T lymphocyte epitopes as prototypes for multivalent vaccines. J Gen Virol 1999; 80 ( Pt 9):2343-2351. [PMID: 10501486 DOI: 10.1099/0022-1317-80-9-2343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Truncated and chimeric lyssavirus glycoprotein (G) genes were used to carry and express non-lyssavirus B and T cell epitopes for DNA-based immunization of mice, with the aim of developing a multivalent vaccine prototype. Truncated G (GPVIII) was composed of the C-terminal half (aa 253-503) of the Pasteur rabies virus (PV: genotype 1) G containing antigenic site III and the transmembrane and cytoplasmic domains. The chimeric G (GEBL1-PV) was composed of the N-terminal half (aa 1-250) of the European bat lyssavirus 1 (genotype 5) G containing antigenic site II linked to GPVIII. Antigenic sites II and III are involved in the induction of virus-neutralizing antibodies. The B cell epitope was the C3 neutralization epitope of the poliovirus type 1 capsid VP1 protein. The T cell epitope was the H2d MHC I-restricted epitope of the nucleoprotein of lymphocytic choriomeningitis virus (LCMV) involved in the induction of both cytotoxic T cell (CTL) production and protection against LCMV. Truncated G carrying foreign epitopes induced weak antibody production against rabies and polio viruses and provided weak protection against LCMV. In contrast, the chimeric plasmid containing various combinations of B and CTL epitopes elicited simultaneous immunological responses against both parental lyssaviruses and poliovirus and provided good protection against LCMV. The level of humoral and cellular immune responses depended on the order of the foreign epitopes inserted. Our results demonstrate that chimeric lyssavirus glycoproteins can be used not only to broaden the spectrum of protection against lyssaviruses, but also to express foreign B and CTL epitopes. The potential usefulness of chimeric lyssavirus glycoproteins for the development of multivalent vaccines against animal diseases and zoonoses, including rabies, is discussed.
Collapse
Affiliation(s)
- Emmanuel Desmézières
- Laboratoire des Lyssavirus1, Laboratoire de Virologie Expérimentale2 and Laboratoire d'Epidémiologie Moléculaire des Entérovirus3, Institut Pasteur 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Yves Jacob
- Laboratoire des Lyssavirus1, Laboratoire de Virologie Expérimentale2 and Laboratoire d'Epidémiologie Moléculaire des Entérovirus3, Institut Pasteur 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marie-Françoise Saron
- Laboratoire des Lyssavirus1, Laboratoire de Virologie Expérimentale2 and Laboratoire d'Epidémiologie Moléculaire des Entérovirus3, Institut Pasteur 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Francis Delpeyroux
- Laboratoire des Lyssavirus1, Laboratoire de Virologie Expérimentale2 and Laboratoire d'Epidémiologie Moléculaire des Entérovirus3, Institut Pasteur 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Noël Tordo
- Laboratoire des Lyssavirus1, Laboratoire de Virologie Expérimentale2 and Laboratoire d'Epidémiologie Moléculaire des Entérovirus3, Institut Pasteur 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pierre Perrin
- Laboratoire des Lyssavirus1, Laboratoire de Virologie Expérimentale2 and Laboratoire d'Epidémiologie Moléculaire des Entérovirus3, Institut Pasteur 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
57
|
Hanke T, Samuel RV, Blanchard TJ, Neumann VC, Allen TM, Boyson JE, Sharpe SA, Cook N, Smith GL, Watkins DI, Cranage MP, McMichael AJ. Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J Virol 1999; 73:7524-32. [PMID: 10438842 PMCID: PMC104279 DOI: 10.1128/jvi.73.9.7524-7532.1999] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1999] [Accepted: 06/16/1999] [Indexed: 11/20/2022] Open
Abstract
DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8(+) lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed.
