51
|
Gooding AJ, Zhang B, Gunawardane L, Beard A, Valadkhan S, Schiemann WP. The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers. Oncogene 2019; 38:2020-2041. [PMID: 30467380 PMCID: PMC6430670 DOI: 10.1038/s41388-018-0586-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022]
Abstract
Disseminated breast cancer cells employ adaptive molecular responses following cytotoxic therapeutic insult which promotes their survival and subsequent outgrowth. Here we demonstrate that expression of the pro-metastatic lncRNA BORG (BMP/OP-Responsive Gene) is greatly induced within triple-negative breast cancer (TNBC) cells subjected to environmental and chemotherapeutic stresses commonly faced by TNBC cells throughout the metastatic cascade. This stress-mediated induction of BORG expression fosters the survival of TNBC cells and renders them resistant to the cytotoxic effects of doxorubicin both in vitro and in vivo. The chemoresistant traits of BORG depend upon its robust activation of the NF-κB signaling axis via a novel BORG-mediated feed-forward signaling loop, and via its ability to bind and activate RPA1. Indeed, genetic and pharmacologic inhibition of NF-κB signaling or the DNA-binding activity of RPA1 abrogates the pro-survival features of BORG and renders BORG-expressing TNBCs sensitive to doxorubicin-induced cytotoxicity. These findings suggest that therapeutic targeting of BORG or its downstream molecular effectors may provide a novel means to alleviate TNBC recurrence.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bing Zhang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lalith Gunawardane
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abigail Beard
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
52
|
SseL Deubiquitinates RPS3 to Inhibit Its Nuclear Translocation. Pathogens 2018; 7:pathogens7040086. [PMID: 30405005 PMCID: PMC6313570 DOI: 10.3390/pathogens7040086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/25/2022] Open
Abstract
Many Gram-negative bacterial pathogens use type III secretion systems to deliver virulence proteins (effectors) into host cells to counteract innate immunity. The ribosomal protein S3 (RPS3) guides NF-κB subunits to specific κB sites and plays an important role in the innate response to bacterial infection. Two E. coli effectors inhibit RPS3 nuclear translocation. NleH1 inhibits RPS3 phosphorylation by IKK-β, an essential aspect of the RPS3 nuclear translocation process. NleC proteolysis of p65 generates an N-terminal p65 fragment that competes for full-length p65 binding to RPS3, thus also inhibiting RPS3 nuclear translocation. Thus, E. coli has multiple mechanisms by which to block RPS3-mediated transcriptional activation. With this in mind, we considered whether other enteric pathogens also encode T3SS effectors that impact this important host regulatory pathway. Here we report that the Salmonella Secreted Effector L (SseL), which was previously shown to function as a deubiquitinase and inhibit NF-κB signaling, also inhibits RPS3 nuclear translocation by deubiquitinating this important host transcriptional co-factor. RPS3 deubiquitination by SseL was restricted to K63-linkages and mutating the active-site cysteine of SseL abolished its ability to deubiquitinate and subsequently inhibit RPS3 nuclear translocation. Thus, Salmonella also encodes at least one T3SS effector that alters RPS3 activities in the host nucleus.
Collapse
|
53
|
Hobbs S, Reynoso M, Geddis AV, Mitrophanov AY, Matheny RW. LPS-stimulated NF-κB p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep 2018; 6:e13914. [PMID: 30426723 PMCID: PMC6234144 DOI: 10.14814/phy2.13914] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
During injury and infection, inflammation is a response by macrophages to effect healing and repair. The kinetics of the responses of proinflammatory TNFα, anti-inflammatory IL-10, and inflammatory master regulator NF-κB elicited by lipopolysaccharide (LPS) may be critical determinants of the inflammatory response by macrophages; however, there is a lack of homogeneous kinetic data in this pathway. To address this gap, we used the RAW 264.7 macrophage cell line to define intracellular signaling kinetics and cytokine expression in cells treated with LPS for 15 min to 72 h. The abundance of IκBα was maximally reduced 45-min following LPS treatment, but expression increased at 10-h, reaching a maximum at 16 h. NF-κB phosphorylation was significantly increased 45-min following LPS treatment, maximal at 2-h, and decreased to basal levels by 6-h. Nuclear NF-κB expression was elevated 30-min following LPS treatment, maximal by 45-min, and returned to basal levels by 24-h. Binding of nuclear NF-κB to consensus oligonucleotide sequences followed a similar pattern to that observed for p-NF-κB, but lasted slightly longer. Following LPS treatment, TNFα mRNA expression began at 1-h, was maximal at 6-h, and decreased starting at 10-h. TNFα protein secretion in conditioned growth medium began at 4-h and was maximal by 16-h. IL-10 mRNA expression was induced by LPS at 10-h, and was maximal at 16-h. IL-10 protein secretion was induced at 16-h and was maximal at 24-h. Our data reveal the temporal kinetics of pro- and anti-inflammatory signaling events that may be important therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Stuart Hobbs
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Marinaliz Reynoso
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Alyssa V. Geddis
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Alexander Y. Mitrophanov
- DoD Biotechnology High Performance Computing Software Applications InstituteTelemedicine and Advanced Technology Research CenterU.S. Army Medical Research and Materiel CommandFt. DetrickMaryland
| | - Ronald W. Matheny
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| |
Collapse
|
54
|
Au-Yeung N, Horvath CM. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression. Cytokine Growth Factor Rev 2018; 44:11-17. [PMID: 30509403 DOI: 10.1016/j.cytogfr.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
In response to virus infections, a cell-autonomous, transcription-based antiviral program is engaged to create resistance, impair pathogen replication, and alert professional cells in innate and adaptive immunity. This dual phase antiviral program consists of type I interferon (IFN) production followed by the response to IFN signaling. Pathogen recognition leads to activation of IRF and NFκB factors that function independently and together to recruit cellular coactivators that remodel chromatin, modify histones and activate RNA polymerase II (Pol II) at target gene loci, including the well-characterized IFNβ enhanceosome. In the subsequent response to IFN, a receptor-mediated JAK-STAT signaling cascade directs the assembly of the IRF9-STAT1-STAT2 transcription factor complex called ISGF3, which recruits its own cohort of remodelers, coactivators, and Pol II machinery to activate transcription of a wide range of IFN-stimulated genes. Regulation of the IFN and antiviral gene regulatory networks is not only important for driving innate immune responses to infections, but also may inform treatment of a growing list of chronic diseases that are characterized by hyperactive and constitutive IFN and IFN-stimulated gene (ISG) expression. Here, gene-specific and genome-wide investigations of the chromatin landscape at IFN and ISGs is discussed in parallel with IRF- and STAT- dependent regulation of Pol II transcription.
Collapse
Affiliation(s)
- Nancy Au-Yeung
- Department of Molecular Biosciences, Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
55
|
Xu X, Li Y, Bharath SR, Ozturk MB, Bowler MW, Loo BZL, Tergaonkar V, Song H. Structural basis for reactivating the mutant TERT promoter by cooperative binding of p52 and ETS1. Nat Commun 2018; 9:3183. [PMID: 30093619 PMCID: PMC6085347 DOI: 10.1038/s41467-018-05644-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Transcriptional factors ETS1/2 and p52 synergize downstream of non-canonical NF-κB signaling to drive reactivation of the −146C>T mutant TERT promoter in multiple cancer types, but the mechanism underlying this cooperativity remains unknown. Here we report the crystal structure of a ternary p52/ETS1/−146C>T TERT promoter complex. While p52 needs to associate with consensus κB sites on the DNA to function during non-canonical NF-κB signaling, we show that p52 can activate the −146C>T TERT promoter without binding DNA. Instead, p52 interacts with ETS1 to form a heterotetramer, counteracting autoinhibition of ETS1. Analogous to observations with the GABPA/GABPB heterotetramer, the native flanking ETS motifs are required for sustained activation of the −146C>T TERT promoter by the p52/ETS1 heterotetramer. These observations provide a unifying mechanism for transcriptional activation by GABP and ETS1, and suggest that genome-wide targets of non-canonical NF-κB signaling are not limited to those driven by consensus κB sequences. Incessant telomere synthesis in cancer cells depends on specific mutations in the TERT promoter, enabling its activation by transcription factors ETS1 and p52. Here, the authors elucidate the structural basis for p52/ETS1 binding to mutant TERT, suggesting a general mechanism for TERT reactivation in cancer.
