51
|
Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep 2014; 9:2152-65. [PMID: 25497093 DOI: 10.1016/j.celrep.2014.11.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/23/2014] [Accepted: 11/18/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonergic neurons modulate behavioral and physiological responses from aggression and anxiety to breathing and thermoregulation. Disorders involving serotonin (5HT) dysregulation are commensurately heterogeneous and numerous. We hypothesized that this breadth in functionality derives in part from a developmentally determined substructure of distinct subtypes of 5HT neurons each specialized to modulate specific behaviors. By manipulating developmentally defined subgroups one by one chemogenetically, we find that the Egr2-Pet1 subgroup is specialized to drive increased ventilation in response to carbon dioxide elevation and acidosis. Furthermore, this subtype exhibits intrinsic chemosensitivity and modality-specific projections-increasing firing during hypercapnic acidosis and selectively projecting to respiratory chemosensory but not motor centers, respectively. These findings show that serotonergic regulation of the respiratory chemoreflex is mediated by a specialized molecular subtype of 5HT neuron harboring unique physiological, biophysical, and hodological properties specified developmentally and demonstrate that the serotonergic system contains specialized modules contributing to its collective functional breadth.
Collapse
|
52
|
Dias J, Alekseenko Z, Applequist J, Ericson J. Tgfβ Signaling Regulates Temporal Neurogenesis and Potency of Neural Stem Cells in the CNS. Neuron 2014; 84:927-39. [DOI: 10.1016/j.neuron.2014.10.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 01/31/2023]
|
53
|
Pelosi B, Migliarini S, Pacini G, Pratelli M, Pasqualetti M. Generation of Pet1210-Cre transgenic mouse line reveals non-serotonergic expression domains of Pet1 both in CNS and periphery. PLoS One 2014; 9:e104318. [PMID: 25098329 PMCID: PMC4123907 DOI: 10.1371/journal.pone.0104318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non-serotonergic Pet1 cell lineages.
Collapse
Affiliation(s)
- Barbara Pelosi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Sara Migliarini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Giulia Pacini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Marta Pratelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- * E-mail:
| |
Collapse
|
54
|
López JM, González A. Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the CladistiansPolypterus senegalusandErpetoichthys calabaricus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:54-76. [DOI: 10.1159/000358266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022]
|
55
|
Regadas I, Matos MR, Monteiro FA, Gómez-Skarmeta JL, Lima D, Bessa J, Casares F, Reguenga C. Several cis-regulatory elements control mRNA stability, translation efficiency, and expression pattern of Prrxl1 (paired related homeobox protein-like 1). J Biol Chem 2013; 288:36285-301. [PMID: 24214975 DOI: 10.1074/jbc.m113.491993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeodomain transcription factor Prrxl1/DRG11 has emerged as a crucial molecule in the establishment of the pain circuitry, in particular spinal cord targeting of dorsal root ganglia (DRG) axons and differentiation of nociceptive glutamatergic spinal cord neurons. Despite Prrxl1 importance in the establishment of the DRG-spinal nociceptive circuit, the molecular mechanisms that regulate its expression along development remain largely unknown. Here, we show that Prrxl1 transcription is regulated by three alternative promoters (named P1, P2, and P3), which control the expression of three distinct Prrxl1 5'-UTR variants, named 5'-UTR-A, 5'-UTR-B, and 5'-UTR-C. These 5'-UTR sequences confer distinct mRNA stability and translation efficiency to the Prrxl1 transcript. The most conserved promoter (P3) contains a TATA-box and displays in vivo enhancer activity in a pattern that overlaps with the zebrafish Prrxl1 homologue, drgx. Regulatory modules present in this sequence were identified and characterized, including a binding site for Phox2b. Concomitantly, we demonstrate that zebrafish Phox2b is required for the expression of drgx in the facial, glossopharyngeal, and vagal cranial ganglia.
Collapse
Affiliation(s)
- Isabel Regadas
- From the Departamento de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do Porto, Porto 4200-319, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Di Bonito M, Glover JC, Studer M. Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn 2013; 242:1348-68. [PMID: 23996673 DOI: 10.1002/dvdy.24055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 01/17/2023] Open
Abstract
Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. In vertebrates, 39 Hox genes have been identified and like their Drosophila counterparts they are organized within chromosomal clusters. Hox genes interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing hindbrain and spinal cord, and are considered crucial determinants of segmental identity and cell specification along the anterioposterior and dorsoventral axes of the embryo. Here, we review their later roles in the assembly of neuronal circuitry, in stereotypic neuronal migration, axon pathfinding, and topographic connectivity. Importantly, we will put some emphasis on how their early-segmented expression patterns can influence the formation of complex vital hindbrain and spinal cord circuitries.
