51
|
Discovery of Two Novel Negeviruses in a Dungfly Collected from the Arctic. Viruses 2020; 12:v12070692. [PMID: 32604989 PMCID: PMC7412485 DOI: 10.3390/v12070692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Negeviruses are a proposed group of insect-specific viruses that can be separated into two distinct phylogenetic clades, Nelorpivirus and Sandewavirus. Negeviruses are well-known for their wide geographic distribution and broad host range among hematophagous insects. In this study, the full genomes of two novel negeviruses from each of these clades were identified by RNA extraction and sequencing from a single dungfly (Scathophaga furcata) collected from the Arctic Yellow River Station, where these genomes are the first negeviruses from cold zone regions to be discovered. Nelorpivirus dungfly1 (NVD1) and Sandewavirus dungfly1 (SVD1) have the typical negevirus genome organization and there was a very high coverage of viral transcripts. Small interfering RNAs derived from both viruses were readily detected in S. furcata, clearly showing that negeviruses are targeted by the host antiviral RNA interference (RNAi) pathway. These results and subsequent in silico analysis (studies) of public database and published virome data showed that the hosts of nege-like viruses include insects belonging to many orders as well as various non-insects in addition to the hematophagous insects previously reported. Phylogenetic analysis reveals at least three further groups of negeviruses, as well as several poorly resolved solitary branches, filling in the gaps within the two sub-groups of negeviruses and plant-associated viruses in the Kitaviridae. The results of this study will contribute to a better understanding of the geographic distribution, host range, evolution and host antiviral immune responses of negeviruses.
Collapse
|
52
|
Jeffries CL, White M, Wilson L, Yakob L, Walker T. Detection of a novel insect-specific flavivirus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Res 2020; 5:149. [PMID: 33869790 PMCID: PMC8030115 DOI: 10.12688/wellcomeopenres.16030.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 04/01/2024] Open
Abstract
Background. Outbreaks of mosquito-borne arboviral diseases including dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV) and chikungunya virus (CHIKV) have recently occurred in the Caribbean. The geographical range of the principle vectors responsible for transmission, Aedes (Ae.) aegypti and Ae. albopictus is increasing and greater mosquito surveillance is needed in the Caribbean given international tourism is so prominent. The island of Saint Lucia has seen outbreaks of DENV and CHIKV in the past five years but vector surveillance has been limited with the last studies dating back to the late 1970s. Natural disasters have changed the landscape of Saint Lucia and the island has gone through significant urbanisation. Methods. In this study, we conducted an entomological survey of Ae. aegypti and Ae. albopictus distribution across the island and analysed environmental parameters associated with the presence of these species in addition to screening for medically important arboviruses and other flaviviruses. Results. Although we collected Ae. aegypti across a range of sites across the island, no Ae. albopictus were collected despite traps being placed in diverse ecological settings. The number of Ae. aegypti collected was significantly associated with higher elevation, and semi-urban settings yielded female mosquito counts per trap-day that were five-fold lower than urban settings. Screening for arboviruses revealed a high prevalence of a novel insect-specific flavivirus closely related to cell fusing agent virus (CFAV). Conclusions. Outbreaks of arboviruses transmitted by Ae. aegypti and Ae. albopictus have a history of occurring in small tropical islands and Saint Lucia is particularly vulnerable given the limited resources available to undertake vector control and manage outbreaks. Surveillance strategies can identify risk areas for predicting future outbreaks and further research is needed to determine the diversity of current mosquito species and this should be extended to the neighbouring smaller Caribbean islands.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mia White
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Louisia Wilson
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
53
|
Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. CURRENT OPINION IN INSECT SCIENCE 2020; 39:50-56. [PMID: 32278312 PMCID: PMC7302987 DOI: 10.1016/j.cois.2020.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
Novel insect-specific viruses (ISVs) are being discovered in many important vectors due to advances in sequencing technology and a growing awareness of the virome. Several in vitro and in vivo studies indicate that ISVs are capable of modulating pathogenic arboviruses. In addition, there is growing evidence that both vertical and horizonal transmission strategies maintain ISVs in vector populations. As such there is potential to exploit ISVs for stand-alone vector control strategies and deploying them in synergy with other symbiont control approaches such as Wolbachia-mediated control. However, before the applied potential can be realized, a greater understanding of their basic biology is required, including their species range, ability to be maintained and transmitted in native and non-native vector hosts, and the effect of infection on a range of pathogens.
Collapse
Affiliation(s)
- Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph N Muthoni
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Lucien Dobel-Ober
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
54
|
Applying a pan-flavivirus RT-qPCR assay in Brazilian public health surveillance. Arch Virol 2020; 165:1863-1868. [PMID: 32474687 DOI: 10.1007/s00705-020-04680-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to improve flavivirus field monitoring in Brazil using a reliable probe-based RT-qPCR assay. Standard flavivirus strains were employed to evaluate the performance of the assay, and its applicability was evaluated using 235 stored pools of Culicidae samples collected between 1993 and 1997 and in 2016. Flavivirus species were identified by sequencing. Sixteen (6.8%) samples tested positive: Ilheus virus, Iguape virus, and Saint Louis encephalitis virus were identified in historical specimens from 1993-1994, while insect-specific flaviviruses were detected in the samples from 2016. This approach was demonstrated to be accurate for flavivirus detection and characterization, and it can be successfully applied for vector surveillance and for monitoring and discovery of insect specific flaviviruses.
Collapse
|
55
|
Martin E, Tang W, Briggs C, Hopson H, Juarez JG, Garcia-Luna SM, de Valdez MW, Badillo-Vargas IE, Borucki MK, Frank M, Hamer GL. Cell fusing agent virus (Flavivirus) infection in Aedes aegypti in Texas: seasonality, comparison by trap type, and individual viral loads. Arch Virol 2020; 165:1769-1776. [PMID: 32440701 PMCID: PMC7351801 DOI: 10.1007/s00705-020-04652-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/10/2020] [Indexed: 11/05/2022]
Abstract
South Texas has experienced local transmission of Zika virus and of other mosquito-borne viruses such as chikungunya virus and dengue virus in the last decades. Using a mosquito surveillance program in the Lower Rio Grande Valley (LRGV) and San Antonio, TX, from 2016 to 2018, we detected the presence of an insect-specific virus, cell fusing agent virus (CFAV), in the Aedes aegypti mosquito population. We tested 6,326 females and 1,249 males from the LRGV and 659 females from San Antonio for CFAV by RT-PCR using specific primers. Infection rates varied from 0 to 261 per 1,000 mosquitoes in the LRGV and 115 to 208 per 1,000 in San Antonio depending on the month of collection. Infection rates per 1,000 individuals appeared higher in females collected from BG Sentinel 2 traps compared to Autocidal Gravid Ovitraps, but the ratio of the percentage of infected pools did not differ by trap type. The natural viral load in individual males ranged from 1.25 x 102 to 5.50 x 106 RNA copies and in unfed females from 5.42 x 103 to 8.70 x 106 RNA copies. Gravid females were found to harbor fewer viral particles than males and unfed females.
