51
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
52
|
Mykhaliuk VV, Havryliak VV, Salyha YT. The Role of Cytokeratins in Ensuring the Basic Cellular Functions and in Dignosis of Disorders. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
RDIVpSGP motif of ASPP2 binds to 14-3-3 and enhances ASPP2/k18/14-3-3 ternary complex formulation to promote BRAF/MEK/ERK signal inhibited cell proliferation in hepatocellular carcinoma. Cancer Gene Ther 2022; 29:1616-1627. [PMID: 35504951 DOI: 10.1038/s41417-022-00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
The Apoptosis Stimulating Protein of p53 2 (ASPP2) is a heterozygous insufficient tumor suppressor; however, its molecular mechanism(s) in tumor suppression is not completely understood. ASPP2 plays an essential role in cell growth, as shown by liver hepatocellular carcinoma (LIHC) RNA-seq assay using the Cancer Genome Atlas (TCGA) and High-Throughput-PCR assay using ASPP2 knockdown cells. These observations were further confirmed by in vivo and in vitro experiments. Mechanistically, N-terminus ASPP2 interacted with Keratin 18 (k18) in vivo and in vitro. Interestingly, the RDIVpSGP motif of ASPP2 associates with 14-3-3 and promotes ASPP2/k18/14-3-3 ternary-complex formation which promotes MEK/ERK signal activation by impairing 14-3-3 and BRAF association. Additionally, ASPP2-rAd injection promotes paclitaxel-suppressed tumor growth by suppressing cell proliferation in the BALB/c nude mice model. ASPP2 and k18 were preferentially downregulated in Hepatocellular Carcinoma (HCC), which predicted poor prognosis in HCC patients. Overall, these findings suggested that ASPP2 promoted BRAF/MEK/ERK signal activation by promoting the formation of an ASPP2/k18/14-3-3 ternary complex via the RDIVpSGP motif at the N terminus. Moreover, this study provides novel insights into the molecular mechanism of tumor suppression in HCC patients.
Collapse
|
54
|
Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: Good alone, bad together. Semin Cancer Biol 2022; 86:816-826. [PMID: 34953942 PMCID: PMC9213573 DOI: 10.1016/j.semcancer.2021.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jordan T Pietz
- Department of Creative Services, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
55
|
KRT17 Accelerates Cell Proliferative and Invasive Potential of Laryngeal Squamous Cell Carcinoma (LSCC) through Regulating AKT/mTOR and Wnt/ β-Catenin Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6176043. [PMID: 36248412 PMCID: PMC9556256 DOI: 10.1155/2022/6176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a prevalent malignant tumor of the head and neck with a dismal prognosis. Keratin17 (KRT17) has been proven to serve as an oncogene in various cancers, but it has never been explored in LSCC. We proposed to assess the impact and possible mechanisms of KRT17 in the development of LSCC. Methods Quantitative reverse transcription-PCR (qRT-PCR) was utilized to examine the mRNA levels. The Kaplan-Meier method was used to calculate the relationship between KRT17 expression and survival curves in LSCC patients. Cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays were utilized to estimate LSCC cell proliferation. The migration and invasion abilities of LSCC cells were ascertained by wound-healing and transwell assays. Immunohistochemical and western blot assays were utilized to appraise protein levels. The xenograft tumor model was used to determine the effect of KRT17 on tumor growth. Results In the present study, KRT17 was extremely high in LSCC tissues and cells and correlated with a poor prognosis. Inhibition of KRT17 weakens cell proliferative, migratory, and invasive abilities in LSCC and contributes to cell cycle arrest. Besides, we approved that knockdown of KRT17 extraordinarily restrained the xenograft tumor growth in vivo. We preliminarily investigated the role of KRT17 on the AKT/mTOR and Wnt/β-catenin signaling axes and found that these signaling pathways were largely blocked by KRT17 deletion. Conclusion Collectively, we uncovered that exhaustion of KRT17 suppresses LSCC progression through coordinating AKT/mTOR and Wnt/β-catenin signaling axes, illustrating KRT17 as a promising biomarker for making strides in LSCC treatment.
Collapse
|
56
|
Contribution of autofluorescence from intracellular proteins in multiphoton fluorescence lifetime imaging. Sci Rep 2022; 12:16584. [PMID: 36198710 PMCID: PMC9534927 DOI: 10.1038/s41598-022-20857-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Multiphoton fluorescence lifetime imaging microscopy (MPM-FLIM) is extensively proposed as a non-invasive optical method to study tissue metabolism. The approach is based on recording changes in the fluorescence lifetime attributed to metabolic co-enzymes, of which nicotinamide adenine dinucleotide (NADH) is of major importance. However, intrinsic tissue fluorescence is complex. Particularly when utilizing two-photon excitation, as conventionally employed in MPM. This increases the possibility for spectral crosstalk and incorrect assignment of the origin of the FLIM signal. Here we demonstrate that in keratinocytes, proteins such as keratin may interfere with the signal usually assigned to NADH in MPM-FLIM by contributing to the lifetime component at 1.5 ns. This is supported by a change in fluorescence lifetime distribution in KRT5- and KRT14-silenced cells. Altogether, our results suggest that the MPM-FLIM data originating from cellular autofluorescence is far more complex than previously suggested and that the contribution from other tissue constituents should not be neglected-changing the paradigm for data interpretation in this context.
Collapse
|
57
|
Ratajczyk S, Drexler C, Windoffer R, Leube RE, Fuchs P. A Ca 2+-Mediated Switch of Epiplakin from a Diffuse to Keratin-Bound State Affects Keratin Dynamics. Cells 2022; 11:cells11193077. [PMID: 36231039 PMCID: PMC9563781 DOI: 10.3390/cells11193077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Keratins exert important structural but also cytoprotective functions. They have to be adaptable to support cellular homeostasis. Epiplakin (EPPK1) has been shown to decorate keratin filaments in epithelial cells and to play a protective role under stress, but the mechanism is still unclear. Using live-cell imaging of epithelial cells expressing fluorescently tagged EPPK1 and keratin, we report here an unexpected dynamic behavior of EPPK1 upon stress. EPPK1 was diffusely distributed throughout the cytoplasm and not associated with keratin filaments in living cells under standard culture conditions. However, ER-, oxidative and UV-stress, as well as cell fixation, induced a rapid association of EPPK1 with keratin filaments. This re-localization of EPPK1 was reversible and dependent on the elevation of cytoplasmic Ca2+ levels. Moreover, keratin filament association of EPPK1 led to significantly reduced keratin dynamics. Thus, we propose that EPPK1 stabilizes the keratin network in stress conditions, which involve increased cytoplasmic Ca2+.