Collapse
Affiliation(s)
- Maria Di Bonito
- University of Nice-Sophia Antipolis, F-06108, Nice, France; INSERM, iBV, UMR 1091, F-06108, Nice, France
| | | | | |
Collapse
|
57
|
López JM, González A. Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2013; 220:385-405. [DOI: 10.1007/s00429-013-0661-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
|
58
|
Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency. J Neurosci 2013; 33:12407-22. [PMID: 23884946 DOI: 10.1523/jneurosci.0130-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.
Collapse
|
59
|
Marklund U, Alekseenko Z, Andersson E, Falci S, Westgren M, Perlmann T, Graham A, Sundström E, Ericson J. Detailed expression analysis of regulatory genes in the early developing human neural tube. Stem Cells Dev 2013; 23:5-15. [PMID: 24007338 DOI: 10.1089/scd.2013.0309] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Studies in model organisms constitute the basis of our understanding of the principal molecular mechanisms of cell fate determination in the developing central nervous system. Considering the emergent applications in stem cell-based regenerative medicine, it is important to demonstrate conservation of subtype specific gene expression programs in human as compared to model vertebrates. We have examined the expression patterns of key regulatory genes in neural progenitor cells and their neuronal and glial descendants in the developing human spinal cord, hindbrain, and midbrain, and compared these with developing mouse and chicken embryos. As anticipated, gene expression patterns are highly conserved between these vertebrate species, but there are also features that appear unique to human development. In particular, we find that neither tyrosine hydroxylase nor Nurr1 are specific markers for mesencephalic dopamine neurons, as these genes also are expressed in other neuronal subtypes in the human ventral midbrain and in human embryonic stem cell cultures directed to differentiate towards a ventral mesencephalic identity. Moreover, somatic motor neurons in the ventral spinal cord appear to be produced by two molecularly distinct ventral progenitor populations in the human, raising the possibility that the acquisition of unique ventral progenitor identities may have contributed to the emergence of neural subtypes in higher vertebrates.
Collapse
Affiliation(s)
- Ulrika Marklund
- 1 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 2013; 80:12-34. [PMID: 24094100 DOI: 10.1016/j.neuron.2013.09.020] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
Collapse
Affiliation(s)
- Polyxeni Philippidou
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
61
|
Balderes DA, Magnuson MA, Sussel L. Nkx2.2:Cre knock-in mouse line: a novel tool for pancreas- and CNS-specific gene deletion. Genesis 2013; 51:844-51. [PMID: 23996959 DOI: 10.1002/dvg.22715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/07/2022]
Abstract
Nkx2.2 is a homeodomain-containing transcriptional regulator necessary for the appropriate differentiation of ventral neuronal populations in the spinal cord and hindbrain, and endocrine cell populations in the pancreas and intestine. In each tissue, Nkx2.2 inactivation leads to reciprocal cell fate alterations. To confirm the cell fate changes are due to respecification of Nkx2.2-expressing progenitors and to provide a novel tool for lineage tracing in the pancreas and CNS, we generated an Nkx2.2:Cre mouse line by knocking in a Cre-EGFP cassette into the Nkx2.2 genomic locus and inactivating endogenous Nkx2.2. The R26R-CAG-LSL-tdTomato reporter was used to monitor the specificity and efficiency of Nkx2.2:Cre activity; the tomato reporter faithfully recapitulated endogenous Nkx2.2 expression and could be detected as early as embryonic day (e) 9.25 in the developing CNS and was initiated shortly thereafter at e9.5 in the pancreas. Lineage analyses in the CNS confirmed the cell populations thought to be derived from Nkx2.2-expressing progenitor domains. Furthermore, lineage studies verified Nkx2.2 expression in the earliest pancreatic progenitors that give rise to all cell types of the pancreas; however they also revealed more robust Cre activity in the dorsal versus ventral pancreas. Thus, the Nkx2.2:Cre line provides a novel tool for gene manipulations in the CNS and pancreas.
Collapse
Affiliation(s)
- Dina A Balderes
- Department of Genetics and Development, Columbia University, New York, New York, 10032
| | | | | |
Collapse
|
62
|
Hirsch MR, d'Autréaux F, Dymecki SM, Brunet JF, Goridis C. A Phox2b::FLPo transgenic mouse line suitable for intersectional genetics. Genesis 2013; 51:506-14. [PMID: 23592597 DOI: 10.1002/dvg.22393] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/12/2022]
Abstract
Phox2b is a transcription factor expressed in the central and peripheral neurons that control cardiovascular, respiratory, and digestive functions and essential for their development. Several populations known or suspected to regulate visceral functions express Phox2b in the developing hindbrain. Extensive cell migration and lack of suitable markers have greatly hampered studying their development. Reasoning that intersectional fate mapping may help to overcome these impediments, we have generated a BAC transgenic mouse line, P2b::FLPo, which expresses codon-optimized FLP recombinase in Phox2b expressing cells. By partnering the P2b::FLPo with the FLP-responsive RC::Fela allele, we show that FLP recombination switches on lineage tracers in the cells that express or have expressed Phox2b, permanently marking them for study across development. Taking advantage of the dual-recombinase feature of RC::Fela, we further show that the P2b::FLPo transgene can be partnered with Lbx1(Cre) as Cre driver to generate triple transgenics in which neurons having a history of both Phox2b and Lbx1 expression are specifically labeled. Hence, the P2b::FLPo line when partnered with a suitable Cre driver provides a tool for tracking and accessing genetically subsets of Phox2b-expressing neuronal populations, which has not been possible by Cre-mediated recombination alone.