Collapse
Affiliation(s)
- Estelle Martin
- Department of Entomology, Texas A&M University, College Station, TX, USA. .,Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Wendy Tang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Cierra Briggs
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Helena Hopson
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Jose G Juarez
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Megan Wise de Valdez
- Department of Science and Mathematics, Texas A&M University-San Antonio, San Antonio, TX, USA
| | | | | | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
56
|
Urakova N, Brustolin M, Joseph RE, Johnson RM, Pujhari S, Rasgon JL. Anopheles gambiae densovirus (AgDNV) negatively affects Mayaro virus infection in Anopheles gambiae cells and mosquitoes. Parasit Vectors 2020; 13:210. [PMID: 32321560 PMCID: PMC7178629 DOI: 10.1186/s13071-020-04072-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Recent studies demonstrate that insect-specific viruses can influence the ability of their mosquito hosts to become infected with and transmit arboviruses of medical and veterinary importance. The aim of this study was to evaluate the interactions between Anopheles gambiae densovirus (AgDNV) (Parvoviridae) (a benign insect-specific virus that infects An. gambiae mosquitoes) and Mayaro virus (MAYV) (Togaviridae) (an emerging human pathogen that can be transmitted by An. gambiae) in both insect cell culture and mosquitoes. METHODS For in vitro studies, An. gambiae Mos55 cells infected or uninfected with AgDNV were infected with MAYV. For in vivo studies, An. gambiae mosquitoes were injected intrathoracically with AgDNV and 4 days later orally infected with MAYV. Mosquitoes were dissected 10 days after MAYV infection, and MAYV titers in the body, legs and saliva samples quantified using focus-forming assay. RESULTS MAYV virus replication was reduced 10-100-fold in An. gambiae Mos55 cells infected with AgDNV. In mosquitoes, there was a significant negative correlation between AgDNV and MAYV body titers 10 days post-blood meal. CONCLUSIONS AgDNV infection was associated with reduced production of MAYV in cell culture, and reduced body titers of MAYV in An. gambiae mosquitoes. As densovirus infections are common in natural mosquito populations, these data suggest that they may affect the epidemiology of viruses of medical importance.
Collapse
Affiliation(s)
- Nadya Urakova
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Marco Brustolin
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Renuka E Joseph
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca M Johnson
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sujit Pujhari
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA. .,The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
57
|
Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes. Viruses 2020; 12:v12040468. [PMID: 32326240 PMCID: PMC7232154 DOI: 10.3390/v12040468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
The mosquito antiviral response has mainly been studied in the context of arthropod-borne virus (arbovirus) infection in female mosquitoes. However, in nature, both female and male mosquitoes are frequently infected with insect-specific viruses (ISVs). ISVs are capable of infecting the reproductive organs of both sexes and are primarily maintained by vertical transmission. Since the RNA interference (RNAi)-mediated antiviral response plays an important antiviral role in mosquitoes, ISVs constitute a relevant model to study sex-dependent antiviral responses. Using a naturally generated viral stock containing three distinct ISVs, Aedes flavivirus (AEFV), Menghai rhabdovirus (MERV), and Shinobi tetra virus (SHTV), we infected adult Aedes albopictus females and males and generated small RNA libraries from ovaries, testes, and the remainder of the body. Overall, both female and male mosquitoes showed unique small RNA profiles to each co-infecting ISV regardless of the sex or tissue tested. While all three ISVs generated virus-derived siRNAs, only MERV generated virus-derived piRNAs. We also studied the expression of PIWI genes in reproductive tissues and carcasses. In contrast to Piwi5-9, Piwi1-4 were abundantly expressed in ovaries and testes, suggesting that Piwi5-9 are involved in exogenous viral piRNA production. Together, our results show that ISV-infected Aedes albopictus produce viral small RNAs in a virus-specific manner and that male mosquitoes mount a similar small RNA-mediated antiviral response to that of females.
Collapse
|
58
|
Gaye A, Diagne MM, Ndiaye EH, Dior Ndione MH, Faye M, Talla C, Fall G, Ba Y, Diallo D, Dia I, Handschumacher P, Faye O, Sall AA, Diallo M. Vector competence of anthropophilic mosquitoes for a new mesonivirus in Senegal. Emerg Microbes Infect 2020; 9:496-504. [PMID: 32106784 PMCID: PMC7054948 DOI: 10.1080/22221751.2020.1730710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mesoniviruses (MESOVs) belong to the newly described Mesoniviridae family (Order: Nidovirales). They have never been reported in Senegal until recently during a study in arbovirus emergence with the detection of a new species of MESOV named Dianke virus (DKV) from common mosquitoes from eastern Senegal. Actually, their vector competence for this newly described DKV is unknown. We, therefore, estimated the vector competence of Culex tritaeniorhynchus, Culex quinquefasciatus, Aedes aegypti, and Anopheles gambiae mosquitoes collected in Senegal for DKV using oral infection. Whole bodies, legs/wings, and saliva samples were tested for DKV by RT–PCR to estimate infection, dissemination, and transmission rates. The infectivity of virus particles in the saliva was confirmed by infecting C6/36 cells. Virus transmission rates were up to 95.45% in Culex tritaeniorhynchus, 28% in Cx. quinquefasciatus and 9.09% in Aedes aegypti. Viral particles in the saliva were confirmed infectious by C6/36 cell culture. An. gambiae was able to disseminate DKV only at 20 days post-infection. This study shows that Culex mosquitoes are more competent than Ae. aegypti for DKV, while Anopheles gambiae is not likely a competent vector.
Collapse
Affiliation(s)
- Alioune Gaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Moïse Diagne
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - El Hadji Ndiaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Marie Henriette Dior Ndione
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal.,Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Martin Faye
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh Talla
- Epidemiology of infectious diseases unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Yamar Ba
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Pascal Handschumacher
- Aix Marseille Univ, INSERM, IRD, UMR SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France
| | - Ousmane Faye
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
59
|
Fredericks AC, Russell TA, Wallace LE, Davidson AD, Fernandez-Sesma A, Maringer K. Aedes aegypti (Aag2)-derived clonal mosquito cell lines reveal the effects of pre-existing persistent infection with the insect-specific bunyavirus Phasi Charoen-like virus on arbovirus replication. PLoS Negl Trop Dis 2019; 13:e0007346. [PMID: 31693659 PMCID: PMC6860454 DOI: 10.1371/journal.pntd.0007346] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/18/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aedes aegypti is a vector mosquito of major public health importance, transmitting arthropod-borne viruses (arboviruses) such as chikungunya, dengue, yellow fever and Zika viruses. Wild mosquito populations are persistently infected at high prevalence with insect-specific viruses that do not replicate in vertebrate hosts. In experimental settings, acute infections with insect-specific viruses have been shown to modulate arbovirus infection and transmission in Ae. aegypti and other vector mosquitoes. However, the impact of persistent insect-specific virus infections, which arboviruses encounter more commonly in nature, has not been investigated extensively. Cell lines are useful models for studying virus-host interactions, however the available Ae. aegypti cell lines are poorly defined and heterogenous cultures. Methodology/Principle findings We generated single cell-derived clonal cell lines from the commonly used Ae. aegypti cell line Aag2. Two of the fourteen Aag2-derived clonal cell lines generated harboured markedly and consistently reduced levels of the insect-specific bunyavirus Phasi Charoen-like virus (PCLV) known to persistently infect Aag2 cells. In contrast to studies with acute insect-specific virus infections in cell culture and in vivo, we found that pre-existing persistent PCLV infection had no major impact on the replication of the flaviviruses dengue virus and Zika virus, the alphavirus Sindbis virus, or the rhabdovirus vesicular stomatitis virus. We also performed a detailed characterisation of the morphology, transfection efficiency and immune status of our Aag2-derived clonal cell lines, and have made a clone that we term Aag2-AF5 available to the research community as a well-defined cell culture model for arbovirus-vector interaction studies. Conclusions/Significance Our findings highlight the need for further in vivo studies that more closely recapitulate natural arbovirus transmission settings in which arboviruses encounter mosquitoes harbouring persistent rather than acute insect-specific virus infections. Furthermore, we provide the well-characterised Aag2-derived clonal cell line as a valuable resource to the arbovirus research community. Mosquito-borne viruses usually only infect humans through the bite of a mosquito that carries the virus. Viruses transmitted by the ‘yellow fever mosquito’ Aedes aegypti, including dengue virus, Zika virus, yellow fever virus and chikungunya virus, are causing an ever-increasing number of human disease cases globally. Mosquito-borne viruses have to infect and replicate inside the mosquito before they are transmitted to humans, and the presence of other infectious agents can change the efficiency of virus transmission. Mosquitoes are known to be infected with ‘insect-specific viruses’ that only infect mosquitoes and cannot cause human disease. We have shown here that in laboratory cell cultures derived from the Aedes aegypti mosquito, pre-existing infection with an insect-specific virus called Phasi Charoen-like virus does not affect the infection and growth of the mosquito-borne viruses dengue virus, Zika virus, Sindbis virus or vesicular stomatitis virus. Our research provides important new insights into whether and how insect-specific viruses may affect mosquito-borne virus replication. Ultimately, this information could inform ongoing research into whether insect-specific viruses could be used to prevent the transmission of mosquito-borne viruses to reduce global disease burdens.