Collapse
Affiliation(s)
- Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Correspondence: ; Tel.: +43-1-4277-52855
| |
Collapse
|
58
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
59
|
A 13-gene signature to predict the prognosis and immunotherapy responses of lung squamous cell carcinoma. Sci Rep 2022; 12:13646. [PMID: 35953696 PMCID: PMC9372044 DOI: 10.1038/s41598-022-17735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) comprises 20–30% of all lung cancers. Immunotherapy has significantly improved the prognosis of LUSC patients; however, only a small subset of patients responds to the treatment. Therefore, we aimed to develop a novel multi-gene signature associated with the immune phenotype of the tumor microenvironment for LUSC prognosis prediction. We stratified the LUSC patients from The Cancer Genome Atlas dataset into hot and cold tumor according to a combination of infiltration status of immune cells and PD-L1 expression level. Kaplan–Meier analysis showed that hot tumors were associated with shorter overall survival (OS). Enrichment analyses of differentially expressed genes (DEGs) between the hot and cold tumors suggested that hot tumors potentially have a higher immune response ratio to immunotherapy than cold tumors. Subsequently, hub genes based on the DEGs were identified and protein–protein interactions were constructed. Finally, we established an immune-related 13-gene signature based on the hub genes using the least absolute shrinkage and selection operator feature selection and multivariate cox regression analysis. This gene signature divided LUSC patients into high-risk and low-risk groups and the former inclined worse OS than the latter. Multivariate cox proportional hazard regression analysis showed that the risk model constructed by the 13 prognostic genes was an independent risk factor for prognosis. Receiver operating characteristic curve analysis showed a moderate predictive accuracy for 1-, 3- and 5-year OS. The 13-gene signature also performed well in four external cohorts (three LUSC and one melanoma cohorts) from Gene Expression Omnibus. Overall, in this study, we established a reliable immune-related 13-gene signature that can stratify and predict the prognosis of LUSC patients, which might serve clinical use of immunotherapy.
Collapse
|
60
|
Fang Y, Fang D. Comprehensive analysis of placental gene-expression profiles and identification of EGFR-mediated autophagy and ferroptosis suppression in intrahepatic cholestasis of pregnancy. Gene 2022; 834:146594. [PMID: 35643225 DOI: 10.1016/j.gene.2022.146594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) was the most common liver disease specific to pregnancy. The symptoms of ICP were maternal pruritus and increased bile acid level in serum which was related to preterm birth, fetal distress, meconium-stained amniotic fluid and stillbirth. However, the mechanism of ICP progression on fetal development remained obscure. Sequencing data of 2 normal placenta samples and 4 intrahepatic cholestasis samples during pregnancy was analyzed by GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for analysis of differentially expressed genes. MCODE - A plug-in of Cytoscape was used for molecular complex detection. STRING, Cytoscape, GeneMANIA, NetworkAnalyst, TransmiR, JASPAR, DGIdb and DrugBank were used in this study. Furthermore, histopathological and cell experiments were used to verify our results. Our study identified the key KEGG pathway and four MCODEs which were closely with ICP development, further, sorted by degree centrality, we showed top 30 genes from 7209 differential genes, such as TP53, SRC, EGFR, ESR1, IL10, CD8A, MAPK3, PTPRC, EGF, KIT, ITGAM, LEP and CSF2, etc. Moreover, these hub genes participated in JAK-STAT3 signaling pathway and STAT1/3 regulated these genes expression in a direct way or miRNA-mediated manner. Drug-target analysis about up-regulated genes among hub genes showed that these genes contained multiple drug action site. Furthermore, hub gene-EGFR was associated with destroyed autophagy and ferroptosis. In conclusion, our study analyzed key genes and pathways in ICP development. JAK-STAT3 pathway and EGFR might be a potential target for ICP therapy.
Collapse
Affiliation(s)
- Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, People's Republic of China
| | - Dajun Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, People's Republic of China.
| |
Collapse
|
61
|
Infante E, Etienne-Manneville S. Intermediate filaments: Integration of cell mechanical properties during migration. Front Cell Dev Biol 2022; 10:951816. [PMID: 35990612 PMCID: PMC9389290 DOI: 10.3389/fcell.2022.951816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Cell migration is a vital and dynamic process required for the development of multicellular organisms and for immune system responses, tissue renewal and wound healing in adults. It also contributes to a variety of human diseases such as cancers, autoimmune diseases, chronic inflammation and fibrosis. The cytoskeleton, which includes actin microfilaments, microtubules, and intermediate filaments (IFs), is responsible for the maintenance of animal cell shape and structural integrity. Each cytoskeletal network contributes its unique properties to dynamic cell behaviour, such as cell polarization, membrane protrusion, cell adhesion and contraction. Hence, cell migration requires the dynamic orchestration of all cytoskeleton components. Among these, IFs have emerged as a molecular scaffold with unique mechanical features and a key player in the cell resilience to mechanical stresses during migration through complex 3D environment. Moreover, accumulating evidence illustrates the participation of IFs in signalling cascades and cytoskeletal crosstalk. Teaming up with actin and microtubules, IFs contribute to the active generation of forces required for cell adhesion and mesenchymal migration and invasion. Here we summarize and discuss how IFs integrate mechanical properties and signalling functions to control cell migration in a wide spectrum of physiological and pathological situations.
Collapse
Affiliation(s)
- Elvira Infante
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
62
|
Devuyst O, Bochud M, Olinger E. UMOD and the architecture of kidney disease. Pflugers Arch 2022; 474:771-781. [PMID: 35881244 PMCID: PMC9338900 DOI: 10.1007/s00424-022-02733-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022]
Abstract
The identification of genetic factors associated with the risk, onset, and progression of kidney disease has the potential to provide mechanistic insights and therapeutic perspectives. In less than two decades, technological advances yielded a trove of information on the genetic architecture of chronic kidney disease. The spectrum of genetic influence ranges from (ultra)rare variants with large effect size, involved in Mendelian diseases, to common variants, often non-coding and with small effect size, which contribute to polygenic diseases. Here, we review the paradigm of UMOD, the gene coding for uromodulin, to illustrate how a kidney-specific protein of major physiological importance is involved in a spectrum of kidney disorders. This new field of investigation illustrates the importance of genetic variation in the pathogenesis and prognosis of disease, with therapeutic implications.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1010, Lausanne, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
63
|
Quispe C, Herrera-Bravo J, Khan K, Javed Z, Semwal P, Painuli S, Kamiloglu S, Martorell M, Calina D, Sharifi-Rad J. Therapeutic applications of curcumin nanomedicine formulations in cystic fibrosis. Prog Biomater 2022; 11:321-329. [PMID: 35904711 DOI: 10.1007/s40204-022-00198-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/17/2022] [Indexed: 12/12/2022] Open
Abstract
Medicinal applications of turmeric-derived curcumin have been known to mankind for long ages. Its potential in managing "cystic fibrosis" has also been evaluated. This autosomal recessive genetic disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which involves an impaired secretion of chloride ions and leads to hypersecretion of thick and sticky mucus and serious complications including airway obstruction, chronic lung infection, and inflammatory reactions. This narrative review aims to highlight the available evidence for the efficacy of curcumin nanoformulations in its potential treatment of cystic fibrosis. Recent research has shown that curcumin acts on the localized mutant CFTR ion channel at the plasma membrane. Preclinical studies have also shown that curcumin nanoformulations have promising effects in the treatment of cystic fibrosis. In this context, the purpose of this narrative review is to highlight the general bioactivity of curcumin, the types of formulations and related studies, thus opening new therapeutic perspectives for CF.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Bogotá, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Zeeshan Javed
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, India.,Uttarakhand State Council for Science and Technology, Dehradun, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059, Gorukle, Bursa, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
64
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
65
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
66
|
Weng Y, Wang H, Wu D, Xu S, Chen X, Huang J, Feng Y, Li L, Wang Z. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL. Cell Res 2022; 32:814-830. [PMID: 35821090 PMCID: PMC9436969 DOI: 10.1038/s41422-022-00687-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bone regeneration originates from proliferation and differentiation of osteoprogenitors via either endochondral or intramembranous ossification; and the regeneration capacities decline with age and estrogen loss. Maxillary sinus floor lifting (MSFL) is a commonly used surgical procedure for guiding bone regeneration in maxilla. Radiographic analysis of 1210 clinical cases of maxilla bone regeneration after MSFL revealed that the intrasinus osteogenic efficacy was independent of age and gender, however; and this might be related to the Schneiderian membrane that lines the sinus cavity. In view of the particularity of this biological process, our present study aimed to elucidate the underlying mechanism of MSFL-induced bone regeneration. We first established a murine model to simulate the clinical MSFL. By single-cell RNA-sequencing and flow cytometry-based bulk RNA-sequencing, we identified a novel Krt14+Ctsk+ subset of cells that display both epithelial and mesenchymal properties and the transcriptomic feature of osteoprogenitors. Dual recombinases-mediated lineage tracing and loss-of-function analyses showed that these Krt14+Ctsk+ progenitors contribute to both MSFL-induced osteogenesis and physiological bone homeostasis by differentiating into Krt14-Ctsk+ descendants which show robust osteogenic capacity. In addition, we detected a similar population of Krt14+Ctsk+ cells in human samples of Schneiderian membrane, which show a highly similar osteogenic potential and transcriptomic feature to the corresponding cells in mice. The identification of this Krt14+Ctsk+ population, featured by osteoprogenitor characteristics and dual epithelial-mesenchymal properties, provides new insight into the understanding of bone regeneration and may open more possibilities for clinical applications.