Collapse
Affiliation(s)
- Xueyong Xu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yinghui Li
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Mert Burak Ozturk
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, France.,Unit of Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, France
| | - Bryan Zong Lin Loo
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore. .,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001, SA, Australia.
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
56
|
Janus P, Szołtysek K, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Iwanaszko M, Braun R, Cockell S, Perkins ND, Kimmel M, Widlak P. Pro-inflammatory cytokine and high doses of ionizing radiation have similar effects on the expression of NF-kappaB-dependent genes. Cell Signal 2018; 46:23-31. [PMID: 29476964 DOI: 10.1016/j.cellsig.2018.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022]
Abstract
The NF-κB transcription factors are activated via diverse molecular mechanisms in response to various types of stimuli. A plethora of functions associated with specific sets of target genes could be regulated differentially by this factor, affecting cellular response to stress including an anticancer treatment. Here we aimed to compare subsets of NF-κB-dependent genes induced in cells stimulated with a pro-inflammatory cytokine and in cells damaged by a high dose of ionizing radiation (4 and 10 Gy). The RelA-containing NF-κB species were activated by the canonical TNFα-induced and the atypical radiation-induced pathways in human osteosarcoma cells. NF-κB-dependent genes were identified using the gene expression profiling (by RNA-Seq) in cells with downregulated RELA combined with the global profiling of RelA binding sites (by ChIP-Seq), with subsequent validation of selected candidates by quantitative PCR. There were 37 NF-κB-dependent protein-coding genes identified: in all cases RelA bound in their regulatory regions upon activation while downregulation of RELA suppressed their stimulus-induced upregulation, which apparently indicated the positive regulation mode. This set of genes included a few "novel" NF-κB-dependent species. Moreover, the evidence for possible negative regulation of ATF3 gene by NF-κB was collected. The kinetics of the NF-κB activation was slower in cells exposed to radiation than in cytokine-stimulated ones. However, subsets of NF-κB-dependent genes upregulated by both types of stimuli were essentially the same. Hence, one should expect that similar cellular processes resulting from activation of the NF-κB pathway could be induced in cells responding to pro-inflammatory cytokines and in cells where so-called "sterile inflammation" response was initiated by radiation-induced damage.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Szołtysek
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Gracjana Zając
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Walaszczyk
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Wiesława Widłak
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | - Marta Iwanaszko
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Rosemary Braun
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Simon Cockell
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | | | - Piotr Widlak
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
57
|
Bhargava P, Malik V, Liu Y, Ryu J, Kaul SC, Sundar D, Wadhwa R. Molecular Insights Into Withaferin-A-Induced Senescence: Bioinformatics and Experimental Evidence to the Role of NFκB and CARF. J Gerontol A Biol Sci Med Sci 2018; 74:183-191. [DOI: 10.1093/gerona/gly107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Vidhi Malik
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT)-Delhi, India
| | - Ye Liu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Jihoon Ryu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT)-Delhi, India
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
58
|
Zhou J, Chooi JY, Ching YQ, Quah JY, Toh SHM, Ng Y, Tan TZ, Chng WJ. NF-κB promotes the stem-like properties of leukemia cells by activation of LIN28B. World J Stem Cells 2018; 10:34-42. [PMID: 29707103 PMCID: PMC5919888 DOI: 10.4252/wjsc.v10.i4.34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To examine whether nuclear factor kappa B (NF-κB) activity regulates LIN28B expression and their roles in leukemia stem cell (LSC)-like properties.
METHODS We used pharmacological inhibitor and cell viability assays to examine the relation between NF-κB and LIN28B. Western blot and qRT-PCR was employed to determine their protein and mRNA levels. Luciferase reporter was constructed and applied to explore the transcriptional regulation of LIN28B. We manipulated LIN28B level in acute myeloid leukemia (AML) cells and investigated LSC-like properties with colony forming and serial replating assays.
RESULTS This study revealed the relationship between NF-κB and LIN28B in AML cells through drug inhibition and overexpression experiments. Notably, inhibition of NF-κB by pharmacological inhibitors reduced LIN28B expression and decreased cell proliferation. We demonstrated that NF-κB binds to the -819 to -811 region of LIN28B promoter, and transcriptionally regulates LIN28B expression. LIN28B protein was significantly elevated in NFκB1 transfected cells compared to vector control. Importantly, ectopic expression of LIN28B partially rescued the self-renewal capacity impaired by pharmacological inhibition of NF-κB activity.
CONCLUSION These results uncover a regulatory signaling, NF-κB/LIN28B, which plays a pivotal role in leukemia stem cell-like properties and it could serve as a promising intervening target for effective treatment of AML disease.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jessie Yiying Quah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yvonne Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
59
|
Mohammadi Saravle S, Ahmadi Hedayati M, Mohammadi E, Sheikhesmaeili F, Nikkhou B. Sirt1 Gene Expression and Gastric Epithelial Cells Tumor Stage in Patients with Helicobacter pylori Infection. Asian Pac J Cancer Prev 2018; 19:913-916. [PMID: 29693338 PMCID: PMC6031779 DOI: 10.22034/apjcp.2018.19.4.913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: The World Health Organization has categorized Helicobacter pylori as a carcinogen for gastric
cancer, which causes human mortality worldwide. A number of studies have shown that H. pylori affects cell signaling
in gastric epithelial cells and changes the expression of some proteins such as proinflammatory cytokines. Bacterial
infections may alter sirt1 and sirt2 genes expression in inflammatory tissues and cancer cells. In this study, sirt1 and
sirt2 genes expression in gastric cancers was surveyed with reference to H. pylori status. Methods: Stomach biopsies
were collected from 50 gastric cancer patients, 25 H. pylori-positive and 25 H. pylori-negative as determined by the
urea rapid test. Tumor grade was determined by a pathologist. After total RNA extraction from gastric cancer biopsy
samples and cDNA synthesis, sirt1 and sirt2 genes expression levels were determined by Real Time PCR and ΔΔCT
methods. Results: There was no statistically significant link between H. pylori infection and sirt1 (P<0.899) and sirt2
(P<0.169) genes expression in gastric epithelial cells. However, pathologic findings showed that there is a statistically
significant relationship between sirt1 gene expression and the tumor grade (P<0.024). Discussion: A statistically
significant association was found between sirt1 gene expression and tumor grade of gastric cancers that could be due
to effects on progression of cancer cells infected with H. pylori.
Collapse
Affiliation(s)
- Saman Mohammadi Saravle
- Liver and Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | | | | | | | | |
Collapse
|
60
|
Abstract
Recent research shows that extra-nuclear cell-free chromatin (cfCh) released from dying cells can freely enter into healthy cells and integrate into their genomes. Genomic integration of cfCh leads to dsDNA breaks and activation of inflammatory cytokines both of which occur concurrently with similar kinetics and that induction of inflammation can be abrogated by preventing DNA breaks with the use of cfCh inactivating agents. The proposal is put forward that inflammatory cytokines are a new family of DDR proteins that are activated following dsDNA breaks inflicted by genomic integration of cfCh.