Collapse
Affiliation(s)
- Anthony C. Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tiffany A. Russell
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louisa E. Wallace
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (AF-S); (KM)
| | - Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (AF-S); (KM)
| |
Collapse
|
60
|
Öhlund P, Hayer J, Lundén H, Hesson JC, Blomström AL. Viromics Reveal a Number of Novel RNA Viruses in Swedish Mosquitoes. Viruses 2019; 11:v11111027. [PMID: 31694175 PMCID: PMC6893623 DOI: 10.3390/v11111027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Metagenomic studies of mosquitoes have revealed that their virome is far more diverse and includes many more viruses than just the pathogenic arboviruses vectored by mosquitoes. In this study, the virome of 953 female mosquitoes collected in the summer of 2017, representing six mosquito species from two geographic locations in Mid-Eastern Sweden, were characterized. In addition, the near-complete genome of nine RNA viruses were characterized and phylogenetically analysed. These viruses showed association to the viral orders Bunyavirales, Picornavirales, Articulavirales, and Tymovirales, and to the realm Ribovira. Hence, through this study, we expand the knowledge of the virome composition of different mosquito species in Sweden. In addition, by providing viral reference genomes from wider geographic regions and different mosquito species, future in silico recognition and assembly of viral genomes in metagenomic datasets will be facilitated.
Collapse
Affiliation(s)
- Pontus Öhlund
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden; (H.L.); (A.-L.B.)
- Correspondence: ; Tel.: +46-18-672-409
| | - Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SLU-Global Bioinformatics Centre, Box 7023, 750 07 Uppsala, Sweden;
| | - Hanna Lundén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden; (H.L.); (A.-L.B.)
| | - Jenny C. Hesson
- Department of Medical Biochemistry and Microbiology/Zoonosis Science Center, Uppsala University, Box 582, 751 23 Uppsala, Sweden;
| | - Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden; (H.L.); (A.-L.B.)
| |
Collapse
|
61
|
Fredericks AC, Russell TA, Wallace LE, Davidson AD, Fernandez-Sesma A, Maringer K. Aedes aegypti (Aag2)-derived clonal mosquito cell lines reveal the effects of pre-existing persistent infection with the insect-specific bunyavirus Phasi Charoen-like virus on arbovirus replication. PLoS Negl Trop Dis 2019; 13:e0007346. [PMID: 31693659 DOI: 10.1101/596205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/18/2019] [Accepted: 10/24/2019] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Aedes aegypti is a vector mosquito of major public health importance, transmitting arthropod-borne viruses (arboviruses) such as chikungunya, dengue, yellow fever and Zika viruses. Wild mosquito populations are persistently infected at high prevalence with insect-specific viruses that do not replicate in vertebrate hosts. In experimental settings, acute infections with insect-specific viruses have been shown to modulate arbovirus infection and transmission in Ae. aegypti and other vector mosquitoes. However, the impact of persistent insect-specific virus infections, which arboviruses encounter more commonly in nature, has not been investigated extensively. Cell lines are useful models for studying virus-host interactions, however the available Ae. aegypti cell lines are poorly defined and heterogenous cultures. METHODOLOGY/PRINCIPLE FINDINGS We generated single cell-derived clonal cell lines from the commonly used Ae. aegypti cell line Aag2. Two of the fourteen Aag2-derived clonal cell lines generated harboured markedly and consistently reduced levels of the insect-specific bunyavirus Phasi Charoen-like virus (PCLV) known to persistently infect Aag2 cells. In contrast to studies with acute insect-specific virus infections in cell culture and in vivo, we found that pre-existing persistent PCLV infection had no major impact on the replication of the flaviviruses dengue virus and Zika virus, the alphavirus Sindbis virus, or the rhabdovirus vesicular stomatitis virus. We also performed a detailed characterisation of the morphology, transfection efficiency and immune status of our Aag2-derived clonal cell lines, and have made a clone that we term Aag2-AF5 available to the research community as a well-defined cell culture model for arbovirus-vector interaction studies. CONCLUSIONS/SIGNIFICANCE Our findings highlight the need for further in vivo studies that more closely recapitulate natural arbovirus transmission settings in which arboviruses encounter mosquitoes harbouring persistent rather than acute insect-specific virus infections. Furthermore, we provide the well-characterised Aag2-derived clonal cell line as a valuable resource to the arbovirus research community.
Collapse
Affiliation(s)
- Anthony C Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tiffany A Russell
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louisa E Wallace
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
62
|
Duggal NK, Langwig KE, Ebel GD, Brault AC. On the Fly: Interactions Between Birds, Mosquitoes, and Environment That Have Molded West Nile Virus Genomic Structure Over Two Decades. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1467-1474. [PMID: 31549720 PMCID: PMC7182917 DOI: 10.1093/jme/tjz112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 05/15/2023]
Abstract
West Nile virus (WNV) was first identified in North America almost 20 yr ago. In that time, WNV has crossed the continent and established enzootic transmission cycles, resulting in intermittent outbreaks of human disease that have largely been linked with climatic variables and waning avian seroprevalence. During the transcontinental dissemination of WNV, the original genotype has been displaced by two principal extant genotypes which contain an envelope mutation that has been associated with enhanced vector competence by Culex pipiens L. (Diptera: Culicidae) and Culex tarsalis Coquillett vectors. Analyses of retrospective avian host competence data generated using the founding NY99 genotype strain have demonstrated a steady reduction in viremias of house sparrows over time. Reciprocally, the current genotype strains WN02 and SW03 have demonstrated an inverse correlation between house sparrow viremia magnitude and the time since isolation. These data collectively indicate that WNV has evolved for increased avian viremia while house sparrows have evolved resistance to the virus such that the relative host competence has remained constant. Intrahost analyses of WNV evolution demonstrate that selection pressures are avian species-specific and purifying selection is greater in individual birds compared with individual mosquitoes, suggesting that the avian adaptive and/or innate immune response may impose a selection pressure on WNV. Phylogenomic, experimental evolutionary systems, and models that link viral evolution with climate, host, and vector competence studies will be needed to identify the relative effect of different selective and stochastic mechanisms on viral phenotypes and the capacity of newly evolved WNV genotypes for transmission in continuously changing landscapes.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
- Corresponding author, e-mail:
| |
Collapse
|
63
|
Maia LMS, Pinto AZDL, Carvalho MSD, Melo FLD, Ribeiro BM, Slhessarenko RD. Novel Viruses in Mosquitoes from Brazilian Pantanal. Viruses 2019; 11:v11100957. [PMID: 31627274 PMCID: PMC6832572 DOI: 10.3390/v11100957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/25/2023] Open
Abstract
Viruses are ubiquitous and diverse microorganisms arising as a result of interactions within their vertebrate and invertebrate hosts. Here we report the presence of different viruses in the salivary glands of 1657 mosquitoes classified over 28 culicinae species from the North region of the Brazilian Pantanal wetland through metagenomics, viral isolation, and RT-PCR. In total, 12 viruses were found, eight putative novel viruses with relatively low similarity with pre-existing species of viruses within their families, named Pirizal iflavirus, Furrundu phlebovirus, Pixé phlebovirus, Guampa vesiculovirus, Chacororé flavivirus, Rasqueado orbivirus, Uru chuvirus, and Bororo circovirus. We also found the already described Lobeira dielmorhabdovirus, Sabethes flavivirus, Araticum partitivirus, and Murici totivirus. Therefore, these findings underscore the vast diversity of culicinae and novel viruses yet to be explored in Pantanal, the largest wetland on the planet.