Collapse
Affiliation(s)
- Yuteng Weng
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Di Wu
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuyu Xu
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaofan Chen
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jie Huang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yanhuizhi Feng
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lin Li
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
67
|
Feng CC, Lu WF, Liu YC, Liu TH, Chen YC, Chien HW, Wei Y, Chang HW, Yu J. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J Mater Chem B 2022; 10:4878-4888. [PMID: 35698997 DOI: 10.1039/d2tb00898j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrollable bleeding and infection are two of the most common causes of trauma-related death. Yet, developing safe materials with high hemostatic and antibacterial effectiveness remains a challenge. Keratin-based biomaterials have been reported to exhibit the functions of enhancing platelet binding and activating and facilitating fibrinogen polymerization. In this study, we designed a hemostatic material with good biodegradability, biocompatibility, hemostatic ability, and antibacterial function to solve the shortcomings of common hemostatic materials. Methylene blue-loaded keratin/alginate composite scaffolds were prepared by the freeze-gelation method. The composite scaffolds exhibited over 1600% liquid absorption, well-interconnected pores, good biocompatibility, and biodegradability. We find that the keratin/alginate composite scaffolds' synergistic action may significantly reduce hemostasis time. To prevent infection, the drug-loaded scaffolds generated high burst release by absorbing wound exudate in the early stages of wound healing. The results obtained by the antimicrobial photoinactivation assay in vitro suggest that an antimicrobial photodynamic effect might be triggered, thereby preventing the fast growth of colonies.
Collapse
Affiliation(s)
- Ching-Chih Feng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Chen Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
68
|
Yoon S, Windoffer R, Kozyrina AN, Piskova T, Di Russo J, Leube RE. Combining Image Restoration and Traction Force Microscopy to Study Extracellular Matrix-Dependent Keratin Filament Network Plasticity. Front Cell Dev Biol 2022; 10:901038. [PMID: 35646906 PMCID: PMC9131083 DOI: 10.3389/fcell.2022.901038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.
Collapse
Affiliation(s)
- Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aleksandra N Kozyrina
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
69
|
Zhang W, Lan X, Zhu J, Zhang C, Huang Y, Mo K, Tan J, Guo H, Huang H, Li M, Ouyang H, Wang L. Healing Ability of Central Corneal Epithelium in Rabbit Ocular Surface Injury Models. Transl Vis Sci Technol 2022; 11:28. [PMID: 35771535 PMCID: PMC9251814 DOI: 10.1167/tvst.11.6.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Wound healing of the corneal epithelium mainly involves two types of cells: limbal stem/progenitor cells (LSCs) and differentiated central corneal epithelial cells (CECs). The healing ability of CECs is still debatable, and its correlated transcriptomic alterations during wound healing are yet to be elucidated. This study aimed to determine the healing ability and mechanisms underlying the actions of CECs using rabbit ocular surface injury models. Methods A central corneal ring-like residual epithelium model was used to investigate the healing ability of CECs. Uninjured and injury-stimulated LSCs and CECs were collected for transcriptomic analysis. The analysis results were verified by quantitative reverse transcriptase polymerase chain reaction, immunofluorescence staining, and two types of rabbit corneal injury models. Results During wound healing, the upregulated genes in LSCs were mostly enriched in the mitotic cell cycle–related processes, but those in CECs were mostly enriched in cell adhesion and migration. CECs could repair the epithelial defects successfully at one-time injuries. However, after repetitive injuries, the CECs repaired notably slower and failed to completely heal the defect, but the LSCs repaired even faster than the one-time injury. Conclusions Our results indicated rabbit CECs repair the epithelial defect mainly depending on migration and its proliferative ability is limited, and LSCs are the main source of regenerative epithelial cells. Translational Relevance This study provides information on gene expression in the corneal epithelium during wound healing, indicating that regulation of the cell cycle, cell adhesion, and migration may be the basis for future treatment strategies for corneal wound healing.