Collapse
Affiliation(s)
- T Hanke
- Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Lewis E, Rudo T, St John MR, Chu J, Heinze A, Howard B, Engleka K. Endothelial cell DNA transfer and expression using petri dish electroporation and the nonreplicating vaccinia virus/T7 RNA polymerase hybrid system. Gene Ther 1999; 6:1617-25. [PMID: 10490772 DOI: 10.1038/sj.gt.3300977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nonreplicating vaccinia virus MVA/T7 RNA polymerase hybrid system was tested with Petri dish electroporation for ectopic gene expression in human umbilical vein endothelial cells (HUVECs). A range of voltages (150-450 V), pulse times (10-40 ms), DNA concentrations (0-20 microg/ml) and infection levels (0-15 multiplicities of infection) were tested for effects on T7 promoter-directed chloramphenicol acetyltransferase (CAT) activity after MVA/T7RP infection. MVA/T7RP-directed expression was transient and at least 10 000-fold in excess of nonviral, cytomegalovirus enhancer-directed expression. Use of a Petri dish electrode with the MVA/T7RP system showed increased viability compared with a cuvette electrode. Overexpression of interleukin-2 alpha subunit (IL2Ralpha) pro- tein followed by anti-IL2Ralpha-directed magnetic immunoaffinity cell sorting allowed isolation of the transfected population. The high fidelity of cellular sorting was shown by segregation of CAT activity in the IL2Ralpha-sorted population after transfection of T7 promoter-directed bicistronic IL2Ralpha/CAT DNA. Expression of a panel of proteins including the fluorophore green fluorescent protein as detected by fluorescence microscopy and p21cip1, p27kip1, pp60c-src, FGF-1, pRb, p107 and pRb2/p130 proteins was also achieved. Thus, use of the nonreplicating vaccinia virus/T7 RNA polymerase expression system with Petri dish electroporation is feasible for certain applications for the manipulation of HUVECs by gene transfer.
Collapse
Affiliation(s)
- E Lewis
- Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Berzofsky JA, Ahlers JD, Derby MA, Pendleton CD, Arichi T, Belyakov IM. Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol Rev 1999; 170:151-72. [PMID: 10566149 DOI: 10.1111/j.1600-065x.1999.tb01336.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used several approaches to develop enhanced vaccines for chronic viral infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). 1) Selected epitopes were used to avoid potentially harmful immune responses. 2) Linkage between helper and cytotoxic T-lymphocyte (CTL) epitopes was found to be important. 3) We developed an "epitope enhancement" approach modifying the sequences of epitopes to make more potent vaccines, including examples for HIV and HCV epitopes presented by murine class II and human class I major histocompatibility complex (MHC) molecules. 4) CTL avidity was found to be important for clearing viral infections in vivo, and the mechanism was examined. High-avidity CTLs, however, were found to undergo apoptosis when confronted with high-density antigen, through a mechanism involving tumor necrosis factor (TNF), TNF-RII, and a permissive state induced through the T-cell receptor. 5) We employed cytokines in the adjuvant to steer immune responses toward desired phenotypes, and showed synergy between cytokines. 6) Intrarectal immunization with peptide vaccine induced mucosal and systemic CTL. Local mucosal CTL were found to be critical for resistance to mucosal viral transmission and this resistance was enhanced with mucosally delivered interleukin-12. 7) We used an asymmetry in induction of mucosal and systemic immune responses to circumvent pre-existing vaccinia immunity for use of recombinant vaccinia vaccines.
Collapse
Affiliation(s)
- J A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA
| | | | | | | | | | | |
Collapse
|
60
|
Woodberry T, Gardner J, Mateo L, Eisen D, Medveczky J, Ramshaw IA, Thomson SA, Ffrench RA, Elliott SL, Firat H, Lemonnier FA, Suhrbier A. Immunogenicity of a human immunodeficiency virus (HIV) polytope vaccine containing multiple HLA A2 HIV CD8(+) cytotoxic T-cell epitopes. J Virol 1999; 73:5320-5. [PMID: 10364278 PMCID: PMC112587 DOI: 10.1128/jvi.73.7.5320-5325.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compelling evidence now suggests that alphabeta CD8 cytotoxic T lymphocytes (CTL) have an important role in preventing human immunodeficiency virus (HIV) infection and/or slowing progression to AIDS. Here, we describe an HIV type 1 CTL polyepitope, or polytope, vaccine comprising seven contiguous minimal HLA A2-restricted CD8 CTL epitopes conjoined in a single artificial construct. Epitope-specific CTL lines derived from HIV-infected individuals were able to recognize every epitope within the construct, and HLA A2-transgenic mice immunized with a recombinant virus vaccine coding for the HIV polytope also generated CTL specific for different epitopes. Each epitope in the polytope construct was therefore processed and presented, illustrating the feasibility of the polytope approach for HIV vaccine design. By simultaneously inducing CTL specific for different epitopes, an HIV polytope vaccine might generate activity against multiple challenge isolates and/or preempt the formation of CTL escape mutants.