Collapse
Affiliation(s)
- Laura Marina Siqueira Maia
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Andressa Zelenski de Lara Pinto
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Michellen Santos de Carvalho
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Fernando Lucas de Melo
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brazil.
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brazil.
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
64
|
Azar SR, Weaver SC. Vector Competence: What Has Zika Virus Taught Us? Viruses 2019; 11:E867. [PMID: 31533267 PMCID: PMC6784050 DOI: 10.3390/v11090867] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
The unprecedented outbreak of Zika virus (ZIKV) infection in the Americas from 2015 to 2017 prompted the publication of a large body of vector competence data in a relatively short period of time. Although differences in vector competence as a result of disparities in mosquito populations and viral strains are to be expected, the limited competence of many populations of the urban mosquito vector, Aedes aegypti, from the Americas (when its susceptibility is viewed relative to other circulating/reemerging mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), and chikungunya viruses (CHIKV)) has proven a paradox for the field. This has been further complicated by the lack of standardization in the methodologies utilized in laboratory vector competence experiments, precluding meta-analyses of this large data set. As the calls for the standardization of such studies continue to grow in number, it is critical to examine the elements of vector competence experimental design. Herein, we review the various techniques and considerations intrinsic to vector competence studies, with respect to contemporary findings for ZIKV, as well as historical findings for other arboviruses, and discuss potential avenues of standardization going forward.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
65
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
66
|
Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and Their Microbiota: A Review. Front Microbiol 2019; 10:2036. [PMID: 31551973 PMCID: PMC6738348 DOI: 10.3389/fmicb.2019.02036] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Aedes spp. are a major public health concern due to their ability to be efficient vectors of dengue, Chikungunya, Zika, and other arboviruses. With limited vaccines available and no effective therapeutic treatments against arboviruses, the control of Aedes spp. populations is currently the only strategy to prevent disease transmission. Host-associated microbes (i.e., microbiota) recently emerged as a promising field to be explored for novel environmentally friendly vector control strategies. In particular, gut microbiota is revealing its impact on multiple aspects of Aedes spp. biology, including vector competence, thus being a promising target for manipulation. Here we describe the technological advances, which are currently expanding our understanding of microbiota composition, abundance, variability, and function in the two main arboviral vectors, the mosquitoes Aedes aegypti and Aedes albopictus. Aedes spp. microbiota is described in light of its tight connections with the environment, with which mosquitoes interact during their various developmental stages. Unraveling the dynamic interactions among the ecology of the habitat, the mosquito and the microbiota have the potential to uncover novel physiological interdependencies and provide a novel perspective for mosquito control.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
67
|
Moraes OS, Cardoso BF, Pacheco TA, Pinto AZL, Carvalho MS, Hahn RC, Burlamaqui TCT, Oliveira LF, Oliveira RS, Vasconcelos JM, Lemos PS, Nunes MRT, Slhessarenko RD. Natural infection by Culex flavivirus in Culex quinquefasciatus mosquitoes captured in Cuiabá, Mato Grosso Mid-Western Brazil. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:397-406. [PMID: 30887540 DOI: 10.1111/mve.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
New species of insect-specific viruses (ISV) have been reported worldwide. In the present study, the complete genome of Culex flavivirus (CxFV) and partial sequences of other ISVs in Culex quinquefasciatus Say 1823 females (n = 3425) sampled in 200 urban areas census tracts of Cuiaba, state of Mato Grosso, were identified via reverse transcriptase-polymerase chain reaction for a NS5 region of flaviviruses, nucleotide and high-throughput sequencing, and viral isolation in C6/36 cells. CxFV was detected in 16 of 403 mosquito pools; sequences found in the study presented a high similarity with isolates from São Paulo, Brazil and other countries in Latin American that belong to genotype II, supporting the geographical influence on CxFV evolution. The monthly maximum likelihood estimation for CxFV ranged from 1.81 to 9.94 per 1000 mosquitoes. In addition to the CxFV complete genome, one pool contained an ORF1 sequence (756 bp) that belongs to a novel Negevirus from the Sandewavirus supergroup most similar to the Santana virus (77.1%) and another pool presented an RNA-dependent RNA polymerase sequence (1081 bp) of a novel Rhabdovirus most similar to Wuhan mosquito virus 9 (44%). After three passages in C6/36 cells, only CxFV was isolated from these co-infected pools. The importance of ISVs relies on their possible ability to interfere with arbovirus replication in competent vectors.
Collapse
Affiliation(s)
- O S Moraes
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - B F Cardoso
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T A Pacheco
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - A Z L Pinto
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - M S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - R C Hahn
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T C T Burlamaqui
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - L F Oliveira
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - R S Oliveira
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - J M Vasconcelos
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - P S Lemos
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - M R T Nunes
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - R D Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
68
|
Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, Yuan Z. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007-2017). Rev Med Virol 2019; 29:e2079. [PMID: 31410931 DOI: 10.1002/rmv.2079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
In the last decade, virus hunting and discovery has gained pace. This achievement has been driven by three major factors: (a) advancements in sequencing technologies, (b) scaled-up routine arbovirus surveillance strategies, and (c) the "hunt" for emerging pathogens and novel viruses. Many novel viruses have been discovered from a myriad of hosts, vectors, and environmental samples. To help promote understanding of the global diversity and distribution of mosquito-associated viruses and facilitate future studies, we review mosquito-associated viruses discovered between years 2007 and 2017, across the world. In the analyzed period, novel mosquito-associated viruses belonging to 25 families and a general group of unclassified viruses were categorized. The top three discovered novel mosquito-associated viruses belonged to families Flaviviridae (n=32), Rhabdoviridae (n=16), and Peribunyaviridae (n=14). Also, 67 unclassified viruses were reported. Majority of these novel viruses were identified from Culex spp, Anopheles spp, Aedes spp, and Mansonia spp mosquitoes, respectively. Notably, the number of these discovered novels is not representative of intercontinental virus diversity but rather is influenced by the number of studies done in the study period. Some of these newly discovered mosquito-associated viruses have medical significance, either directly or indirectly. For instance, in the study period, 14 novel mosquito-borne viruses that infect mammalian cells in vitro were reported. These viruses pose a danger to the global health security on emerging viral diseases. On the other hand, some of the newly discovered insect specific viruses described herein have potential application as future biocontrol and vaccine agents against known pathogenic arboviruses. Overall, this review outlines the crucial role played by mosquitoes as viral vectors in the global virosphere.
Collapse
Affiliation(s)
- Evans Atoni
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhao
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Samuel Karungu
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Han Xia
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
69
|
Heu K, Gendrin M. [Mosquito microbiota and its influence on disease vectorial transmission]. Biol Aujourdhui 2019; 212:119-136. [PMID: 30973141 DOI: 10.1051/jbio/2019003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/23/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are found worldwide. Around 100 among 3500 mosquito species are known to be vectors of parasites and viruses, responsible for infectious diseases including malaria and dengue. Mosquitoes host diverse microbial communities that influence disease transmission, either by direct interference or via affecting host immunity and physiology. These microbial communities are present within diverse tissues, including the digestive tract, and vary depending on the sex of the mosquito, its developmental stage, and ecological factors. This review summarizes the current knowledge about the mosquito microbiota, defined as a community of commensal, symbiotic or pathogenic microbes harboured by a host. We first describe the current knowledge on the diversity of the microbiota, that includes bacteria, fungi, parasites and viruses and on its modes of acquisition throughout the mosquito life cycle. We then focus on microbial interactions within the mosquito gut, which notably affect vector competence, and on host-microbe interactions affecting mosquito fitness. Finally, we discuss current or potential methods based on the use of microbes or microbial products to interfere with pathogen transmission or to reduce mosquito lifespan and reproduction.