Collapse
Affiliation(s)
- Wang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
70
|
Wang Y, Xu Y, Zhang Z, He Y, Hou Z, Zhao Z, Deng J, Qing R, Wang B, Hao S. Rational Design of High-Performance Keratin-Based Hemostatic Agents. Adv Healthc Mater 2022; 11:e2200290. [PMID: 35613419 DOI: 10.1002/adhm.202200290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/17/2022] [Indexed: 12/17/2022]
Abstract
Keratins are considered ideal candidates as hemostatic agents, but the development lags far behind their potentials due to the poorly understood hemostatic mechanism and structure-function relations, owing to the composition complexity in protein extracts. Here, it is shown that by using a recombinant synthesis approach, individual types of keratins can be expressed and used for mechanism investigation and further high-performance keratin hemostatic agent design. In the comparative evaluation of full-length, rod-domain, and helical segment keratins, the α-helical contents in the sequences are identified to be directly proportional to keratins' hemostatic activities, and Tyr, Phe, and Gln residues at the N-termini of α-helices in keratins are crucial in fibrinopeptide release and fibrin polymerization. A feasible route to significantly enhance the hemostatic efficiency of helical keratins by mutating Cys to Ser in the sequences for enhanced water wettability through soluble expression is then further presented. These results provide a rational strategy to design high-efficiency keratin hemostatic agents with superior performance over clinically used gelatin sponge in multiple animal models.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
- Department of Nuclear Medicine Chongqing University Cancer Hospital Chongqing 400044 China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Jia Deng
- College of Environment and Resources Chongqing Technology and Business University Chongqing 400067 China
| | - Rui Qing
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| |
Collapse
|
71
|
Zhang H, Zhang Y, Feng Z, Lu L, Li Y, Liu Y, Chen Y. Analysis of the Expression and Role of Keratin 17 in Human Tumors. Front Genet 2022; 13:801698. [PMID: 35646078 PMCID: PMC9133940 DOI: 10.3389/fgene.2022.801698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: We aimed to explore the expression and carcinogenic effect of KRT17 in human tumors and provide useful information for the study of KRT17. Methods: We used databases including the Cancer Genome Atlas, Gene Expression Omnibus, GTEx, and GEPIA2 to analyze the expression, mutation, and prognosis of KRT17 in human tumors. Through webservers, including UALCAN, TIMER2.0, and STRING, we learned about the genetic variation, immune cell penetration, and enrichment analysis of KRT17-related genes. Results: KRT17 was highly expressed in most tumors (such as esophageal cancer, lung cancer, cervical cancer, etc.), and the high expression level correlated with tumor stage and prognosis. In addition, amplification was the main type of KRT17 tumor variation, with an amplification rate of about 9%, followed by mutation, with a mutation rate of 4%. Moreover, KRT17 was strongly associated with tumor-infiltrating immune cells (such as macrophages, CD8+T, Tregs, and cancer-associated fibroblasts). KEGG analysis suggested that KRT17 may play a role in tumor pathogenesis following human papillomavirus infection, and the gene ontology enrichment analysis indicated that the carcinogenicity of KRT17 can be attributed to cadherin binding, intermediate fibrocytoskeleton and epidermal development. Conclusion: KRT17 may play an important role in the occurrence, development, and prognosis of malignant tumors. We provided a relatively comprehensive description of the carcinogenic role of KRT17 in different tumors for the first time.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yun Zhang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhiyu Feng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
72
|
Chen J, Ge SJ, Feng HJ, Wu SZ, Ji R, Huang WR, Huang W, Lu CH. KRT17 Promotes the Activation of HSCs via EMT in Liver Fibrosis. J Clin Transl Hepatol 2022; 10:207-218. [PMID: 35528988 PMCID: PMC9039702 DOI: 10.14218/jcth.2021.00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/19/2021] [Accepted: 06/06/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Although activation of hepatic stellate cells (HSCs) plays a central role in the development of liver fibrosis, the mechanism underlying the activation of HSCs remains unclear. Keratin 17 (KRT17), a member of the intermediate filament family, can regulate tumor cell proliferation and migration. The current study aimed to elucidate the role of KRT17 in the activation of HSCs and the mechanisms underlying liver fibrosis. METHODS The expression of KRT17 was determined using immunohistochemistry in tissue microarray. Western blotting and qRT-PCR assays were used to determine the KRT17 expression in fibrotic liver tissues obtained from human subjects and mice. LX-2 cells were treated with TGF-β1 recombinant protein and adipocyte differentiation mixture (MDI) mix to induce and reverse LX-2 cell activation, respectively, in order to explore the correlation between KRT17 and HSC activation. Additionally, cell proliferation and migration abilities of LX-2 cells transfected with KRT17-overexpressing plasmid or small interfering RNA were determined using CCK-8, flow cytometry, Transwell, and wound healing assays. Finally, rescue assay was used to explore the role of KRT17 in HSC activation and epithelial-mesenchymal transition (EMT). RESULTS The expression of KRT17 was higher in the human and mouse fibrotic liver tissues than in healthy liver tissues, and it was positively correlated with HSC activation. Upregulated KRT17 enhanced proliferation, migration, HSC activation and EMT in LX-2 cells, while knockdown of KRT17 reversed these effects. TGF-β1 recombinant protein accelerated KRT17-mediated EMT, HSC activation and proliferation, while TGF-β1 inhibitor counteracted the effect of KRT17 in vitro. CONCLUSIONS KRT17 promoted HSC activation, proliferation and EMT in hepatic fibrosis probably via TGF-β1 signaling, and KRT17 might serve as a therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Si-Jia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Hai-Juan Feng
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu-Zhen Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Ran Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei-Rong Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Correspondence to: Wei Huang and Cui-Hua Lu, Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China. ORCID: https://orcid.org/0000-0001-8471-530X (WH), https://orcid.org/0000-0002-1377-5820 (CHL). Tel: +86-13962991839 (WH), +86-13962801685 (CHL), Fax: +86-513-8116-1826, E-mail: (WH), (CHL)
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Correspondence to: Wei Huang and Cui-Hua Lu, Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China. ORCID: https://orcid.org/0000-0001-8471-530X (WH), https://orcid.org/0000-0002-1377-5820 (CHL). Tel: +86-13962991839 (WH), +86-13962801685 (CHL), Fax: +86-513-8116-1826, E-mail: (WH), (CHL)
| |
Collapse
|
73
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
74
|
Joseph CB, Mariniello M, Yoshifuji A, Schiano G, Lake J, Marten J, Richmond A, Huffman JE, Campbell A, Harris SE, Troyanov S, Cocca M, Robino A, Thériault S, Eckardt KU, Wuttke M, Cheng Y, Corre T, Kolcic I, Black C, Bruat V, Concas MP, Sala C, Aeschbacher S, Schaefer F, Bergmann S, Campbell H, Olden M, Polasek O, Porteous DJ, Deary IJ, Madore F, Awadalla P, Girotto G, Ulivi S, Conen D, Wuehl E, Olinger E, Wilson JF, Bochud M, Köttgen A, Hayward C, Devuyst O. Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. J Am Soc Nephrol 2022; 33:511-529. [PMID: 35228297 PMCID: PMC8975067 DOI: 10.1681/asn.2021040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. METHODS We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. RESULTS Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. CONCLUSIONS Common variants in KRT40, WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function.
Collapse
Affiliation(s)
- Christina B Joseph
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Marta Mariniello
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ayumi Yoshifuji
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Guglielmo Schiano
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jennifer Lake
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Richmond
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Huffman
- Center for Population Genomics,VA Boston Healthcare System, Jamaica Plain, Massachusetts
- The Framingham Heart Study, Framingham, Massachusetts
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephan Troyanov
- Division of Nephrology, Hôpital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Tanguy Corre
- Center for Primary Care and Public Health (Unisante), University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Corrinda Black
- Aberdeen Centre for Health Data Science, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Vanessa Bruat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Maria Pina Concas
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - Cinzia Sala
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Olden
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Francois Madore
- Division of Nephrology, Hôpital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Philip Awadalla
- Division of Nephrology, Hôpital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Giorgia Girotto
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo" 34127 Trieste, Italy
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Elke Wuehl
- Cardiology Division, University Hospital Basel, Basel, Switzerland
| | - Eric Olinger
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
- Translational and Clinical Research Institute, Newcastle upon Tyne, Newcastle, United Kingdom
| | - James F Wilson
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisante), University of Lausanne, Lausanne, Switzerland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
75
|
Wang L, Zhang J, Su Y, Maimaitiyiming Y, Yang S, Shen Z, Lin S, Shen S, Zhan G, Wang F, Hsu CH, Cheng X. Distinct Roles of m5C RNA Methyltransferase NSUN2 in Major Gynecologic Cancers. Front Oncol 2022; 12:786266. [PMID: 35280737 PMCID: PMC8916577 DOI: 10.3389/fonc.2022.786266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/24/2022] [Indexed: 01/01/2023] Open
Abstract
RNA methylation has recently emerged as an important category of epigenetic modifications, which plays diverse physiopathological roles in various cancers. Recent studies have confirmed the presence of 5-methylcytosine (m5C) modification on mammalian mRNAs, mainly modified by NOP2/Sun RNA methyltransferase family member 2 (NSUN2), but little is known about the underlying functions of m5C. Gynecologic cancers are malignancies starting from women’s reproductive organs. The prevalence of gynecologic cancers leads to a massive economic burden and public health concern. In this study, we investigated the potential biological functions of NSUN2 in common gynecologic cancers including cervical cancer, ovarian cancer, and endometrial cancer. Remarkably, distinct scenarios were found. The levels of NSUN2 did not show alteration in endometrial cancer, and in ovarian cancer, depletion of upregulated NSUN2 did not reduce carcinogenesis in cancer cells, suggesting that the upregulated NSUN2 might be an incidental effect. On the contrary, NSUN2 played a role in tumorigenesis of cervical cancer; depletion of upregulated NSUN2 notably inhibited migration and invasion of cancer cells, and only wild-type but not catalytically inactive NSUN2 rescued these malignant phenotypes of cancer cells. Mechanistically, NSUN2 promoted migration and invasion by leading to m5C methylation on keratin 13 (KRT13) transcripts, and methylated KRT13 transcripts would be recognized and stabilized by an m5C reader, Y-box binding protein 1 (YBX1). Collectively, these results not only displayed the nature of diversity among human malignancies, but also demonstrated a novel NSUN2-dependent m5C-YBX1-KRT13 oncogenic regulatory pathway.