Collapse
|
61
|
Mitkin NA, Muratova AM, Sharonov GV, Korneev KV, Sviriaeva EN, Mazurov D, Schwartz AM, Kuprash DV. p63 and p73 repress CXCR5 chemokine receptor gene expression in p53-deficient MCF-7 breast cancer cells during genotoxic stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1169-1178. [PMID: 29107083 DOI: 10.1016/j.bbagrm.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
Many types of chemotherapeutic agents induce of DNA-damage that is accompanied by activation of p53 tumor suppressor, a key regulator of tumor development and progression. In our previous study we demonstrated that p53 could repress CXCR5 chemokine receptor gene in MCF-7 breast cancer cells via attenuation of NFkB activity. In this work we aimed to determine individual roles of p53 family members in the regulation of CXCR5 gene expression under genotoxic stress. DNA-alkylating agent methyl methanesulfonate caused a reduction in CXCR5 expression not only in parental MCF-7 cells but also in MCF-7-p53off cells with CRISPR/Cas9-mediated inactivation of the p53 gene. Since p53 knockout was associated with elevated expression of its p63 and p73 homologues, we knocked out p63 using CRISPR/Cas9 system and knocked down p73 using specific siRNA. The CXCR5 promoter activity, CXCR5 expression and CXCL13-directed migration in MCF-7 cells with inactivation of all three p53 family genes were completely insensitive to genotoxic stress, while pairwise p53+p63 or p53+p73 inactivation resulted in partial effects. Using deletion analysis and site-directed mutagenesis, we demonstrated that effects of NFkB on the CXCR5 promoter inversely correlated with p63 and p73 levels. Thus, all three p53 family members mediate the effects of genotoxic stress on the CXCR5 promoter using the same mechanism associated with attenuation of NFkB activity. Understanding of this mechanism could facilitate prognosis of tumor responses to chemotherapy.
Collapse
Affiliation(s)
- Nikita A Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alisa M Muratova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; Department of Immunology, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia
| | - George V Sharonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia
| | - Kirill V Korneev
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; Department of Immunology, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia
| | - Ekaterina N Sviriaeva
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitriy Mazurov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Anton M Schwartz
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitry V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; Department of Immunology, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia.
| |
Collapse
|
62
|
Li Z, Zhang J, Mulholland M, Zhang W. mTOR activation protects liver from ischemia/reperfusion-induced injury through NF-κB pathway. FASEB J 2017; 31:3018-3026. [PMID: 28356345 DOI: 10.1096/fj.201601278r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
Hepatic steatosis renders liver more vulnerable to ischemia/reperfusion injury (IRI), which commonly occurs in transplantation, trauma, and liver resection. The underlying mechanism is not fully characterized. We aimed to clarify the role of mechanistic target of rapamycin (mTOR) signaling in hepatic ischemia/reperfusion injury (HIRI) in normal and steatotic liver using Alb-TSC1-/- (AT) and Alb-mTOR-/- (Am) transgenic mice. Steatotic liver induced by high-fat diet was more vulnerable to IRI. Activation of hepatic mTOR in AT mice decreased lipid accumulation attenuated HIRI as measured by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, circulating levels of alanine aminotransferase and lactate dehydrogenase, and inflammatory mediators such as monocyte chemoattractant protein 1 (MCP-1), TNF-α, and IL-6 and hepatic cleaved caspase 3 in mice fed either a normal chow diet or a high-fat diet. The effects of mTOR activation on hepatic cleaved caspase 3 were reversed by rapamycin, an inhibitor of mTOR signaling. Inhibition of hepatic mTOR in Am mice increased hepatic lipid deposition and HIRI. The increment in hepatic susceptibility to IRI was significantly attenuated by pretreatment with IKKβ inhibitor. Further, suppression of mTOR facilitated nuclear translocation of NF-κB p65. In conclusion, our study suggests that mTOR activity in hepatocytes decreases hepatic vulnerability to injury through a mechanism dependent on NF-κB proinflammatory cytokine signaling pathway in both normal and steatotic liver.-Li, Z., Zhang, J., Mulholland, M., Zhang, W. mTOR activation protects liver from ischemia/reperfusion-induced injury through NF-κB pathway.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jing Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA .,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
63
|
Xu W, Zeng S, Li M, Fan Z, Zhou B. Aggf1 attenuates hepatic inflammation and activation of hepatic stellate cells by repressing Ccl2 transcription. J Biomed Res 2017; 31:428-436. [PMID: 28958996 PMCID: PMC5706435 DOI: 10.7555/jbr.30.20160046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver injury represents a continuum of pathophysiological processes involving a complex interplay between hepatocytes, macrophages, and hepatic stellate cells. The mechanism whereby these intercellular interactions contribute to liver injury and fibrosis is not completely understood. We report here that angiogenic factor with G patch and FHA domains 1 (Aggf1) was downregulated in the livers of cirrhotic patients compared to healthy controls and in primary hepatocytes in response to carbon tetrachloride (CCl4) stimulation. Overexpression of Aggf1 attenuated macrophage chemotaxis. Aggf1 interacted with NF-κB to block its binding to theCcl2 gene promoter and repressed Ccl2 transcription in hepatocytes. Macrophages cultured in the conditioned media collected from Aggf1-overexpressing hepatocytes antagonized HSC activation. Taken together, our data illustrate a novel role for Aggf1 in regulating hepatic inflammation and provide insights on the development of interventional strategies against cirrhosis.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, Jiangsu 210029, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Min Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiwen Fan
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
64
|
Abstract
Glucocorticoid hormones (GC) regulate essential physiological functions including energy homeostasis, embryonic and postembryonic development, and the stress response. From the biomedical perspective, GC have garnered a tremendous amount of attention as highly potent anti-inflammatory and immunosuppressive medications indispensable in the clinic. GC signal through the GC receptor (GR), a ligand-dependent transcription factor whose structure, DNA binding, and the molecular partners that it employs to regulate transcription have been under intense investigation for decades. In particular, next-generation sequencing-based approaches have revolutionized the field by introducing a unified platform for a simultaneous genome-wide analysis of cellular activities at the level of RNA production, binding of transcription factors to DNA and RNA, and chromatin landscape and topology. Here we describe fundamental concepts of GC/GR function as established through traditional molecular and in vivo approaches and focus on the novel insights of GC biology that have emerged over the last 10 years from the rapidly expanding arsenal of system-wide genomic methodologies.
Collapse
Affiliation(s)
- Maria A Sacta
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| | - Yurii Chinenov
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021;
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| |
Collapse
|
65
|
Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5739434. [PMID: 27703487 PMCID: PMC5040804 DOI: 10.1155/2016/5739434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.
Collapse
|
66
|
Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes. Sci Rep 2016; 6:28474. [PMID: 27574114 PMCID: PMC5004165 DOI: 10.1038/srep28474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.
Collapse
|
67
|
Subramanian U, Kumar P, Mani I, Chen D, Kessler I, Periyasamy R, Raghavaraju G, Pandey KN. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics 2016; 48:477-90. [PMID: 27199456 PMCID: PMC4967220 DOI: 10.1152/physiolgenomics.00073.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/12/2016] [Indexed: 01/15/2023] Open
Abstract
The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner.
Collapse
Affiliation(s)
- Umadevi Subramanian
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Indra Mani
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - David Chen
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Isaac Kessler
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Ramu Periyasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Giri Raghavaraju
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
68
|
Wang W, Xu L, Brandsma JH, Wang Y, Hakim MS, Zhou X, Yin Y, Fuhler GM, van der Laan LJW, van der Woude CJ, Sprengers D, Metselaar HJ, Smits R, Poot RA, Peppelenbosch MP, Pan Q. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV. Sci Rep 2016; 6:25482. [PMID: 27150018 PMCID: PMC4858707 DOI: 10.1038/srep25482] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/19/2016] [Indexed: 01/05/2023] Open
Abstract
IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Johannes H Brandsma
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Yijin Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands.,Department of Microbiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Xinying Zhou
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, 3015 CE, The Netherlands
| |
Collapse
|
69
|
Thangjam GS, Birmpas C, Barabutis N, Gregory BW, Clemens MA, Newton JR, Fulton D, Catravas JD. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L964-74. [PMID: 27036868 DOI: 10.1152/ajplung.00054.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/13/2016] [Indexed: 11/22/2022] Open
Abstract
The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation.