Collapse
Affiliation(s)
- Katy Heu
- Groupe « Microbiote des Insectes Vecteurs », Institut Pasteur de la Guyane, Cayenne, Guyane, France
| | - Mathilde Gendrin
- Groupe « Microbiote des Insectes Vecteurs », Institut Pasteur de la Guyane, Cayenne, Guyane, France - Département « Parasites et Insectes Vecteurs », Institut Pasteur, Paris, France
| |
Collapse
|
70
|
Göertz GP, Miesen P, Overheul GJ, van Rij RP, van Oers MM, Pijlman GP. Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses 2019; 11:v11030271. [PMID: 30889941 PMCID: PMC6466260 DOI: 10.3390/v11030271] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Small RNA mediated responses are essential for antiviral defence in mosquitoes, however, they appear to differ per virus-vector combination. To further investigate the diversity of small RNA responses against viruses in mosquitoes, we applied a small RNA deep sequencing approach on five mosquito cell lines: Culex tarsalis CT cells, Aedes albopictus U4.4 and C6/36 cells, Ae. aegypti Aag2 cells (cleared from cell fusing agent virus and Culex Y virus (CYV) by repetitive dsRNA transfections) and Ae. pseudoscutellaris AP-61 cells. De novo assembly of small RNAs revealed the presence of Phasi Charoen-like virus (PCLV), Calbertado virus, Flock House virus and a novel narnavirus in CT cells, CYV in U4.4 cells, and PCLV in Aag2 cells, whereas no insect-specific viruses (ISVs) were detected in C6/36 and AP-61 cells. Next, we investigated the small RNA responses to the identified ISVs and to acute infection with the arthropod-borne West Nile virus (WNV). We demonstrate that AP-61 and C6/36 cells do not produce siRNAs to WNV infection, suggesting that AP-61, like C6/36, are Dicer-2 deficient. CT cells produced a strong siRNA response to the persistent ISVs and acute WNV infection. Interestingly, CT cells also produced viral PIWI-interacting (pi)RNAs to PCLV, but not to WNV or any of the other ISVs. In contrast, in U4.4 and Aag2 cells, WNV siRNAs, and pi-like RNAs without typical ping-pong piRNA signature were observed, while this signature was present in PCLV piRNAs in Aag2 cells. Together, our results demonstrate that mosquito small RNA responses are strongly dependent on both the mosquito cell type and/or the mosquito species and family of the infecting virus.
Collapse
Affiliation(s)
- Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
71
|
Ciota AT. The role of co-infection and swarm dynamics in arbovirus transmission. Virus Res 2019; 265:88-93. [PMID: 30879977 DOI: 10.1016/j.virusres.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted by hematophagous insects, primarily mosquitoes. The geographic range and prevalence of mosquito-borne viruses and their vectors has dramatically increased over the last 50 years. As a result, the most medically important arboviurses now co-exist in many regions, resulting in an increased frequency of co-infections in hosts and vectors. In addition to concurrent infections with human pathogens, mosquito-only viruses and/or enzootic viruses not associated with human disease are ubiquitous in mosquito populations. Moreover, mosquito-borne viruses are largely RNA viruses that exist within individual hosts as a diverse and dynamic swarm of closely related genotypes. Interactions among co-infecting viruses and genotypes can have profound effects on virulence, fitness and evolution. Here, we review our understanding of how these complex interactions influence transmission of mosquito-borne viruses, focusing on the often-neglected virus interactions in the mosquito vector, and identify gaps in our knowledge that should guide future studies.
Collapse
Affiliation(s)
- Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.
| |
Collapse
|
72
|
Öhlund P, Lundén H, Blomström AL. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019; 55:127-137. [PMID: 30632016 PMCID: PMC6458977 DOI: 10.1007/s11262-018-01629-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
The advancement in high-throughput sequencing technology and bioinformatics tools has spurred a new age of viral discovery. Arthropods is the largest group of animals and has shown to be a major reservoir of different viruses, including a group known as insect-specific viruses (ISVs). The majority of known ISVs have been isolated from mosquitoes and shown to belong to viral families associated with animal arbovirus pathogens, such as Flaviviridae, Togaviridae and Phenuiviridae. These insect-specific viruses have a strict tropism and are unable to replicate in vertebrate cells, these properties are interesting for many reasons. One is that these viruses could potentially be utilised as biocontrol agents using a similar strategy as for Wolbachia. Mosquitoes infected with the viral agent could have inferior vectorial capacity of arboviruses resulting in a decrease of circulating arboviruses of public health importance. Moreover, insect-specific viruses are thought to be ancestral to arboviruses and could be used to study the evolution of the switch from single-host to dual-host. In this review, we discuss new discoveries and hypothesis in the field of arboviruses and insect-specific viruses.
Collapse
Affiliation(s)
- Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Hanna Lundén
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|
73
|
Cholleti H, Berg M, Hayer J, Blomström AL. Vector-borne viruses and their detection by viral metagenomics. Infect Ecol Epidemiol 2018. [DOI: 10.1080/20008686.2018.1553465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Harindranath Cholleti
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juliette Hayer
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
74
|
Gravina HD, Suzukawa AA, Zanluca C, Cardozo Segovia FM, Tschá MK, Martins da Silva A, Faoro H, da Silva Ribeiro R, Mendoza Torres LP, Rojas A, Ferrerira L, Costa Ribeiro MCVD, Delfraro A, Duarte Dos Santos CN. Identification of insect-specific flaviviruses in areas of Brazil and Paraguay experiencing endemic arbovirus transmission and the description of a novel flavivirus infecting Sabethes belisarioi. Virology 2018; 527:98-106. [PMID: 30476788 DOI: 10.1016/j.virol.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/26/2022]
Abstract
Viral infection was examined with pan-flavivirus and pan-alphavirus sets of primers in mosquitoes collected in four South American regions with confirmed pathogenic arbovirus circulation. Positive pools for flavivirus infection were sequenced and screened for specific arboviruses, which were not detected. However, NS5 gene sequencing showed that most sequences corresponded to the insect-specific Culex flavivirus. One sequence retrieved from an Aedes albopictus pool grouped with the insect-specific Aedes flavivirus and two Sabethes belisarioi pools were infected by a previously unknown flavivirus, tentatively named Sabethes flavivirus (SbFV). Phylogenetic inference placed SbFV as ancestral to a clade formed by Culiseta flavivirus, Mercadeo, and Calbertado. SbFV polyprotein showed an average aminoacidic identity of 51% in comparison to these flaviviruses. In vitro studies suggest that SbFV infects insect cells, but not vertebrate cells, therefore, we propose it as a new insect-specific flavivirus. These results highlight the wide distribution of insect-specific flaviviruses concomitant with the circulation of emergent arboviruses.