Collapse
Affiliation(s)
- Lingfang Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfeng Su
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology of First Affiliated Hospital and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Yang
- Department of Clinical Research Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangjin Shen
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shizhen Shen
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guankai Zhan
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenfen Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chih-Hung Hsu, ; Xiaodong Cheng,
| | - Xiaodong Cheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chih-Hung Hsu, ; Xiaodong Cheng,
| |
Collapse
|
76
|
Zhang H, Zhang Y, Xia T, Lu L, Luo M, Chen Y, Liu Y, Li Y. The Role of Keratin17 in Human Tumours. Front Cell Dev Biol 2022; 10:818416. [PMID: 35281081 PMCID: PMC8912659 DOI: 10.3389/fcell.2022.818416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Keratins are a group of proteins that can constitute intermediate fibers. It is a component of the cytoskeleton and plays an important role in cell protection and structural support. Keratin 17, a Type I keratin, is a multifunctional protein that regulates a variety of biological processes, including cell growth, proliferation, migration, apoptosis and signal transduction. Abnormal expression of KRT17 is associated with a variety of diseases, such as skin diseases. In recent years, studies have shown that KRT17 is abnormally expressed in a variety of malignant tumours, such as lung cancer, cervical cancer, oral squamous cell carcinoma and sarcoma. These abnormal expressions are related to the occurrence, development and prognosis of malignant tumors. In this review, we summarized the expression patterns of KRT17 in a variety of malignant tumours, the role of KRT17 in the development and prognosis of different malignant tumors and its molecular mechanisms. We also discuss the potential clinical application of KRT17 as a valuable therapeutic target.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yun Zhang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Tingting Xia
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| |
Collapse
|
77
|
Windoffer R, Schwarz N, Yoon S, Piskova T, Scholkemper M, Stegmaier J, Bönsch A, Di Russo J, Leube R. Quantitative mapping of keratin networks in 3D. eLife 2022; 11:75894. [PMID: 35179484 PMCID: PMC8979588 DOI: 10.7554/elife.75894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Andrea Bönsch
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
78
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
79
|
Fuchs P, Drexler C, Ratajczyk S, Eckhart L. Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Sci Rep 2022; 12:1112. [PMID: 35064199 PMCID: PMC8782857 DOI: 10.1038/s41598-022-05087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The adaptation of vertebrates to different environments was associated with changes in the molecular composition and regulation of epithelia. Whales and dolphins, together forming the clade cetaceans, have lost multiple epithelial keratins during or after their evolutionary transition from life on land to life in water. It is unknown whether the changes in keratins were accompanied by gain or loss of cytoskeletal adapter proteins of the plakin family. Here we investigated whether plakin proteins are conserved in cetaceans and other vertebrates. Comparative analysis of genome sequences showed conservation of dystonin, microtubule actin crosslinking factor 1 (MACF1), plectin, desmoplakin, periplakin and envoplakin in cetaceans. By contrast, EPPK1 (epiplakin) was disrupted by inactivating mutations in all cetaceans investigated. Orthologs of EPPK1 are present in bony and cartilaginous fishes and tetrapods, indicating an evolutionary origin of EPPK1 in a common ancestor of jawed vertebrates (Gnathostomes). In many vertebrates, EPPK1 is flanked by an as-yet uncharacterized gene that encodes protein domains homologous to the carboxy-terminal segment of MACF1. We conclude that epiplakin, unlike other plakins, was lost in cetaceans.
Collapse
Affiliation(s)
- Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria.
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
80
|
Yang HC, Xing ZK, Shao H, Tan XW, Wang EQ, Liao Y, Chen HJ, Wu XW, Chen XL, Zhang SJ. The expression of cytokeratin and apoptosis-related molecules in echinococcosis related liver injury. Mol Biochem Parasitol 2022; 248:111455. [PMID: 35016896 DOI: 10.1016/j.molbiopara.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 10/25/2022]
Abstract
The study aimed to investigate the expression of cytokeratin and apoptosis-related molecules in the livers of two types of hepatic echinococcosis mice models and to preliminarily explore the relationship between the expression of cytokeratin and apoptosis in echinococcosis related liver injury. We established a mouse model infected by Echinococcus granulosus and Echinococcus multilocularis and observed the expression of cytokeratin and apoptosis related proteins in the two types of hepatic echinococcosis tissues during different stages by immunohistochemical staining. A co-culture model was established using normal hepatocytes and different concentrations of E. granulosus and E. multilocularis protoscoleces. Cell Counting Kit-8 was used to detect cell proliferation, flow cytometry was used to detect hepatocyte apoptosis, and western blot was used to quantify cytokeratin and apoptosis-related proteins, such as caspase3, caspase9, Bcl-2, and Bax. Surgical specimens were obtained from patients with hepatic echinococcosis to analyze the expressions of cytokeratin, caspase3, caspase9, Bcl-2, and Bax by western blot. The expressions of cytokeratin and caspase3 were analyzed by immunohistochemistry. The qRT-PCR method was used to determine the expression of CK8 and CK18 in the liver tissues. In vivo experiments showed that compared to that in the control group, the cytokeratin and caspase3 proteins in the liver tissues of the two types of hepatic echinococcosis were strongly expressed around the lesions of liver echinococcosis; there was a difference between cytokeratin expression of the two different echinococcosis parasites in the liver. Echinococcus granulosus and Echinococcus multilocularis in the co-culture model in vitro could promote the expression of CK, caspase3, caspase9, and Bax protein, decrease the expression of Bcl-2, promote hepatocyte apoptosis, and inhibit cell proliferation; in clinical samples, we found that compared with that in the normal tissues, the expression of cytokeratin, caspase3, caspase9, and Bax in echinococcus tissues was high, but that in Bcl-2 was low. Furthermore, the expression of CK8 and CK18 mRNA were higher in echinococcus tissues than that in the normal tissues and immunohistochemistry analysis also showed that cytokeratin and caspase3 levels were higher in echinococcus tissues than that in the normal tissues. The expression of cytokeratin and apoptosis-related molecules, reflecting liver damage, is high in the liver and is caused due to hepatic echinococcosis. This study provides the first evidence of cytokeratin could be useful for evaluating liver tissue damage caused by echinococcus infection.