Collapse
Affiliation(s)
- T Woodberry
- Australian Centre for International & Tropical Health & Nutrition, Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Belyakov IM, Moss B, Strober W, Berzofsky JA. Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc Natl Acad Sci U S A 1999; 96:4512-7. [PMID: 10200293 PMCID: PMC16363 DOI: 10.1073/pnas.96.8.4512] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.
Collapse
Affiliation(s)
- I M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
62
|
Gilbert SC, Schneider J, Plebanski M, Hannan CM, Blanchard TJ, Smith GL, Hill AV. Ty virus-like particles, DNA vaccines and Modified Vaccinia Virus Ankara; comparisons and combinations. Biol Chem 1999; 380:299-303. [PMID: 10223332 DOI: 10.1515/bc.1999.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three types of vaccine, all expressing the same antigen from Plasmodium berghei, or a CD8+ T cell epitope from that antigen, were compared for their ability to induce CD8+ T cell responses in mice. Higher levels of lysis and numbers of IFN-gamma secreting T cells were primed with Ty virus-like particles and Modified Vaccinia Virus Ankara (MVA) than with DNA vaccines, but none of the vaccines were able to protect immunised mice from infectious challenge even after repeated doses. However, when the immune response was primed with one type of vaccine (Ty-VLPs or DNA) and boosted with another (MVA) complete protection against infection was achieved. Protection correlated with very high levels of IFN-gamma secreting T cells and lysis. This method of vaccination uses delivery systems and routes that can be used in humans and could provide a generally applicable regime for the induction of high levels of CD8+ T cells.
Collapse
Affiliation(s)
- S C Gilbert
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
63
|
Hanke T, Neumann VC, Blanchard TJ, Sweeney P, Hill AV, Smith GL, McMichael A. Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine 1999; 17:589-96. [PMID: 10075166 DOI: 10.1016/s0264-410x(98)00238-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reliable and effective induction of cytotoxic T-lymphocytes (CTL) is one of the prime objectives of vaccine research. Previously, novel HIV vaccine candidates were constructed as a string of CTL epitopes (20 human, 3 macaque and 1 mouse) delivered using a DNA vector [Hanke T, Schneider J, Gilbert SG, Hill AVS, McMichael A. DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice. Vaccine 1998;16:426-435.] or modified vaccinia Ankara (MVA [Hanke T, Blanchard TJ, Schneider J, Ogg GS, Tan R, Becker MSC, Gilbert SG, Hill AVS, Smith GL, McMichael A. Immunogenicities of intravenous and intramuscular administrations of MVA-based multi-CTL epitope vaccine for HIV in mice. J Gen Virol 1998;79:83-90.]), i.e. vaccine vehicles acceptable for use in humans. In mice, a single intramuscular (i.m.) needle injection of either vaccine alone elicited good CTL responses. Here, it is demonstrated that the multi-epitope DNA also induced CTL when delivered intradermally using the Accell gene gun. The CTL responses increased after re-immunization and after three deliveries were comparable to those induced by a single i.m. injection. Recent evidence indicates that combining routes and vaccine vehicles enhances the immunogenicity of vaccine-delivered or -encoded antigens. Here, it is shown that administration of DNA by an i.m. priming/gene gun boosting more efficiently induced CTL than gene gun priming/i.m. boosting. A similar increment was obtained by sequential vaccinations using a gene gun-delivered DNA followed by recombinant MVA. Thus particular sequences of routes or vaccine vehicles rather than simple prime-boost delivery of a single vaccine is critical for an effective elicitation of CTL.