Collapse
Affiliation(s)
| | - Andreia Akemi Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, PR, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, PR, Brazil
| | - Fatima María Cardozo Segovia
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción (UNA), Paraguay
| | - Marcel Kruchelski Tschá
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, PR, Brazil
| | - Allan Martins da Silva
- Laboratório Central, Secretaria de Estado da Saúde (SESA), São José dos Pinhais, PR, Brazil
| | - Helisson Faoro
- Laboratório de Regulação da Expressão Gênica (LRGEN), Instituto Carlos Chagas/Fiocruz-PR, Curitiba, PR, Brazil
| | - Ricardo da Silva Ribeiro
- Laboratório de Vigilância Ambiental, Centro de Vigilância em Saúde Ambiental (CVSA), Secretaria de Estado de Saúde (SESA), Vitória, ES, Brazil
| | - Laura Patricia Mendoza Torres
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción (UNA), Paraguay
| | - Alejandra Rojas
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción (UNA), Paraguay
| | - Luis Ferrerira
- Servicio Nacional de Erradicación del Paludismo (SENEPA), Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | | | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | | |
Collapse
|
75
|
Romo H, Kenney JL, Blitvich BJ, Brault AC. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg Microbes Infect 2018; 7:181. [PMID: 30429457 PMCID: PMC6235874 DOI: 10.1038/s41426-018-0180-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022]
Abstract
Previous studies demonstrated an insect-specific flavivirus, Nhumirim virus (NHUV), can suppress growth of West Nile virus (WNV) and decrease transmission rates in NHUV/WNV co-inoculated Culex quinquefasciatus. To assess whether NHUV might interfere with transmission of other medically important flaviviruses, the ability of NHUV to suppress viral growth of Zika virus (ZIKV) and dengue-2 virus (DENV-2) was assessed in Aedes albopictus cells. Significant reductions in ZIKV (100,000-fold) and DENV-2 (10,000-fold) were observed in either cells concurrently inoculated with NHUV or pre-inoculated with NHUV. In contrast, only a transient 10-fold titer reduction was observed with an alphavirus, chikungunya virus. Additionally, restricted in vitro mosquito growth of ZIKV was associated with lowered levels of intracellular ZIKV RNA in NHUV co-inoculated cultures. To assess whether NHUV could modulate vector competence for ZIKV, NHUV-inoculated Aedes aegypti were orally exposed to ZIKV. NHUV-inoculated mosquitoes demonstrated significantly lower ZIKV infection rates (18%) compared to NHUV unexposed mosquitoes (51%) (p < 0.002). Similarly, lower ZIKV transmission rates were observed for NHUV/ZIKV dually intrathoracically inoculated mosquitoes (41%) compared to ZIKV only inoculated mosquitoes (78%) (p < 0.0001), suggesting that NHUV can interfere with both midgut infection and salivary gland infection of ZIKV in Ae. aegypti. These results indicate NHUV could be utilized to model superinfection exclusion mechanism(s) and to study the potential for the mosquito virome to impact transmission of medically important flaviviruses.
Collapse
Affiliation(s)
- Hannah Romo
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Joan L Kenney
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA.
| |
Collapse
|
76
|
Abstract
Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.
Collapse
|
77
|
Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis 2018; 9:1364-1371. [PMID: 29886187 PMCID: PMC6052676 DOI: 10.1016/j.ttbdis.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom; NIHR Health Protection Research Institute in Emerging and Zoonotic Infections, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, United Kingdom.
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| |
Collapse
|
78
|
Kenney JL, Anishchenko M, Hermance M, Romo H, Chen CI, Thangamani S, Brault AC. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence. Vector Borne Zoonotic Dis 2018; 18:371-381. [PMID: 29782238 DOI: 10.1089/vbz.2017.2224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.
Collapse
Affiliation(s)
- Joan L Kenney
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Michael Anishchenko
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Meghan Hermance
- 2 Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas
| | - Hannah Romo
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Ching-I Chen
- 3 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California , Davis, Davis, California
| | - Saravanan Thangamani
- 2 Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas
| | - Aaron C Brault
- 1 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention , Fort Collins, Colorado
| |
Collapse
|
79
|
Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 2018; 518:406-413. [PMID: 29625404 DOI: 10.1016/j.virol.2018.03.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
Abstract
Aedes mosquitoes are vectors for many pathogenic viruses. Cell culture systems facilitate the investigation of virus growth in the mosquito vector. We found Zika virus (ZIKV) growth to be consistent in A. albopictus cells but hypervariable in A. aegypti cell lines. As a potential explanation of this variability, we tested the hypothesis that our cells harbored opportunistic viruses. We screened Aedes cell lines for the presence of insect specific viruses (ISVs), Cell-fusing agent virus (CFAV) and Phasi charoen-like virus (PCLV). PCLV was present in the ZIKV-growth-variable A. aegypti cell lines but absent in A. albopictus lines, suggesting that these ISVs may interfere with ZIKV growth. In support of this hypothesis, PCLV infection of CFAV-positive A. albopictus cells inhibited the growth of ZIKV, dengue virus and La Crosse virus. These data suggest ISV infection of cell lines can impact arbovirus growth leading to significant changes in cell permissivity to arbovirus infection.
Collapse
|
80
|
Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, Mavingui P, Valiente Moro C. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. MICROBIOME 2018; 6:49. [PMID: 29554951 PMCID: PMC5859429 DOI: 10.1186/s40168-018-0435-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
The holobiont concept was first developed for coral ecosystems but has been extended to multiple organisms, including plants and other animals. Studies on insect-associated microbial communities have produced strong evidence that symbiotic bacteria play a major role in host biology. However, the understanding of these symbiotic relationships has mainly been limited to phytophagous insects, while the role of host-associated microbiota in haematophagous insect vectors remains largely unexplored. Mosquitoes are a major global public health concern, with a concomitant increase in people at risk of infection. The global emergence and re-emergence of mosquito-borne diseases has led many researchers to study both the mosquito host and its associated microbiota. Although most of these studies have been descriptive, they have led to a broad description of the bacterial communities hosted by mosquito populations. This review describes key advances and progress in the field of the mosquito microbiota research while also encompassing other microbes and the environmental factors driving their composition and diversity. The discussion includes recent findings on the microbiota functional roles and underlines their interactions with the host biology and pathogen transmission. Insight into the ecology of multipartite interactions, we consider that conferring the term holobiont to the mosquito and its microbiota is useful to get a comprehensive understanding of the vector pathosystem functioning so as to be able to develop innovative and efficient novel vector control strategies.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Karima Zouache
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Colin Démichel
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Patrick Potier
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| |
Collapse
|
81
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
82
|
Guzman H, Contreras-Gutierrez MA, Travassos da Rosa APA, Nunes MRT, Cardoso JF, Popov VL, Young KI, Savit C, Wood TG, Widen SG, Watts DM, Hanley KA, Perera D, Fish D, Vasilakis N, Tesh RB. Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens. Am J Trop Med Hyg 2018; 98:410-419. [PMID: 29016330 PMCID: PMC5929187 DOI: 10.4269/ajtmh.17-0350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 11/19/2022] Open
Abstract
Three novel insect-specific flaviviruses, isolated from mosquitoes collected in Peru, Malaysia (Sarawak), and the United States, are characterized. The new viruses, designated La Tina, Kampung Karu, and Long Pine Key, respectively, are antigenically and phylogenetically more similar to the mosquito-borne flavivirus pathogens, than to the classical insect-specific viruses like cell fusing agent and Culex flavivirus. The potential implications of this relationship and the possible uses of these and other arbovirus-related insect-specific flaviviruses are reviewed.
Collapse
Affiliation(s)
- Hilda Guzman
- Department of Pathology and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Maria Angelica Contreras-Gutierrez
- Programa de Estudio y Control de Enfermedades Tropicales – PECET – SIU – Sede de Investigacion Universitaria – Universidad de Antioquia, Medellin, Colombia
| | - Amelia P. A. Travassos da Rosa
- Department of Pathology and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Marcio R. T. Nunes
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
| | - Jedson F. Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
- Postgraduate Program in Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
| | - Vsevolod L. Popov
- Department of Pathology and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Katherine I. Young
- Department of Biology, New Mexico State University, Las Cruces, New Mexico
| | - Chelsea Savit
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
- School of Public Health, University of Washington, Seattle, Washington
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas M. Watts
- U.S. Naval Medical Research Unit-6, Callao, Peru
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Durland Fish
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Nikos Vasilakis
- Department of Pathology and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Robert B. Tesh
- Department of Pathology and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
83
|
de Lara Pinto AZ, Santos de Carvalho M, de Melo FL, Ribeiro ALM, Morais Ribeiro B, Dezengrini Slhessarenko R. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil. PLoS One 2017; 12:e0187429. [PMID: 29117239 PMCID: PMC5678729 DOI: 10.1371/journal.pone.0187429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Viruses may represent the most diverse microorganisms on Earth. Novel viruses and variants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil. In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to viral RNA extraction, double-strand cDNA synthesis, random amplification and high-throughput sequencing, revealing the presence of seven insect-specific viruses, six of which represent new species of Rhabdoviridae (Lobeira virus), Chuviridae (Cumbaru and Croada viruses), Totiviridae (Murici virus) and Partitiviridae (Araticum and Angico viruses). In addition, two mosquito pools presented Kaiowa virus sequences that had already been reported in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-type Culicinae. Insect-specific viruses may present a broader diversity than previously imagined and future studies may address their possible role in mosquito vector competence.