Collapse
Affiliation(s)
- H C Yang
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Z K Xing
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - H Shao
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X W Tan
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - E Q Wang
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Y Liao
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - H J Chen
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X W Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X L Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - S J Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China.
| |
Collapse
|
81
|
Peskoller M, Bhosale A, Göbel K, Löhr J, Miceli S, Perot S, Persa O, Rübsam M, Shah J, Zhang H, Niessen CM. ESDR 50th Anniversary Lecture summary: How to build and regenerate a functional skin barrier: the adhesive and cell shaping travels of a keratinocyte. J Invest Dermatol 2022; 142:1020-1025. [DOI: 10.1016/j.jid.2021.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
|
82
|
Baraks G, Tseng R, Pan CH, Kasliwal S, Leiton CV, Shroyer KR, Escobar-Hoyos LF. Dissecting the Oncogenic Roles of Keratin 17 in the Hallmarks of Cancer. Cancer Res 2021; 82:1159-1166. [PMID: 34921015 PMCID: PMC9016724 DOI: 10.1158/0008-5472.can-21-2522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Gabriella Baraks
- Undergraduate Program in Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Robert Tseng
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Chun-Hao Pan
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Molecular and Cellular Biology Graduate Program, Stony Brook University, New York
| | - Saumya Kasliwal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Cindy V. Leiton
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Kenneth R. Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Corresponding Authors: Kenneth R. Shroyer, Pathology, Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794. Phone: 631-444-3000; E-mail: Kenneth.; and Luisa F. Escobar-Hoyos, 15 York Street PO Box 208040, New Haven, CT 06513. Phone: 203-737-2003; E-mail:
| | - Luisa F. Escobar-Hoyos
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Department of Therapeutic Radiology and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Corresponding Authors: Kenneth R. Shroyer, Pathology, Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794. Phone: 631-444-3000; E-mail: Kenneth.; and Luisa F. Escobar-Hoyos, 15 York Street PO Box 208040, New Haven, CT 06513. Phone: 203-737-2003; E-mail:
| |
Collapse
|
83
|
Gross A, Zhou B, Bewersdorf L, Schwarz N, Schacht GM, Boor P, Hoeft K, Hoffmann B, Fuchs E, Kramann R, Merkel R, Leube RE, Strnad P. Desmoplakin Maintains Transcellular Keratin Scaffolding and Protects From Intestinal Injury. Cell Mol Gastroenterol Hepatol 2021; 13:1181-1200. [PMID: 34929421 PMCID: PMC8873596 DOI: 10.1016/j.jcmgh.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Desmosomes are intercellular junctions connecting keratin intermediate filaments of neighboring cells. The cadherins desmoglein 2 (Dsg2) and desmocollin 2 mediate cell-cell adhesion, whereas desmoplakin (Dsp) provides the attachment of desmosomes to keratins. Although the importance of the desmosome-keratin network is well established in mechanically challenged tissues, we aimed to assess the currently understudied function of desmosomal proteins in intestinal epithelia. METHODS We analyzed the intestine-specific villin-Cre DSP (DSPΔIEC) and the combined intestine-specific DSG2/DSPΔIEC (ΔDsg2/Dsp) knockout mice. Cross-breeding with keratin 8-yellow fluorescent protein knock-in mice and generation of organoids was performed to visualize the keratin network. A Dsp-deficient colorectal carcinoma HT29-derived cell line was generated and the role of Dsp in adhesion and mechanical stress was studied in dispase assays, after exposure to uniaxial cell stretching and during scratch assay. RESULTS The intestine of DSPΔIEC mice was histopathologically inconspicuous. Intestinal epithelial cells, however, showed an accelerated migration along the crypt and an enhanced shedding into the lumen. Increased intestinal permeability and altered levels of desmosomal proteins were detected. An inconspicuous phenotype also was seen in ΔDsg2/Dsp mice. After dextran sodium sulfate treatment, DSPΔIEC mice developed more pronounced colitis. A retracted keratin network was seen in the intestinal epithelium of DSPΔIEC/keratin 8-yellow fluorescent protein mice and organoids derived from these mice presented a collapsed keratin network. The level, phosphorylation status, and solubility of keratins were not affected. Dsp-deficient HT29 cells had an impaired cell adhesion and suffered from increased cellular damage after stretch. CONCLUSIONS Our results show that Dsp is required for proper keratin network architecture in intestinal epithelia, mechanical resilience, and adhesion, thereby protecting from injury.
Collapse
Affiliation(s)
- Annika Gross
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Biaohuan Zhou
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gabriel M. Schacht
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, Department of Nephrology, University Hospital Aachen, Aachen, Germany
| | - Konrad Hoeft
- Department of Medicine II, University Hospital Aachen, Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing 2, Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| | - Rafael Kramann
- Department of Medicine II, University Hospital Aachen, Aachen, Germany,Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany,Correspondence Address correspondence to: Pavel Strnad, MD, Department of Internal Medicine III, University Hospital Aachen, Pauwelsstraße 30, D-52074, Aachen, Germany
| |
Collapse
|
84
|
Ji R, Ji Y, Ma L, Ge S, Chen J, Wu S, Huang T, Sheng Y, Wang L, Yi N, Liu Z. Keratin 17 upregulation promotes cell metastasis and angiogenesis in colon adenocarcinoma. Bioengineered 2021; 12:12598-12611. [PMID: 34935584 PMCID: PMC8809968 DOI: 10.1080/21655979.2021.2010393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Colon adenocarcinoma (COAD), having high malignancy and poor prognosis, is the main pathological type of colon cancer. Previous studies show that Keratin 17 (KRT17) plays an important role in the development of many malignant tumors. However, its role and the molecular mechanism underlying COAD remain unclear. Using TCGA and ONCOMINE databases, as well as immunohistochemistry, we found that the expression of KRT17 was higher in COAD tissues as compared to that in the adjacent normal tissues. Cell- and animal-based experiments showed that overexpression of KRT17 promoted the invasion and metastasis of colon cancer cells while knocking down KRT17 reversed these processes both in vitro and in vivo. In addition, we also showed that KRT17 promoted the formation of new blood vessels. Mechanistically, KRT17 could regulate the WNT/β-catenin signaling pathway, and APC may be involved in this process by interacting with KRT17. In summary, these findings suggested that high expression of KRT17 could promote cell metastasis and angiogenesis of colon cancer cells by regulating the WNT/β-catenin signaling pathway. Thus, KRT17 could be a potential therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Ran Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yifei Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lin Ma
- Department of Gastroenterology, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Sijia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuzhen Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianxin Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Sheng
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Liyang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Nan Yi
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
85
|
Konop M, Rybka M, Drapała A. Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 2021; 13:2029. [PMID: 34959311 PMCID: PMC8705570 DOI: 10.3390/pharmaceutics13122029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials' properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.
Collapse
Affiliation(s)
- Marek Konop
- Laboratory of Center for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.D.)
| | | | | |
Collapse
|
86
|
Mauldin EA, Elias PM. Ichthyosis and hereditary cornification disorders in dogs. Vet Dermatol 2021; 32:567-e154. [PMID: 34796560 DOI: 10.1111/vde.13033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
The stratum corneum (SC), the outermost layer of the epidermis, serves a crucial role in maintaining body hydration and protection from environmental insults. When the stratum corneum is injured or when the genetic blueprints are flawed, the body is at risk of dehydration, secondary infections and allergen sensitization. Advancements in veterinary dermatology have revealed a wide gamut of disease from relatively benign to lethal that specifically arise from flawed structural proteins, enzymes or lipids needed to create the corneocytes and lipid bilayers of the SC. Some conditions closely mimic their human counterparts while others are unique to the dog. This review will focus on forms of ichthyosis in the dog.