Collapse
Affiliation(s)
- T Hanke
- Molecular Immunology Group, Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Headington, UK.
| | | | | | | | | | | | | |
Collapse
|
64
|
Wyatt LS, Carroll MW, Czerny CP, Merchlinsky M, Sisler JR, Moss B. Marker rescue of the host range restriction defects of modified vaccinia virus Ankara. Virology 1998; 251:334-42. [PMID: 9837798 DOI: 10.1006/viro.1998.9397] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The severely attenuated and host range (HR) restricted modified vaccinia virus Ankara (MVA) was derived by >500 passages in chick embryo fibroblasts, during which multiple deletions and mutations occurred. To determine the basis of the HR defect, we prepared cosmids from the parental vaccinia virus Ankara genome and transfected them into nonpermissive monkey BS-C-1 cells that had been infected with MVA. Recombinant viruses that formed macroscopic plaques were detected after transfections with DNA segments that mapped near the left end of the viral genome. Plaque-forming viruses, generated by transfections with four individual cosmids and one pair of minimally overlapping cosmids, were purified, and their HRs were evaluated in BS-C-1 cells, rabbit RK-13 cells, and human HeLa, MRC-5, and A549 cells. The acquisition of the K1L and SPI-1 HR genes and the repair of large deletions were determined by polymerase chain reaction or pulse-field gel electrophoresis of NotI restriction enzyme digests of genomic DNA. The following results indicated the presence of previously unrecognized vaccinia virus HR genes: (1) the major mutations that restrict HR are within the left end of the MVA genome because the phenotypes of some recombinants approached that of the parental virus, (2) acquisition of the K1L gene correlated with the ability of recombinant viruses to propagate in RK-13 cells but did not enhance replication in human or monkey cell lines, (3) acquisition of the SPI-1 gene correlated with virus propagation in A549 cells but not with the extent of virus spread in monkey or other human cell lines, (4) there are at least two impaired HR genes because rescue occurred with nonoverlapping or minimally overlapping cosmids and recombinant viruses with intermediate HRs were isolated, and (5) at least one of the new HR genes did not map within any of the major deletions because the size of the left terminal NotI fragment was not appreciably altered in some recombinant viruses.
Collapse
Affiliation(s)
- L S Wyatt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | |
Collapse
|
65
|
Mwaengo DM, Novembre FJ. Molecular cloning and characterization of viruses isolated from chimpanzees with pathogenic human immunodeficiency virus type 1 infections. J Virol 1998; 72:8976-87. [PMID: 9765443 PMCID: PMC110315 DOI: 10.1128/jvi.72.11.8976-8987.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1998] [Accepted: 07/14/1998] [Indexed: 11/20/2022] Open
Abstract
We have previously described the development of AIDS in a chimpanzee (C499) infected with human immunodeficiency virus type 1 (HIV-1) and the subsequent pathogenic HIV-1 infection in another chimpanzee (C455) transfused with blood from C499 (F. J. Novembre et al., J. Virol. 71:4086-4091, 1997). In the present study, two virus isolates were derived from these animals: HIV-1JC from peripheral blood mononuclear cells (PBMC) of C499, and HIV-1NC from plasma of C455. These virus isolates were used to generate two infectious molecular clones, termed HIV-1JC16 and HIV-1NC7 (JC16 and NC7, respectively). Comparative analyses of the sequences of the two clones showed that they were highly interrelated but distinct. Based on heteroduplex mobility assays, JC16 and NC7 appear to represent dominant viruses in the uncloned stock population. Compared with amino acid sequences of the parental viruses HIV-1SF2, HIV-1LAV-1b, and HIV-1NDK, JC16 and NC7 showed a number of differences, including insertions, deletions, and point mutations spread throughout the genome. However, insertion/deletion footprints in several genes of both JC16 and NC7 suggested that recombination between SF2 and LAV-1b could have occurred, possibly contributing to the generation of a pathogenic virus. Comparative in vitro analyses of the molecular clones and the uncloned stocks of HIV-1JC and HIV-1NC revealed that these viruses had strikingly similar replicative abilities in mitogen-stimulated PBMC and in macrophages. Compared to the SF2 and LAV-1b isolates of HIV-1, HIV-1JC and HIV-1NC isolates were more similar to LAV-1b with respect to the ability to replicate in mitogen-stimulated PBMC and macrophages. These viruses should prove to be useful in mapping determinants of pathogenesis.