Collapse
Affiliation(s)
- Gagan S Thangjam
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Charalampos Birmpas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Betsy W Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Mary Ann Clemens
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia
| | - Joseph R Newton
- Department of Surgery, Eastern Virginia Medical School, Norfolk, Virginia
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
70
|
Römer M, Eichner J, Dräger A, Wrzodek C, Wrzodek F, Zell A. ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis. PLoS One 2016; 11:e0149263. [PMID: 26882475 PMCID: PMC4801062 DOI: 10.1371/journal.pone.0149263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/.
Collapse
Affiliation(s)
- Michael Römer
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Johannes Eichner
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
| | - Clemens Wrzodek
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Finja Wrzodek
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Zell
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
71
|
Poveda J, Sanz AB, Rayego-Mateos S, Ruiz-Ortega M, Carrasco S, Ortiz A, Sanchez-Niño MD. NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in tubular cells. Biochim Biophys Acta Mol Basis Dis 2016; 1862:635-646. [PMID: 26776679 DOI: 10.1016/j.bbadis.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
Acute kidney injury is characterized by decreased renal function, tubular cell death and interstitial inflammation. The transcription factor NF-κB is a key regulator of genes involved in cell survival and the inflammatory response. In order to better understand the regulation and role of NF-κB in acute kidney injury we explored the expression of NF-κB-related genes in experimental acute kidney injury induced by a folic acid overdose. NFκBiz, a member of the IκB family of NF-κB regulators encoding NFκBiz, was among the top up-regulated NF-κB-related genes at the mRNA level in experimental acute kidney injury. However, the NFκBiz protein was constitutively expressed by normal tubular cells but was down-regulated in experimental acute kidney injury. Kidney NFκBiz mRNA upregulation and protein downregulation was also observed in acute kidney injury induced by cisplatin or unilateral kidney injury resulting from ureteral obstruction. Thus, we studied the consequences of NFκBiz protein downregulation by specific siRNA in cultured tubular epithelial cells. NFκBiz mRNA and protein were up-regulated by inflammatory cytokines (IL-1β or TWEAK/TNFα/IFNγ) and by LPS in cultured tubular cells. However, TWEAK only induced a very mild and short lived NFκBiz upregulation. NFκBiz targeting increased chemokine production and dampened Klotho downregulation induced by TWEAK, without modulating cell proliferation. NFκBiz targeting also rendered cells more resistant to apoptosis induced by serum deprivation or inflammatory cytokines. In conclusion, NFκBiz differentially regulates NF-κB-mediated responses of tubular cells to inflammatory cytokines in a gene-specific manner, and may be of potential therapeutic interest to limit inflammation in kidney disease.
Collapse
Affiliation(s)
- Jonay Poveda
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain.
| | - Ana B Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Sandra Rayego-Mateos
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain.
| | - Maria D Sanchez-Niño
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain.
| |
Collapse
|
72
|
Li Y, Zhao L, Shi B, Ma S, Xu Z, Ge Y, Liu Y, Zheng D, Shi J. Functions of miR-146a and miR-222 in Tumor-associated Macrophages in Breast Cancer. Sci Rep 2015; 5:18648. [PMID: 26689540 PMCID: PMC4686897 DOI: 10.1038/srep18648] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play critical roles in promoting tumor progression and invasion. However, the molecular mechanisms underlying TAM regulation remain to be further investigated and may make significant contributions to cancer treatment. Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression that function by repressing specific target genes mainly at the post-transcriptional level. However, systematic studies of the functions and mechanisms of miRNAs in TAMs in tumor tissues are rare. In this study, miR-146a and miR-222 were shown to be significantly decreased in TAMs associated with the up-regulated NF-κB p50 subunit. miR-146a promoted the expression of some M2 macrophage phenotype molecules, and miR-146a antagomir transfected RAW264.7 monocyte-macrophage cells inhibited 4T1 tumor growth in vivo. Meanwhile, overexpression of miR-222 inhibited TAM chemotaxis, and miR-222 in TAMs inhibited 4T1 tumor growth by targeting CXCL12 and inhibiting CXCR4. These data revealed that miRNAs influence breast tumor growth by promoting the M2 type polarization or regulating the recruitment of TAMs. These observations suggest that endogenous miRNAs may exert an important role in controlling the polarization and function of TAMs in breast cancer.
Collapse
Affiliation(s)
- Yanshuang Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Lianmei Zhao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Research center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Bianhua Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Sisi Ma
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhenbiao Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yehua Ge
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yanxin Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Dexian Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
73
|
Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 2015; 12:230. [PMID: 26646749 PMCID: PMC4673731 DOI: 10.1186/s12974-015-0449-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism. Methods Here, using pharmacological inhibition and cultured Lrrk2−/− primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells. Results Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1β and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus. Conclusions Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Berti
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Cell and Developmental Biology, University College London, London, UK
| | - Greta Bernardo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Roberta Filograna
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Luigi Bubacco
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
74
|
Wier EM, Fu K, Hodgson A, Sun X, Wan F. Caspase-3 cleaved p65 fragment dampens NF-κB-mediated anti-apoptotic transcription by interfering with the p65/RPS3 interaction. FEBS Lett 2015; 589:3581-7. [PMID: 26526615 PMCID: PMC4655178 DOI: 10.1016/j.febslet.2015.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/11/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Caspase-3-mediated p65 cleavage is believed to suppress nuclear factor-kappa B (NF-κB)-mediated anti-apoptotic transactivation in cells undergoing apoptosis. However, only a small percentage of p65 is cleaved during apoptosis, not in proportion to the dramatic reduction in NF-κB transactivation. Here we show that the p65(1-97) fragment generated by Caspase-3 cleavage interferes with ribosomal protein S3 (RPS3), an NF-κB "specifier" subunit, and selectively retards the nuclear translocation of RPS3, thus dampening the RPS3/NF-κB-dependent anti-apoptotic gene expression. Our findings reveal a novel cell fate determination mechanism to ensure cells undergo programed cell death through interfering with RPS3/NF-κB-conferred anti-apoptotic transcription by the fragment from partial p65 cleavage by activated Caspase-3.
Collapse
Affiliation(s)
- Eric M Wier
- Department of Biochemistry and Molecular Biology, USA
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, USA
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
75
|
Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity. Biomolecules 2015; 5:3087-111. [PMID: 26569329 PMCID: PMC4693271 DOI: 10.3390/biom5043087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022] Open
Abstract
Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.