Collapse
Affiliation(s)
- Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - Peter M Elias
- Veterans Affairs Medical Center San Francisco, California, Department of Dermatology, University of California San Francisco, San Franciso, California, 150 Clement Street, Dermatology MS 190, San Francisco, CA, 94121, USA
| |
Collapse
|
87
|
Miyauchi K, Ki S, Ukai M, Suzuki Y, Inoue K, Suda W, Matsui T, Ito Y, Honda K, Koseki H, Ohara O, Tanaka RJ, Okada-Hatakeyama M, Kubo M. Essential Role of STAT3 Signaling in Hair Follicle Homeostasis. Front Immunol 2021; 12:663177. [PMID: 34867936 PMCID: PMC8635990 DOI: 10.3389/fimmu.2021.663177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Dominant-negative mutations associated with signal transducer and activator of transcription 3 (STAT3) signaling, which controls epithelial proliferation in various tissues, lead to atopic dermatitis in hyper IgE syndrome. This dermatitis is thought to be attributed to defects in STAT3 signaling in type 17 helper T cell specification. However, the role of STAT3 signaling in skin epithelial cells remains unclear. We found that STAT3 signaling in keratinocytes is required to maintain skin homeostasis by negatively controlling the expression of hair follicle-specific keratin genes. These expression patterns correlated with the onset of dermatitis, which was observed in specific pathogen-free conditions but not in germ-free conditions, suggesting the involvement of Toll-like receptor-mediated inflammatory responses. Thus, our study suggests that STAT3-dependent gene expression in keratinocytes plays a critical role in maintaining the homeostasis of skin, which is constantly exposed to microorganisms.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Masao Ukai
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Graduate School of Medical Life Sciences, Yokohama City University, Yokohama, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Kentaro Inoue
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki-shi, Japan
| | - Wataru Suda
- Laboratory for Microbiome science, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takeshi Matsui
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Yoshihiro Ito
- Laboratory for Gut Homeostasis, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Kenya Honda
- Laboratory for Gut Homeostasis, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Kanagawa, Japan
- Laboratory for Developmental Genetics, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Graduate School of Medical Life Sciences, Yokohama City University, Yokohama, Japan
- Institute for Protein Research, Osaka University, Suita-shi, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Japan
- *Correspondence: Masato Kubo,
| |
Collapse
|
88
|
Lengi A, Makris M, Corl B. A flow cytometric method for measuring and isolating mammary epithelial cells from bovine milk. JDS COMMUNICATIONS 2021; 2:426-430. [PMID: 36337102 PMCID: PMC9623637 DOI: 10.3168/jdsc.2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
Flow cytometry using an antibody against butyrophilin allows quantification of mammary epithelial cells in milk. Sorting butyrophilin-positive or CD45-negative cells isolates epithelial cells from milk. Selection for cytokeratin was not effective in this flow cytometry application.
Sampling frequent time points of mammary signaling pathways is not possible with tissue biopsies. We have validated a flow cytometry and cell sorting procedure for isolating live bovine mammary epithelial cells from somatic cell populations in milk using butyrophilin 1A1 as a marker for mammary epithelial cells and CD45 as a marker for hematopoietic cells. Hoechst 33342 staining and propidium iodide exclusion were used to select for nucleated live cells. Positive selection of butyrophilin (BTN)-expressing cells was performed by fluorescence-activated cell sorting. Quantitative real-time PCR performed on mRNA isolated from these cells showed a 226-fold increase in κ-casein (CSN3) mRNA expression in BTN single-positive cells compared with unsorted cells, whereas CD45 single-positive cells showed a significant decrease. A negative selection strategy for cells not expressing the hematopoietic cell marker CD45 also resulted in a cell population with a 196-fold increase in CSN3 mRNA expression compared with unsorted cells. We found no enrichment of CSN3 mRNA expression after sorting cells using cytokeratin antibodies. The noninvasive assays described here allow for daily or more frequent sampling time points for measurement of mammary epithelial cells during the course of lactation.
Collapse
Affiliation(s)
- A.J. Lengi
- Department of Dairy Science, Virginia Tech, Blacksburg 24061-0315
| | - M. Makris
- Flow Cytometry Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg 24061
| | - B.A. Corl
- Department of Dairy Science, Virginia Tech, Blacksburg 24061-0315
- Corresponding author
| |
Collapse
|
89
|
Sharma P, Tiufekchiev S, Lising V, Chung SW, Suk JS, Chung BM. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021; 32:ar21. [PMID: 34406791 PMCID: PMC8693971 DOI: 10.1091/mbc.e21-05-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Victoria Lising
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Seung Woo Chung
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
90
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
91
|
Yu B, Kong D, Cheng C, Xiang D, Cao L, Liu Y, He Y. Assembly and recognition of keratins: A structural perspective. Semin Cell Dev Biol 2021; 128:80-89. [PMID: 34654627 DOI: 10.1016/j.semcdb.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Keratins are one of the major components of cytoskeletal network and assemble into fibrous structures named intermediate filaments (IFs), which are important for maintaining the mechanical properties of cells and tissues. Over the past decades, evidence has shown that the functions of keratins go beyond providing mechanical support for cells, they interact with multiple cellular components and are widely involved in the pathways of cell proliferation, differentiation, motility and death. However, the structural details of keratins and IFs are largely missing and many questions remain regarding the mechanisms of keratin assembly and recognition. Here we briefly review the current structural models and assembly of keratins as well as the interactions of keratins with the binding partners, which may provide a structural view for understanding the mechanisms of keratins in the biological activities and the related diseases.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dandan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
92
|
Zhang W, Liu M, Dupont RL, Huang K, Yu L, Liu S, Wang X, Wang C. Conservation and Identity Selection of Cationic Residues Flanking the Hydrophobic Regions in Intermediate Filament Superfamily. Front Chem 2021; 9:752630. [PMID: 34540811 PMCID: PMC8443778 DOI: 10.3389/fchem.2021.752630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
The interplay between the hydrophobic interactions generated by the nonpolar region and the proximal functional groups within nanometers of the nonpolar region offers a promising strategy to manipulate the intermolecular hydrophobic attractions in an artificial molecule system, but the outcomes of such modulations in the building of a native protein architecture remain unclear. Here we focus on the intermediate filament (IF) coiled-coil superfamily to assess the conservation of positively charged residue identity via a biostatistical approach. By screening the disease-correlated mutations throughout the IF superfamily, 10 distinct hotspots where a cation-to-cation substitution is associated with a pathogenic syndrome have been identified. The analysis of the local chemical context surrounding the hotspots revealed that the cationic diversity depends on their separation distance to the hydrophobic domain. The nearby cationic residues flanking the hydrophobic domain of a helix (separation <1 nm) are relatively conserved in evolution. In contrast, the cationic residues that are not adjacent to the hydrophobic domain (separation >1 nm) tolerate higher levels of variation and replaceability. We attribute this bias in the conservation degree of the cationic residue identity to reflect the interplay between the proximal cations and the hydrophobic interactions.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Kai Huang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing, China
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States.,Sustainability Institute, The Ohio State University, Columbus, OH, United States
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
93
|
Keratin 8/18 Regulate the Akt Signaling Pathway. Int J Mol Sci 2021; 22:ijms22179227. [PMID: 34502133 PMCID: PMC8430995 DOI: 10.3390/ijms22179227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Keratin 8 and keratin 18 (K8/K18) are intermediate filament proteins that form the obligate heteropolymers in hepatocytes and protect the liver against toxins. The mechanisms of protection include the regulation of signaling pathway associated with cell survival. Previous studies show K8/K18 binding with Akt, which is a well-known protein kinase involved in the cell survival signaling pathway. However, the role of K8/K18 in the Akt signaling pathway is unclear. In this study, we found that K8/K18-Akt binding is downregulated by K8/K18 phosphorylation, specifically phosphorylation of K18 ser7/34/53 residues, whereas the binding is upregulated by K8 gly-62-cys mutation. K8/K18 expression in cultured cell system tends to enhance the stability of the Akt protein. A comparison of the Akt signaling pathway in a mouse system with liver damage shows that the pathway is downregulated in K18-null mice compared with nontransgenic mice. K18-null mice with Fas-induced liver damage show enhanced apoptosis combined with the downregulation of the Akt signaling pathway, i.e., lower phosphorylation levels of GSK3β and NFκB, which are the downstream signaling factors in the Akt signaling pathway, in K18-null mice compared with the control mice. Our study indicates that K8/K18 expression protects mice from liver damage by participating in enhancing the Akt signaling pathway.