Collapse
Affiliation(s)
- D M Mwaengo
- Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | |
Collapse
|
66
|
Belyakov IM, Wyatt LS, Ahlers JD, Earl P, Pendleton CD, Kelsall BL, Strober W, Moss B, Berzofsky JA. Induction of a mucosal cytotoxic T-lymphocyte response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing human immunodeficiency virus 89.6 envelope protein. J Virol 1998; 72:8264-72. [PMID: 9733870 PMCID: PMC110185 DOI: 10.1128/jvi.72.10.8264-8272.1998] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To improve the safety of recombinant vaccinia virus vaccines, modified vaccinia virus Ankara (MVA) has been employed, because it has a replication defect in most mammalian cells. Here we apply MVA to human immunodeficiency virus type 1 (HIV-1) vaccine development by incorporating the envelope protein gp160 of HIV-1 primary isolate strain 89.6 (MVA 89.6) and use it to induce mucosal cytotoxic-T-lymphocyte (CTL) immunity. In initial studies to define a dominant CTL epitope for HIV-1 89.6 gp160, we mapped the epitope to a sequence, IGPGRAFYAR (from the V3 loop), homologous to that recognized by HIV MN loop-specific CTL and showed that HIV-1 MN-specific CTLs cross-reactively recognize the corresponding epitope from strain 89.6 presented by H-2Dd. Having defined the CTL specificity, we immunized BALB/c mice intrarectally with recombinant MVA 89.6. A single mucosal immunization with MVA 89.6 was able to elicit long-lasting antigen-specific mucosal (Peyer's patch and lamina propria) and systemic (spleen) CTL responses as effective as or more effective than those of a replication-competent vaccinia virus expressing 89.6 gp160. Immunization with MVA 89.6 led to (i) the loading of antigen-presenting cells in vivo, as measured by the ex vivo active presentation of the P18-89.6 peptide to an antigen-specific CTL line, and (ii) the significant production of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) in the mucosal sites. These results indicate that nonreplicating recombinant MVA may be at least as effective for mucosal immunization as replicating recombinant vaccinia virus.
Collapse
Affiliation(s)
- I M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Seth A, Ourmanov I, Kuroda MJ, Schmitz JE, Carroll MW, Wyatt LS, Moss B, Forman MA, Hirsch VM, Letvin NL. Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer. Proc Natl Acad Sci U S A 1998; 95:10112-6. [PMID: 9707609 PMCID: PMC21470 DOI: 10.1073/pnas.95.17.10112] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/1998] [Indexed: 11/18/2022] Open
Abstract
The utility of modified vaccinia virus Ankara (MVA) as a vector for eliciting AIDS virus-specific cytotoxic T lymphocytes (CTL) was explored in the simian immunodeficiency virus (SIV)/rhesus monkey model. After two intramuscular immunizations with recombinant MVA-SIVSM gag pol, the monkeys developed a Gag epitope-specific CTL response readily detected in peripheral blood lymphocytes by using a functional killing assay. Moreover, those immunizations also elicited a population of CD8+ T lymphocytes in the peripheral blood that bound a specific major histocompatibility complex class I/peptide tetramer. These Gag epitope-specific CD8+ T lymphocytes also were demonstrated by using both functional and tetramer-binding assays in lymph nodes of the immunized monkeys. These observations suggest that MVA may prove a useful vector for an HIV-1 vaccine. They also suggest that tetramer staining may be a useful technology for monitoring CTL generation in vaccine trials in nonhuman primates and in humans.
Collapse
Affiliation(s)
- A Seth
- Harvard Medical School, Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|