Collapse
|
76
|
Cookson VJ, Waite SL, Heath PR, Hurd PJ, Gandhi SV, Chapman NR. Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells. Mol Hum Reprod 2015; 21:865-83. [DOI: 10.1093/molehr/gav051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022] Open
|
77
|
Di Stefano V, Wang B, Parobchak N, Roche N, Rosen T. RelB/p52-mediated NF-κB signaling alters histone acetylation to increase the abundance of corticotropin-releasing hormone in human placenta. Sci Signal 2015; 8:ra85. [DOI: 10.1126/scisignal.aaa9806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
78
|
Xu Z, Yoshida T, Wu L, Maiti D, Cebotaru L, Duh EJ. Transcription factor MEF2C suppresses endothelial cell inflammation via regulation of NF-κB and KLF2. J Cell Physiol 2015; 230:1310-20. [PMID: 25474999 DOI: 10.1002/jcp.24870] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
Abstract
Endothelial cells play a major role in the initiation and perpetuation of the inflammatory process in health and disease, including their pivotal role in leukocyte recruitment. The role of pro-inflammatory transcription factors in this process has been well-described, including NF-κB. However, much less is known regarding transcription factors that play an anti-inflammatory role in endothelial cells. Myocyte enhancer factor 2 C (MEF2C) is a transcription factor known to regulate angiogenesis in endothelial cells. Here, we report that MEF2C plays a critical function as an inhibitor of endothelial cell inflammation. Tumor necrosis factor (TNF)-α inhibited MEF2C expression in endothelial cells. Knockdown of MEF2C in endothelial cells resulted in the upregulation of pro-inflammatory molecules and stimulated leukocyte adhesion to endothelial cells. MEF2C knockdown also resulted in NF-κB activation in endothelial cells. Conversely, MEF2C overexpression by adenovirus significantly repressed TNF-α induction of pro-inflammatory molecules, activation of NF-κB, and leukocyte adhesion to endothelial cells. This inhibition of leukocyte adhesion by MEF2C was partially mediated by induction of KLF2. In mice, lipopolysaccharide (LPS)-induced leukocyte adhesion to the retinal vasculature was significantly increased by endothelial cell-specific ablation of MEF2C. Taken together, these results demonstrate that MEF2C is a novel negative regulator of inflammation in endothelial cells and may represent a therapeutic target for vascular inflammation.
Collapse
Affiliation(s)
- Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
79
|
Yu XJ, Zhang DM, Jia LL, Qi J, Song XA, Tan H, Cui W, Chen W, Zhu GQ, Qin DN, Kang YM. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicol Appl Pharmacol 2015; 284:315-22. [PMID: 25759242 DOI: 10.1016/j.taap.2015.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/05/2023]
Abstract
We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar-Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Dong-Mei Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Lin-Lin Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xin-Ai Song
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong Tan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
80
|
Hodgson A, Wier EM, Fu K, Sun X, Yu H, Zheng W, Sham HP, Johnson K, Bailey S, Vallance BA, Wan F. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015; 11:e1004705. [PMID: 25756944 PMCID: PMC4355070 DOI: 10.1371/journal.ppat.1004705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Attaching/Effacing (A/E) pathogens including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and the rodent equivalent Citrobacter rodentium are important causative agents of foodborne diseases. Upon infection, a myriad of virulence proteins (effectors) encoded by A/E pathogens are injected through their conserved type III secretion systems (T3SS) into host cells where they interfere with cell signaling cascades, in particular the nuclear factor kappaB (NF-κB) signaling pathway that orchestrates both innate and adaptive immune responses for host defense. Among the T3SS-secreted non-LEE-encoded (Nle) effectors, NleC, a metalloprotease, has been recently elucidated to modulate host NF-κB signaling by cleaving NF-κB Rel subunits. However, it remains elusive how NleC recognizes NF-κB Rel subunits and how the NleC-mediated cleavage impacts on host immune responses in infected cells and animals. In this study, we show that NleC specifically targets p65/RelA through an interaction with a unique N-terminal sequence in p65. NleC cleaves p65 in intestinal epithelial cells, albeit a small percentage of the molecule, to generate the p65¹⁻³⁸ fragment during C. rodentium infection in cultured cells. Moreover, the NleC-mediated p65 cleavage substantially affects the expression of a subset of NF-κB target genes encoding proinflammatory cytokines/chemokines, immune cell infiltration in the colon, and tissue injury in C. rodentium-infected mice. Mechanistically, the NleC cleavage-generated p65¹⁻³⁸ fragment interferes with the interaction between p65 and ribosomal protein S3 (RPS3), a 'specifier' subunit of NF-κB that confers a subset of proinflammatory gene transcription, which amplifies the effect of cleaving only a small percentage of p65 to modulate NF-κB-mediated gene expression. Thus, our results reveal a novel mechanism for A/E pathogens to specifically block NF-κB signaling and inflammatory responses by cleaving a small percentage of p65 and targeting the p65/RPS3 interaction in host cells, thus providing novel insights into the pathogenic mechanisms of foodborne diseases.
Collapse
Affiliation(s)
- Andrea Hodgson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric M. Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Wenxin Zheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ho Pan Sham
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kaitlin Johnson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
81
|
Di Liddo R, Bertalot T, Schuster A, Schrenk S, Tasso A, Zanusso I, Conconi MT, Schäfer KH. Anti-inflammatory activity of Wnt signaling in enteric nervous system: in vitro preliminary evidences in rat primary cultures. J Neuroinflammation 2015; 12:23. [PMID: 25644719 PMCID: PMC4332439 DOI: 10.1186/s12974-015-0248-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 01/22/2023] Open
Abstract
Background In the last years, Wnt signaling was demonstrated to regulate inflammatory processes. In particular, an increased expression of Wnts and Frizzled receptors was reported in inflammatory bowel disease (IBD) and ulcerative colitis to exert both anti- and pro-inflammatory functions regulating the intestinal activated nuclear factor κB (NF-кB), TNFa release, and IL10 expression. Methods To investigate the role of Wnt pathway in the response of the enteric nervous system (ENS) to inflammation, neurons and glial cells from rat myenteric plexus were treated with exogenous Wnt3a and/or LPS with or without supporting neurotrophic factors such as basic fibroblast growth factor (bFGF), epithelial growth factor (EGF), and glial cell-derived neurotrophic factor (GDNF). The immunophenotypical characterization by flow cytometry and the protein and gene expression analysis by qPCR and Western blotting were carried out. Results Flow cytometry and immunofluorescence staining evidenced that enteric neurons coexpressed Frizzled 9 and toll-like receptor 4 (TLR4) while glial cells were immunoreactive to TLR4 and Wnt3a suggesting that canonical Wnt signaling is active in ENS. Under in vitro LPS treatment, Western blot analysis demonstrated an active cross talk between canonical Wnt signaling and NF-кB pathway that is essential to negatively control enteric neuronal response to inflammatory stimuli. Upon costimulation with LPS and Wnt3a, a significant anti-inflammatory activity was detected by RT-PCR based on an increased IL10 expression and a downregulation of pro-inflammatory cytokines TNFa, IL1B, and interleukin 6 (IL6). When the availability of neurotrophic factors in ENS cultures was abolished, a changed cell reactivity by Wnt signaling was observed at basal conditions and after LPS treatment. Conclusions The results of this study suggested the existence of neuronal surveillance through FZD9 and Wnt3a in enteric myenteric plexus. Moreover, experimental evidences were provided to clarify the correlation among soluble trophic factors, Wnt signaling, and anti-inflammatory protection of ENS.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| | - Sandra Schrenk
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| | - Alessia Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Ilenia Zanusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Karl Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| |
Collapse
|
82
|
Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, Hj Lajis N, Ahmad Israf D. The synthetic curcuminoid BHMC restores endotoxin-stimulated HUVEC dysfunction:Specific disruption on enzymatic activity of p38 MAPK. Eur J Pharmacol 2015; 749:1-11. [PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nordin Hj Lajis
- Scientific Chairs Unit, Taibah University, PO Box 30001, 41311 Madinah al Munawarah, Saudi Arabia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
83
|
Oh SW, Lee YM, Kim S, Chin HJ, Chae DW, Na KY. Cobalt chloride attenuates oxidative stress and inflammation through NF-κB inhibition in human renal proximal tubular epithelial cells. J Korean Med Sci 2014; 29 Suppl 2:S139-45. [PMID: 25317018 PMCID: PMC4194284 DOI: 10.3346/jkms.2014.29.s2.s139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/03/2014] [Indexed: 01/27/2023] Open
Abstract
We evaluated the effect of cobalt chloride (CoCl2) on TNF-α and IFN-γ-induced-inflammation and reactive oxygen species (ROS) in renal tubular epithelial cells (HK-2 cells). We treated HK-2 cells with CoCl2 before the administration of TNF-α/IFN-γ. To regulate hemeoxygenase-1 (HO-1) expression, the cells were treated CoCl2 or HO-1 siRNA. CoCl2 reduced the generation of ROS induced by TNF-α/IFN-γ. TNF-α/IFN-γ-treated-cells showed an increase in the nuclear translocation of phosphorylated NF-κBp65 protein, the DNA-binding activity of NF-κBp50 and NF-κB transcriptional activity and a decrease in IκBα protein expression. These changes were restored by CoCl2. We noted an intense increase in monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES) production in TNF-α/IFN-γ-treated cells. We demonstrated that this effect was mediated through NF-κB signaling because an NF-κB inhibitor significantly reduced MCP-1 and RANTES production. CoCl2 effectively reduced MCP-1 and RANTES production. The expression of HO-1 was increased by CoCl2 and decreased by HO-1 siRNA. However, knockdown of HO-1 by RNA interference did not affect MCP-1 or RANTES production. We suggest that CoCl2 has a protective effect on TNF-α/IFN-γ-induced inflammation through the inhibition of NF-κB and ROS in HK-2 cells. However, CoCl2 appears to act in an HO-1-independent manner.