Collapse
|
94
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
95
|
Weber MS, Eibauer M, Sivagurunathan S, Magin TM, Goldman RD, Medalia O. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. eLife 2021; 10:70307. [PMID: 34323216 PMCID: PMC8360650 DOI: 10.7554/elife.70307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Keratin intermediate filaments are an essential and major component of the cytoskeleton in epithelial cells. They form a stable yet dynamic filamentous network extending from the nucleus to the cell periphery, which provides resistance to mechanical stresses. Mutations in keratin genes are related to a variety of epithelial tissue diseases. Despite their importance, the molecular structure of keratin filaments remains largely unknown. In this study, we analyzed the structure of keratin 5/keratin 14 filaments within ghost mouse keratinocytes by cryo-electron microscopy and cryo-electron tomography. By averaging a large number of keratin segments, we have gained insights into the helical architecture of the filaments. Two-dimensional classification revealed profound variations in the diameter of keratin filaments and their subunit organization. Computational reconstitution of filaments of substantial length uncovered a high degree of internal heterogeneity along single filaments, which can contain regions of helical symmetry, regions with less symmetry and regions with significant diameter fluctuations. Cross-section views of filaments revealed that keratins form hollow cylinders consisting of multiple protofilaments, with an electron dense core located in the center of the filament. These findings shed light on the complex and remarkable heterogenic architecture of keratin filaments, suggesting that they are highly flexible, dynamic cytoskeletal structures.
Collapse
Affiliation(s)
- Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
96
|
Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci 2021; 22:ijms22157912. [PMID: 34360678 PMCID: PMC8348711 DOI: 10.3390/ijms22157912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.
Collapse
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA;
| | - Victoria L. Robinson
- Department of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA;
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
- Correspondence: ; Tel.: +1-860-486-3053
| |
Collapse
|
97
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
98
|
Lin Y, Zhang W, Li B, Wang G. Keratin 17 in psoriasis: Current understanding and future perspectives. Semin Cell Dev Biol 2021; 128:112-119. [PMID: 34229948 DOI: 10.1016/j.semcdb.2021.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Keratin 17 (K17) is a multifaceted cytoskeletal protein that is not commonly expressed in the epidermis under normal physiological conditions. However, in psoriasis, K17 is overexpressed in the suprabasal layer of the epidermis and plays an important role in the pathogenesis of the disease. In this review, we have summarized our findings and those reported in other studies concerning the pathogenic functions of K17, as well as the mechanisms underlying the increase in K17 expression in psoriasis. K17 exerts both pro-proliferative and pro-inflammatory effects on keratinocytes. Moreover, K17 peptides trigger autoreactive T cells and promote psoriasis-related cytokine production. In turn, these cytokines modulate the expression, stability, and protein-protein interactions of K17 through transcriptional and translational regulation and post-translational modification of K17 in keratinocytes. Thus, a K17/T-cell/cytokine autoimmune loop is implicated in the pathogenesis of psoriasis, which is supported by the fact that therapies targeting K17 have achieved good outcomes in psoriasis-like mouse models. Future perspectives of K17 in psoriasis have also been discussed to provide potential directions for further studies.
Collapse
Affiliation(s)
- Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
99
|
Li Y, Su Z, Wei B, Liang Z. KRT7 Overexpression is Associated with Poor Prognosis and Immune Cell Infiltration in Patients with Pancreatic Adenocarcinoma. Int J Gen Med 2021; 14:2677-2694. [PMID: 34188523 PMCID: PMC8233003 DOI: 10.2147/ijgm.s313584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a deadly tumor with a high recurrence rate and poor prognosis. Keratin 7 (KRT7) is a member of the keratin gene family that is involved in the regulation of cell growth, migration and apoptosis in many cancers. However, the role of KRT7 and its biological functions in PAAD remain unclear. We systemically analyzed the expression and clinical values of KRT7 in PAAD. Methods The Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Human Protein Atlas (HPA) databases were used to analyze the mRNA and protein expression of KRT7 in PAAD. The prognosis and subgroup analysis of KRT7 in PAAD patients was performed using the GEPIA, PROGgeneV2 and UALCAN databases. Later, the correlation between KRT7 expression and tumor immune molecules in PAAD was evaluated using the Immune Cell Abundance Identifier (ImmuCellAI) and TISIDB databases. Finally, the functional enrichment pathway of KRT7 and its coexpressed genes were analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Metascape databases and Gene Set Enrichment Analysis (GSEA). Results The mRNA and protein expression of KRT7 was increased in PAAD tissues compared with normal tissues. High KRT7 expression was closely associated with tumor grade, TP53 mutations and poor prognosis in PAAD patients. Cox regression analysis proved that overexpressed KRT7 was an important and independent risk factor for poor overall survival (P = 0.006, HR =1.87) and disease-free survival (P = 0.019, HR =1.793) in PAAD. Additionally, KRT7 expression was significantly associated with immune infiltration of tumor immune cells and immunomodulators. Functional enrichment analyses and GSEA indicated that KRT7 might be involved in the regulation of the p53 pathway in PAAD. Conclusion Overexpressed KRT7 could be a promising prognostic and therapeutic target biomarker for PAAD by bioinformatics analysis.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhou Su
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Biwei Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
100
|
Lim Y, Ku NO. Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:6401. [PMID: 34203895 PMCID: PMC8232640 DOI: 10.3390/ijms22126401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is developed with various etiologies, protection of hepatocytes seems basically essential to prevent the incidence of HCC. Keratin 8 and keratin 18 (K8/K18) are cytoskeletal intermediate filament proteins that are expressed in hepatocytes. They maintain the cell shape and protect cells under stress conditions. Their protective roles in liver damage have been described in studies of mouse models, and K8/K18 mutation frequency in liver patients. Interestingly, K8/K18 bind to signaling proteins such as transcription factors and protein kinases involved in HCC development. Since K8/K18 are abundant cytoskeletal proteins, K8/K18 binding with the signaling factors can alter the availability of the factors. Herein, we discuss the potential roles of K8/K18 in HCC development.
Collapse
Affiliation(s)
- Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul 03722, Korea;
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul 03722, Korea;
- Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 03722, Korea
| |
Collapse
|