Collapse
Affiliation(s)
- Andressa Zelenski de Lara Pinto
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Michellen Santos de Carvalho
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Fernando Lucas de Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Ana Lúcia Maria Ribeiro
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
- * E-mail:
| |
Collapse
|
84
|
Halbach R, Junglen S, van Rij RP. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense. CURRENT OPINION IN INSECT SCIENCE 2017; 22:16-27. [PMID: 28805635 DOI: 10.1016/j.cois.2017.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Recent virus discovery programs have identified an extensive reservoir of viruses in arthropods. It is thought that arthropod viruses, including mosquito-specific viruses, are ancestral to vertebrate-pathogenic arboviruses. Mosquito-specific viruses are restricted in vertebrate cells at multiple levels, including entry, RNA replication, assembly, and by the inability to replicate at high temperatures. Moreover, it is likely that the vertebrate immune system suppresses replication of these viruses. The evolution from single to dual-host tropism may also require changes in the course of infection in the mosquito host. In this review we explore the adaptive changes required for a switch from a mosquito-specific to a mosquito-borne transmission cycle.
Collapse
Affiliation(s)
- Rebecca Halbach
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany; German Centre for Infection Research (DZIF), Berlin, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
85
|
Contreras-Gutierrez MA, Guzman H, Thangamani S, Vasilakis N, Tesh RB. Experimental Infection with and Maintenance of Cell Fusing Agent Virus ( Flavivirus) in Aedes aegypti. Am J Trop Med Hyg 2017; 97:299-304. [PMID: 28719335 DOI: 10.4269/ajtmh.16-0987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During the past two decades, there has been a dramatic increase in the recognition and characterization of novel insect-specific flaviviruses (ISFVs). Some of these agents are closely related to important mosquito-borne flavivirus pathogens. Results of experimental studies suggest that mosquitoes and mosquito cell cultures infected with some ISFVs are refractory to superinfection with related flavivirus pathogens; and it has been proposed that ISFVs potentially could be used to alter the vector competence of mosquitoes and reduce transmission of specific flavivirus pathogens, such as dengue, West Nile, or Zika viruses. In order for an ISFV to be used in such a control strategy, the virus would have to be vertically transmitted at a high rate in the target vector population to insure its continued maintenance. This study compared the vertical transmission rates of an ISFV, cell fusing agent virus (CFAV), in two Aedes aegypti colonies: one naturally infected with CFAV and the other experimentally infected but previously free of the virus. CFAV filial infection rates in progeny of female mosquitoes from both colonies were > 90% after two generations of selection, indicating the feasibility of introducing an ISFV into a mosquito population. This and other considerations for evaluating the feasibility of using ISFVs as an arbovirus control strategy are discussed.
Collapse
Affiliation(s)
- Maria Angelica Contreras-Gutierrez
- Grupo de Investigacion en Sistematica Molecular (GSM), Facultad de Ciencias, Universidad Nacional de Colombia, Medellin, Colombia.,Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigacion Universitaria (SIU), Universidad de Antioquia, Medellin, Colombia
| | - Hilda Guzman
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Saravanan Thangamani
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Robert B Tesh
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
86
|
Abstract
Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces.
Collapse
|
87
|
Piyasena TBH, Setoh YX, Hobson-Peters J, Newton ND, Bielefeldt-Ohmann H, McLean BJ, Vet LJ, Khromykh AA, Hall RA. Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells. Sci Rep 2017; 7:2940. [PMID: 28592864 PMCID: PMC5462777 DOI: 10.1038/s41598-017-03120-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause significant human diseases. A novel group of insect-specific flaviviruses (ISFs), which only replicate in mosquitoes, have also been identified. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modified OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fibroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction.
Collapse
Affiliation(s)
- Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Yin X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
88
|
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 2017; 112:81-93. [PMID: 28177042 PMCID: PMC5293117 DOI: 10.1590/0074-02760160373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.
Collapse
Affiliation(s)
- Miguel A Saldaña
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX, USA
| | - Shivanand Hegde
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
| | - Grant L Hughes
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
- University of Texas Medical Branch, Institute for Human Infections and Immunity, Galveston, TX, USA
- University of Texas Medical Branch, Center for Biodefense and Emerging Infectious Disease, Galveston, TX, USA
- University of Texas Medical Branch, Center for Tropical Diseases, Galveston, TX, USA
| |
Collapse
|
89
|
Hall RA, Bielefeldt-Ohmann H, McLean BJ, O'Brien CA, Colmant AMG, Piyasena TBH, Harrison JJ, Newton ND, Barnard RT, Prow NA, Deerain JM, Mah MGKY, Hobson-Peters J. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens. Evol Bioinform Online 2017; 12:35-44. [PMID: 28096646 PMCID: PMC5226260 DOI: 10.4137/ebo.s40740] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction.
Collapse
Affiliation(s)
- Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Joshua M Deerain
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Marcus G K Y Mah
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
90
|
Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-Specific Viruses: A Historical Overview and Recent Developments. Adv Virus Res 2016; 98:119-146. [PMID: 28433051 DOI: 10.1016/bs.aivir.2016.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arthropod-borne viruses (arboviruses) have in recent years become a tremendous global health concern resulting in substantial human morbidity and mortality. With the widespread utilization of molecular technologies such as next-generation sequencing and the advancement of bioinformatics tools, a new age of viral discovery has commenced. Many of the novel agents being discovered in recent years have been isolated from mosquitoes and exhibit a highly restricted host range. Strikingly, these insect-specific viruses have been found to be members of viral families traditionally associated with human arboviral pathogens, including but not limited to the families Flaviviridae, Togaviridae, Reoviridae, and Bunyaviridae. These agents therefore present novel opportunities in the fields of viral evolution and viral/vector interaction and have tremendous potential as agents for biocontrol of vectors and or viruses of medical importance.
Collapse
Affiliation(s)
- Christopher M Roundy
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott C Weaver
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
91
|
Dietzgen RG, Mann KS, Johnson KN. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016; 8:E303. [PMID: 27834855 PMCID: PMC5127017 DOI: 10.3390/v8110303] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
92
|
Zhang G, Etebari K, Asgari S. Wolbachia suppresses cell fusing agent virus in mosquito cells. J Gen Virol 2016; 97:3427-3432. [PMID: 27902358 DOI: 10.1099/jgv.0.000653] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Flavivirus contains a large number of positive-sense ssRNA viruses. While some are transmitted by mosquitoes or other arthropods and are pathogenic to humans and animals (e.g. dengue and Zika viruses), some are insect-specific and do not replicate in vertebrate cells. These are known as insect-specific flaviviruses (ISFs). Cell fusing agent virus (CFAV) was the first described ISF, which was detected in an Aedes aegypti cell line, Aag2. Here, we investigated the effect of Wolbachia, a widespread endosymbiont of many insect species, that is known to block replication of several pathogenic flaviviruses, on CFAV. Our results demonstrated that, in mosquito cells, Wolbachia vastly suppresses replication of CFAV, with significantly less CFAV viral interfering small RNAs produced in the cells. However, removal of Wolbachia with tetracycline led to increased CFAV replication. These results suggest that Wolbachia is also able to suppress an ISF.
Collapse
Affiliation(s)
- Guagmei Zhang
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
93
|
Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique. PLoS One 2016; 11:e0162751. [PMID: 27682810 PMCID: PMC5040392 DOI: 10.1371/journal.pone.0162751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV). The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.