Collapse
Affiliation(s)
- Se Won Oh
- Department of Internal Medicine, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea
| | - Yun-Mi Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wan Chae
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
84
|
Kasparkova J, Thibault T, Kostrhunova H, Stepankova J, Vojtiskova M, Muchova T, Midoux P, Malinge JM, Brabec V. Different affinity of nuclear factor-kappa B proteins to DNA modified by antitumor cisplatin and its clinically ineffective trans isomer. FEBS J 2014; 281:1393-1408. [PMID: 24418212 DOI: 10.1111/febs.12711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/06/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
Nuclear factor-kappa B (NF-кB) comprises a family of protein transcription factors that have a regulatory function in numerous cellular processes and are implicated in the cancer cell response to antineoplastic drugs, including cisplatin. We characterized the effects of DNA adducts of cisplatin and ineffective transplatin on the affinity of NF-кB proteins to their consensus DNA sequence (кB site). Although the кB site-NF-κB protein interaction was significantly perturbed by DNA adducts of cisplatin, transplatin adducts were markedly less effective both in cell-free media and in cellulo using a decoy strategy derivatized-approach. Moreover, NF-κB inhibitor JSH-23 [4-methyl-N¹-(3-phenylpropyl)benzene-1,2-diamine] augmented cisplatin cytotoxicity in ovarian cancer cells and the data showed strong synergy with JSH-23 for cisplatin. The distinctive structural features of DNA adducts of the two platinum complexes suggest a unique role for conformational distortions induced in DNA by the adducts of cisplatin with respect to inhibition of the binding of NF-кB to the platinated кB sites. Because thousands of κB sites are present in the DNA, the mechanisms underlying the antitumor efficiency of cisplatin in some tumor cells may involve downstream processes after inhibition of the binding of NF-κB to κB site(s) by DNA adducts of cisplatin, including enhanced programmed cell death in response to drug treatment.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B Cell Diversification. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
86
|
Chang TP, Kim M, Vancurova I. Analysis of TGFβ1 and IL-10 transcriptional regulation in CTCL cells by chromatin immunoprecipitation. Methods Mol Biol 2014; 1172:329-41. [PMID: 24908319 DOI: 10.1007/978-1-4939-0928-5_30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immunosuppressive cytokines transforming growth factor β1 (TGFβ1) and interleukin-10 (IL-10) regulate a variety of biological processes including differentiation, proliferation, tissue repair, tumorigenesis, inflammation, and host defense. Aberrant expression of TGFβ1 and IL-10 has been associated with many types of autoimmune and inflammatory disorders, as well as with many types of cancer and leukemia. Patients with cutaneous T cell lymphoma (CTCL) have high levels of malignant CD4+ T cells expressing IL-10 and TGFβ1 that suppress the immune system and diminish the antitumor responses. The transcriptional regulation of TGFβ1 and IL-10 expression is orchestrated by several transcription factors, including NFκB. However, while the transcriptional regulation of pro-inflammatory and anti-apoptotic genes by NFκB has been studied extensively, much less is known about the NFκB regulation of immunosuppressive genes. In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the transcriptional regulation of TGFβ1 and IL-10 by measuring recruitment of NFκB p65, p50, c-Rel, Rel-B, and p52 subunits to TGFβ1 and IL-10 promoters in human CTCL Hut-78 cells.
Collapse
Affiliation(s)
- Tzu-Pei Chang
- Department of Biology, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | | | | |
Collapse
|
87
|
Fu K, Sun X, Zheng W, Wier EM, Hodgson A, Tran DQ, Richard S, Wan F. Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 2013; 4:1909. [PMID: 23715268 PMCID: PMC3684077 DOI: 10.1038/ncomms2916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/19/2013] [Indexed: 12/23/2022] Open
Abstract
CD25, the alpha chain of the interleukin-2 receptor, is expressed in activated T cells and has a significant role in autoimmune disease and tumorigenesis; however, the mechanisms regulating transcription of CD25 remain elusive. Here we identify the Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel non-Rel component in the nuclear factor-kappaB (NF-κB) complex that confers CD25 transcription. Our results demonstrate that Sam68 has an essential role in the induction and maintenance of CD25 in T cells. T-cell receptor engagement triggers translocation of the inhibitor of NF-κB kinase alpha (IKKα) from the cytoplasm to the nucleus, where it phosphorylates Sam68, causing complex formation with NF-κB in the nucleus. These findings reveal the important roles of KH domain-containing components and their spatial interactions with IKKs in determining the binding targets of NF-κB complexes, thus shedding novel insights into the regulatory specificity of NF-κB.
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21025, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Chang TP, Vancurova I. NFκB function and regulation in cutaneous T-cell lymphoma. Am J Cancer Res 2013; 3:433-445. [PMID: 24224122 PMCID: PMC3816964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023] Open
Abstract
The nuclear accumulation and transcriptional activity of NFκB are constitutively increased in cutaneous T-cell lymphoma (CTCL) cells, and are responsible for their increased survival and proliferation. However, in addition to the anti-apoptotic and pro-inflammatory genes, NFκB induces expression of immunosuppressive genes, such as IL-10 and TGFβ, which inhibit the immune responses and are characteristic for the advanced stages of CTCL. While the mechanisms regulating NFκB-dependent transcription of anti-apoptotic and pro-inflammatory genes have been studied extensively, very little is known about the NFκB regulation of immunosuppressive genes. The specificity of NFκB-regulated responses is determined by the subunit composition of NFκB complexes recruited to the individual promoters, post-translational modifications of NFκB proteins, as well as by their interactions with other transcriptional factors and regulators. In this review, we discuss the mechanisms regulating the transcription of NFκB-dependent anti-apoptotic, pro-inflammatory and immunosuppressive genes in CTCL cells, as potential targets for CTCL therapies.
Collapse
Affiliation(s)
- Tzu-Pei Chang
- Department of Biological Sciences, St. John's University New York, NY 11439, USA
| | | |
Collapse
|
89
|
NF-kappaB mediated transcriptional repression of acid modifying hormone gastrin. PLoS One 2013; 8:e73409. [PMID: 24009751 PMCID: PMC3751843 DOI: 10.1371/journal.pone.0073409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFkB.
Collapse
|
90
|
Qin WY, Luo Y, Chen L, Tao T, Li Y, Cai YL, Li YH. Electroacupuncture Could Regulate the NF-κB Signaling Pathway to Ameliorate the Inflammatory Injury in Focal Cerebral Ischemia/Reperfusion Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:924541. [PMID: 23970940 PMCID: PMC3732610 DOI: 10.1155/2013/924541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/10/2013] [Accepted: 06/18/2013] [Indexed: 01/04/2023]
Abstract
The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF- κ B signal pathway and ameliorate inflammatory injury in the short term; the effects of NEMO Binding Domain peptide for this purpose were compared. Focal cerebral I/R was induced by middle cerebral artery occlusion for 2 hrs. Total 380 male Sprague-Dawley rats are in the study. The neurobehavioral scores, infarction volumes, and the levels of IL-1 β and IL-13 were detected. NF- κ B p65, I κ B α , IKK α , and IKK β were analyzed and the ability of NF- κ B binding DNA was investigated. The EA treatment and the NBD peptide treatment both reduced infarct size, improved neurological scores, and regulated the levels of IL-1 β and IL-13. The treatment reduced the expression of IKK α and IKK β and altered the expression of NF- κ B p65 and I κ B α in the cytoplasm and nucleus; the activity of NF- κ B was effectively reduced. We conclude that EA treatment might interfere with the process of NF- κ B nuclear translocation. And it also could suppress the activity of NF- κ B signaling pathway to ameliorate the inflammatory injury after focal cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Wen-yi Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Tao Tao
- Department of Neurology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province 64600, China
| | - Yang Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yan-li Cai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Ya-hui Li
- Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
91
|
Naranjo V, Ayllón N, Pérez de la Lastra JM, Galindo RC, Kocan KM, Blouin EF, Mitra R, Alberdi P, Villar M, de la Fuente J. Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis. PLoS One 2013; 8:e65915. [PMID: 23776567 PMCID: PMC3680474 DOI: 10.1371/journal.pone.0065915] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 04/30/2013] [Indexed: 01/04/2023] Open
Abstract
Background Tick Subolesin and its ortholog in insects and vertebrates, Akirin, have been suggested to play a role in the immune response through regulation of nuclear factor-kappa B (NF-kB)-dependent and independent gene expression via interaction with intermediate proteins that interact with NF-kB and other regulatory proteins, bind DNA or remodel chromatin to regulate gene expression. The objective of this study was to characterize the structure and regulation of subolesin in Ixodes scapularis. I. scapularis is a vector of emerging pathogens such as Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti that cause in humans Lyme disease, anaplasmosis and babesiosis, respectively. The genome of I. scapularis was recently sequenced, and this tick serves as a model organism for the study of vector-host-pathogen interactions. However, basic biological questions such as gene organization and regulation are largely unknown in ticks and other arthropod vectors. Principal Findings The results presented here provide evidence that subolesin/akirin are evolutionarily conserved at several levels (primary sequence, gene organization and function), thus supporting their crucial biological function in metazoans. These results showed that NF-kB (Relish) is involved in the regulation of subolesin expression in ticks, suggesting that as in other organisms, different NF-kB integral subunits and/or unknown interacting proteins regulate the specificity of the NF-kB-mediated gene expression. These results suggested a regulatory network involving cross-regulation between NF-kB (Relish) and Subolesin and Subolesin auto-regulation with possible implications in tick immune response to bacterial infection. Significance These results advance our understanding of gene organization and regulation in I. scapularis and have important implications for arthropod vectors genetics and immunology highlighting the possible role of NF-kB and Subolesin/Akirin in vector-pathogen interactions and for designing new strategies for the control of vector infestations and pathogen transmission.
Collapse
Affiliation(s)
- Victoria Naranjo
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Ruth C. Galindo
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Edmour F. Blouin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ruchira Mitra
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- * E-mail:
| |
Collapse
|
92
|
Ma B, Zhong L, van Blitterswijk CA, Post JN, Karperien M. T cell factor 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor κB signaling. J Biol Chem 2013; 288:17552-8. [PMID: 23603903 DOI: 10.1074/jbc.m113.453985] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are downstream effectors of Wnt/β-catenin signaling, which has been implicated in the development and progression of osteoarthritis (OA). This study aimed to investigate the role of TCF/LEF transcription factors in human articular chondrocytes. Primary human osteoarthritic cartilage predominantly expressed TCF4 and to a lesser extent, LEF1 and TCF3 mRNA. Overexpression of TCF4, but not of TCF3 or LEF1, induced MMP-1, -3, and -13 expression and generic MMP activity in human chondrocytes. This was due to potentiating NF-κB signaling by a protein-protein interaction between TCF4 and NF-κB p65 activating established NF-κB target genes such as MMPs and IL-6. LEF1 competed with TCF4 for binding to NF-κB p65. IκB-α was able to counteract the effect of TCF4 on NF-κB target gene expression. Finally, we showed that TCF4 mRNA expression was elevated in OA cartilage compared with healthy cartilage and induced chondrocyte apoptosis at least partly through activating caspase 3/7. Our findings suggest that increased TCF4 expression may contribute to cartilage degeneration in OA by augmenting NF-κB signaling.
Collapse
Affiliation(s)
- Bin Ma
- Department of Developmental BioEngineering, University of Twente, Enschede 7522NB, The Netherlands
| | | | | | | | | |
Collapse
|
93
|
Inhibition of NF- κ B by Dehydroxymethylepoxyquinomicin Suppresses Invasion and Synergistically Potentiates Temozolomide and γ -Radiation Cytotoxicity in Glioblastoma Cells. CHEMOTHERAPY RESEARCH AND PRACTICE 2013; 2013:593020. [PMID: 23533755 PMCID: PMC3594939 DOI: 10.1155/2013/593020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/16/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022]
Abstract
Despite advances in neurosurgery and aggressive treatment with temozolomide (TMZ) and radiation, the overall survival of patients with glioblastoma (GBM) remains poor. Vast evidence has indicated that the nuclear factor NF-κB is constitutively activated in cancer cells, playing key roles in growth and survival. Recently, Dehydroxymethylepoxyquinomicin (DHMEQ) has shown to be a selective NF-κB inhibitor with antiproliferative properties in GBM. In the present study, the ability of DHMEQ to surmount tumor's invasive nature and therapy resistance were further explored. Corroborating results showed that DHMEQ impaired cell growth in dose- and time-dependent manners with G2/M arrest when compared with control. Clonogenicity was also significantly diminished with increased apoptosis, though necrotic cell death was also observed at comparable levels. Notably, migration and invasion were inhibited accordingly with lowered expression of invasion-related genes. Moreover, concurrent combination with TMZ synergistically inhibited cell growth in all cell lines, as determined by proliferation and caspase-3 activation assays, though in those that express O6-methylguanine-DNA methyltransferase, the synergistic effects were schedule dependent. Pretreatment with DHMEQ equally sensitized cells to ionizing radiation. Taken together, our results strengthen the potential usefulness of DHMEQ in future therapeutic strategies for tumors that do not respond to conventional approaches.
Collapse
|
94
|
Tiwari P, Tripathi LP, Nishikawa-Matsumura T, Ahmad S, Song SNJ, Isobe T, Mizuguchi K, Yoshizaki K. Prediction and experimental validation of a putative non-consensus binding site for transcription factor STAT3 in serum amyloid A gene promoter. Biochim Biophys Acta Gen Subj 2013; 1830:3650-5. [PMID: 23391827 DOI: 10.1016/j.bbagen.2013.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that though the human SAA1 gene shows no typical STAT3 response element (STAT3-RE) in its promoter region, STAT3 and the nuclear factor (NF-κB) p65 first form a complex following interleukin IL-1 and IL-6 (IL-1+6) stimulation, after which STAT3 interacts with a region downstream of the NF-κB RE in the SAA1 promoter. In this study, we employed a computational approach based on indirect read outs of protein-DNA contacts to identify a set of candidates for non-consensus STAT3 transcription factor binding sites (TFBSs). The binding of STAT3 to one of the predicted non-consensus TFBSs was experimentally confirmed through a dual luciferase assay and DNA affinity chromatography. The present study defines a novel STAT3 non-consensus TFBS at nt -75/-66 downstream of the NF-κB RE in the SAA1 promoter region that is required for NF-κB p65 and STAT3 to activate SAA1 transcription in human HepG2 liver cells. Our analysis builds upon the current understanding of STAT3 function, suggesting a wider array of mechanisms of STAT3 function in inflammatory response, and provides a useful framework for investigating novel TF-target associations with potential therapeutic implications.