Collapse
|
94
|
Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK, Diclaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 2016; 498:288-299. [PMID: 27639161 DOI: 10.1016/j.virol.2016.07.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin J Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Lakin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | | | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Doug E Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
95
|
Hall-Mendelin S, McLean BJ, Bielefeldt-Ohmann H, Hobson-Peters J, Hall RA, van den Hurk AF. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit Vectors 2016; 9:414. [PMID: 27457250 PMCID: PMC4960669 DOI: 10.1186/s13071-016-1683-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022] Open
Abstract
Background Insect-specific viruses do not replicate in vertebrate cells, but persist in mosquito populations and are highly prevalent in nature. These viruses may naturally regulate the transmission of pathogenic vertebrate-infecting arboviruses in co-infected mosquitoes. Following the isolation of the first Australian insect-specific flavivirus (ISF), Palm Creek virus (PCV), we investigated routes of infection and transmission of this virus in key Australian arbovirus vectors and its impact on replication and transmission of West Nile virus (WNV). Methods Culex annulirostris, Aedes aegypti and Aedes vigilax were exposed to PCV, and infection, replication and transmission rates in individual mosquitoes determined. To test whether the virus could be transmitted vertically, progeny reared from eggs oviposited by PCV-inoculated Cx. annulirostris were analysed for the presence of PCV. To assess whether prior infection of mosquitoes with PCV could also suppress the transmission of pathogenic flaviviruses, PCV positive or negative Cx. annulirostris were subsequently exposed to WNV. Results No PCV-infected Cx. annulirostris were detected 16 days after feeding on an infectious blood meal. However, when intrathoracically inoculated with PCV, Cx. annulirostris infection rates were 100 %. Similar rates of infection were observed in Ae. aegypti (100 %) and Ae. vigilax (95 %). Notably, PCV was not detected in any saliva expectorates collected from any of these species. PCV was not detected in 1038 progeny reared from 59 PCV-infected Cx. annulirostris. After feeding on a blood meal containing 107 infectious units of WNV, significantly fewer PCV-infected Cx. annulirostris were infected or transmitted WNV compared to PCV negative mosquitoes. Immunohistochemistry revealed that PCV localized in the midgut epithelial cells, which are the first site of infection with WNV. Conclusions Our results indicate that PCV cannot infect Cx. annulirostris via the oral route, nor be transmitted in saliva or vertically to progeny. We also provide further evidence that prior infection with insect-specific viruses can regulate the infection and transmission of pathogenic arboviruses.
Collapse
Affiliation(s)
- Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, 4108, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, 4343, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, 4108, QLD, Australia.
| |
Collapse
|
96
|
RNA Structure Duplications and Flavivirus Host Adaptation. Trends Microbiol 2016; 24:270-283. [PMID: 26850219 DOI: 10.1016/j.tim.2016.01.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Flaviviruses include a highly diverse group of arboviruses with a global distribution and a high human disease burden. Most flaviviruses cycle between insects and vertebrate hosts; thus, they are obligated to use different cellular machinery for their replication and mount different mechanisms to evade specific antiviral responses. In addition to coding for viral proteins, the viral genome contains signals in RNA structures that govern the amplification of viral components and participate in triggering or evading antiviral responses. In this review, we focused on new information about host-specific functions of RNA structures present in the 3' untranslated region (3' UTR) of flavivirus genomes. Models and conservation patterns of RNA elements of distinct flavivirus ecological groups are revised. An intriguing feature of the 3' UTR of insect-borne flavivirus genomes is the conservation of complex RNA structure duplications. Here, we discuss new hypotheses of how these RNA elements specialize for replication in vertebrate and invertebrate hosts, and present new ideas associating the significance of RNA structure duplication, small subgenomic flavivirus RNA formation, and host adaptation.
Collapse
|
97
|
Misencik MJ, Grubaugh ND, Andreadis TG, Ebel GD, Armstrong PM. Isolation of a Novel Insect-Specific Flavivirus from Culiseta melanura in the Northeastern United States. Vector Borne Zoonotic Dis 2016; 16:181-90. [PMID: 26807512 DOI: 10.1089/vbz.2015.1889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genus Flavivirus includes a number of newly recognized viruses that infect and replicate only within mosquitoes. To determine whether insect-specific flaviviruses (ISFs) may infect Culiseta (Cs.) melanura mosquitoes, we screened pools of field-collected mosquitoes for virus infection by RT-PCR targeting conserved regions of the NS5 gene. NS5 nucleotide sequences amplified from Cs. melanura pools were genetically similar to other ISFs and most closely matched Calbertado virus from Culex tarsalis, sharing 68.7% nucleotide and 76.1% amino acid sequence identity. The complete genome of one virus isolate was sequenced to reveal a primary open reading frame (ORF) encoding a viral polyprotein characteristic of the genus Flavivirus. Phylogenetic analysis showed that this virus represents a distinct evolutionary lineage that belongs to the classical ISF group. The virus was detected solely in Cs. melanura pools, occurred in sampled populations from Connecticut, New York, New Hampshire, and Maine, and infected both adult and larval stages of the mosquito. Maximum likelihood estimate infection rates (MLE-IR) were relatively stable in overwintering Cs. melanura larvae collected monthly from November of 2012 through May of 2013 (MLE-IR = 0.7-2.1/100 mosquitoes) and in host-seeking females collected weekly from June through October of 2013 (MLE-IR = 3.8-11.5/100 mosquitoes). Phylogenetic analysis of viral sequences revealed limited genetic variation that lacked obvious geographic structure among strains in the northeastern United States. This new virus is provisionally named Culiseta flavivirus on the basis of its host association with Cs. melanura.
Collapse
Affiliation(s)
- Michael J Misencik
- 1 Center for Vector Biology and Zoonotic Diseases , The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Nathan D Grubaugh
- 2 Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University , Fort Collins, Colorado
| | - Theodore G Andreadis
- 1 Center for Vector Biology and Zoonotic Diseases , The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Gregory D Ebel
- 2 Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University , Fort Collins, Colorado
| | - Philip M Armstrong
- 1 Center for Vector Biology and Zoonotic Diseases , The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| |
Collapse
|
98
|
Kramer LD, Ciota AT. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol 2015; 15:112-8. [PMID: 26569343 DOI: 10.1016/j.coviro.2015.10.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
Abstract
The inter-relationship between mosquitoes and the viruses they transmit is complex. While previously understood barriers to infection and transmission remain valid, additional factors have been uncovered that suggest an 'arms race' between mosquito and virus. These include the mosquito microbiota and interplay between mosquito and viral genetics. Following an infectious blood meal, the mosquito mounts an immune and transcriptional response, leading to altered expression of multiple genes. These complex interactions, specific to vector and virus genotypes, combine with external influences, particularly temperature, to determine vector competence. The mosquito's response to the infecting agent may have consequences in terms of longevity, feeding behavior and/or fecundity. These factors, together with population density and the frequency of host contact determine vectorial capacity.
Collapse
Affiliation(s)
- Laura D Kramer
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA.
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
99
|
Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, Levis SC, Enria DA, Brault AC. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses 2015; 7:5801-12. [PMID: 26569286 PMCID: PMC4664984 DOI: 10.3390/v7112911] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022] Open
Abstract
Nhumirim virus (NHUV) is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV). This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M) mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUV and WNV, or solely with WNV as a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi), while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease.
Collapse
Affiliation(s)
- Silvina Goenaga
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino 2700, Argentina.
| | - Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Mark Delorey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Silvana C Levis
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino 2700, Argentina.
| | - Delia A Enria
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino 2700, Argentina.
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| |
Collapse
|
100
|
Viral Interference and Persistence in Mosquito-Borne Flaviviruses. J Immunol Res 2015; 2015:873404. [PMID: 26583158 PMCID: PMC4637105 DOI: 10.1155/2015/873404] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.
Collapse
|