Collapse
Affiliation(s)
- Prabha Tiwari
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Wier EM, Neighoff J, Sun X, Fu K, Wan F. Identification of an N-terminal truncation of the NF-κB p65 subunit that specifically modulates ribosomal protein S3-dependent NF-κB gene expression. J Biol Chem 2012; 287:43019-29. [PMID: 23115242 DOI: 10.1074/jbc.m112.388694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NF-κB is a pleiotrophic transcription factor that plays a prominent regulatory role in various cellular processes. Although previous efforts have focused on its activation, how NF-κB selects specific target genes in response to discrete signals remains puzzling. In addition to the well defined Rel protein components of NF-κB, the ribosomal protein S3 (RPS3) was identified to be an essential component of specific NF-κB complexes. RPS3 synergistically interacts with the NF-κB p65 subunit to achieve optimal binding and transactivation of a subset of NF-κB target genes, thus providing regulatory specificity. Emerging evidence suggests an important role for the RPS3-p65 interaction in context-specific NF-κB gene transcription. The food-borne pathogen Escherichia coli O157:H7 impacts the transcription of a subset of NF-κB target genes encoding proinflammatory cytokines and chemokines in host cells by preventing the nuclear translocation of RPS3, but not p65. The N terminus of p65 is crucial for RPS3 binding. Although several p65 N-terminal fragments are generated by either protease cleavage or alternative mRNA splicing under certain pathophysiological conditions, the role of these fragments in modulating NF-κB signaling, in particular RPS3-dependent selective gene transcription, has not been fully characterized. Here we report that an N-terminal fragment of p65 (amino acids 21-186) can selectively modulate NF-κB gene transcription by competing for RPS3 binding to p65. This 21-186 fragment preferentially localizes in the cytoplasm where it delays stimuli-induced RPS3 nuclear translocation, without affecting the nuclear translocation of p65. Our findings thus uncover a new cytoplasmic function for the N-terminal domain of p65 and provide a novel strategy for selective inhibition of NF-κB gene transcription.
Collapse
Affiliation(s)
- Eric M Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
96
|
Vancurova I, Vancura A. Regulation and function of nuclear IκBα in inflammation and cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:56-66. [PMID: 23885315 PMCID: PMC3714182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 06/02/2023]
Abstract
The nuclear translocation and accumulation of IκBα represents an important mechanism regulating transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes. The nuclear accumulation of IκBα can be induced by post-induction repression in stimulated cells, inhibition of the CRM1-dependent nuclear IκBα export by leptomycin B, and by the inhibition of the 26S proteasome. In addition, IκBα is constitutively localized in the nucleus of human neutrophils, likely contributing to the high rate of spontaneous apoptosis in these cells. In the nucleus, IκBα suppresses transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes, representing an attractive therapeutic target. However, the inhibition of NFκB-dependent genes by nuclear IκBα is promoter specific, and depends on the subunit composition of NFκB dimers and post-translational modifications of the recruited NFκB proteins. In addition, several recent studies have demonstrated an NFκB-independent role of the nuclear IκBα. In this review, we discuss the mechanisms leading to the nuclear accumulation of IκBα and its nuclear functions as potential targets for anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St. John's University New York, NY 11439, USA
| | | |
Collapse
|
97
|
Abstract
Cellular senescence is a program of irreversible cell cycle arrest that cells undergo in response to a variety of intrinsic and extrinsic stimuli including progressive shortening of telomeres, changes in telomeric structure or other forms of genotoxic and non-genotoxic stress. The role of nuclear factor-κB in cellular senescence is controversial, as it has been associated with both proliferation and tumour progression, and also with growth arrest and ageing. This research perspective focuses on the evidence for a functional relationship between NF-κB and senescence, and how disruption of the NF-κB pathway can lead to its bypass.
Collapse
Affiliation(s)
- Simon Vaughan
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
98
|
Clavijo PE, Frauwirth KA. Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1213-21. [PMID: 22205033 DOI: 10.4049/jimmunol.1100793] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because of the cytotoxic potential of CD8(+) T cells, maintenance of CD8(+) peripheral tolerance is extremely important. A major peripheral tolerance mechanism is the induction of anergy, a refractory state in which proliferation and IL-2 production are inhibited. We used a TCR transgenic mouse model to investigate the signaling defects in CD8(+) T cells rendered anergic in vivo. In addition to a previously reported alteration in calcium/NFAT signaling, we also found a defect in NF-κB-mediated gene transcription. This was not due to blockade of early NF-κB activation events, including IκB degradation and NF-κB nuclear translocation, as these occurred normally in tolerant T cells. However, we discovered that anergic cells failed to phosphorylate the NF-κB p65 subunit at Ser(311) and also failed to acetylate p65 at Lys(310). Both of these modifications have been implicated as critical for NF-κB transactivation capacity, and thus, our results suggest that defects in key phosphorylation and acetylation events are important for the inhibition of NF-κB activity (and subsequent T cell function) in anergic CD8(+) T cells.
Collapse
Affiliation(s)
- Paúl E Clavijo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
99
|
Abstract
Inhibition of the inhibitor of kappa B kinase (IKK)/nuclear factor-kappa B (NF-κB) pathway enhances muscle regeneration in injured and diseased skeletal muscle, but it is unclear exactly how this pathway contributes to the regeneration process. In this study, we examined the role of NF-κB in regulating the proliferation and differentiation of muscle-derived stem cells (MDSCs). MDSCs isolated from the skeletal muscles of p65(+/-) mice (haploinsufficient for the p65 subunit of NF-κB) had enhanced proliferation and myogenic differentiation compared to MDSCs isolated from wild-type (wt) littermates. In addition, selective pharmacological inhibition of IKKβ, an upstream activator of NF-κB, enhanced wt MDSC differentiation into myotubes in vitro. The p65(+/-) MDSCs also displayed a higher muscle regeneration index than wt MDSCs following implantation into adult mice with muscular dystrophy. Additionally, using a muscle injury model, we observed that p65(+/-) MDSC engraftments were associated with reduced inflammation and necrosis. These results suggest that inhibition of the IKK/NF-κB pathway represents an effective approach to improve the myogenic regenerative potential of MDSCs and possibly other adult stem cell populations. Moreover, our results suggest that the improved muscle regeneration observed following inhibition of IKK/NF-κB, is mediated, at least in part, through enhanced stem cell proliferation and myogenic potential.
Collapse
|
100
|
Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 2011; 25:2125-36. [PMID: 21979375 DOI: 10.1101/gad.17276711] [Citation(s) in RCA: 714] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells. We found that NF-κB acts as a master regulator of the SASP, influencing the expression of more genes than RB and p53 combined. In cultured fibroblasts, NF-κB suppression causes escape from immune recognition by natural killer (NK) cells and cooperates with p53 inactivation to bypass senescence. In a mouse lymphoma model, NF-κB inhibition bypasses treatment-induced senescence, producing drug resistance, early relapse, and reduced survival. Our results demonstrate that NF-κB controls both cell-autonomous and non-cell-autonomous aspects of the senescence program and identify a tumor-suppressive function of NF-κB that contributes to the outcome of cancer therapy.
Collapse
Affiliation(s)
- Yuchen Chien
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|