Collapse
Affiliation(s)
- Marie-Rose Hirsch
- Institut de Biologie de l'Ecole normale supérieure (IBENS), CNRS UMR8197, INSERM U1024, 75005, Paris, France
| | | | | | | | | |
Collapse
|
63
|
Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 2013; 219:777-92. [PMID: 23494735 DOI: 10.1007/s00429-013-0534-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Hindbrain rhombomeres in general are differentially specified molecularly by unique combinations of Hox genes with other developmental genes. Rhombomere 1 displays special features, including absence of Hox gene expression. It lies within the hindbrain range of the Engrailed genes (En1, En2), controlled by the isthmic organizer via diffusion of FGF8. It is limited rostrally by the isthmus territory, and caudally by rhombomere 2. It is double the normal size of any other rhombomere. Its dorsal part generates the cerebellar hemispheres and its ventral part gives rise to several populations, such as some raphe nuclei, the interpeduncular nucleus, the rhabdoid nucleus, anterior, dorsal, ventral and posterodorsal tegmental nuclei, the cholinergic pedunculopontine and laterodorsal tegmental nuclei, rostral parts of the hindbrain reticular formation, the locus coeruleus, and part of the lateral lemniscal and paralemniscal nuclei, among other formations. Some of these populations migrate tangentially before reaching their final positions. The morphogen Sonic Hedgehog (Shh) is normally released from the local floor plate and underlying notochord. In the present report we explore, first, whether Shh is required in the specification of these r1 populations, and, second, its possible role in the guidance of tangentially migrating neurons that approach the midline. Our results indicate that when Shh function is altered selectively in a conditional mutant mouse strain, most populations normally generated in the medial basal plate of r1 are completely absent. Moreover, the relocation of some neurons that normally originate in the alar plate and migrate tangentially into the medial basal plate is variously altered. In contrast, neurons that migrate radially (or first tangentially and then radially) into the lateral basal plate were not significantly affected.
Collapse
|
64
|
Abstract
Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.
Collapse
|
65
|
Retinoid acid specifies neuronal identity through graded expression of Ascl1. Curr Biol 2013; 23:412-8. [PMID: 23416099 PMCID: PMC3659286 DOI: 10.1016/j.cub.2013.01.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/01/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
Cell diversity and organization in the neural tube depend on the integration of extrinsic signals acting along orthogonal axes. These are believed to specify distinct cellular identities by triggering all-or-none changes in expression of combinations of transcription factors [1]. Under the influence of a common dorsoventral signal, sonic hedgehog, and distinct anterior-posterior (A-P) inductive signals [2, 3], two topographically related progenitor pools that share a common transcriptional code produce serotonergic and V3 neurons in the hindbrain and spinal cord, respectively [4–7]. These neurons have different physiological properties, functions, and connectivity [8, 9]. Serotonergic involvement in neuropsychiatric diseases has prompted greater characterization of their postmitotic repertoire of fate determinants, which include Gata2, Lmx1b, and Pet1 [10], whereas V3 neurons express Sim1 [4]. How distinct serotonergic and V3 neuronal identities emerge from progenitors that share a common transcriptional code is not understood. Here, we show that changes in retinoid activity in these two progenitor pools determine their fates. Retinoids, via Notch signaling, control the expression level in progenitors of the transcription factor Ascl1, which selects serotonergic and V3 neuronal identities in a dose-dependent manner. Therefore, quantitative differences in the expression of a single component of a transcriptional code can select distinct cell fates.
Collapse
|
66
|
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 2013; 9:e1003249. [PMID: 23408898 PMCID: PMC3567144 DOI: 10.1371/journal.pgen.1003249] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/02/2012] [Indexed: 12/24/2022] Open
Abstract
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem. Sound perception and sound localization are controlled by two distinct circuits in the central nervous system. However, the cellular and molecular determinants underlying their development are poorly understood. Here, we show that a spatially restricted region of the brainstem, the rhombomere 4, and two members of the Hox gene family, Hoxb1 and Hoxb2, are directly implicated in the development of the circuit leading to sound perception and sound amplification. In the absence of Hoxb1 and Hoxb2 function, we found severe morphological defects in the hair cell population implicated in transducing the acoustic signal, leading ultimately to severe hearing impairments in adult mutant mice. In contrast, the expression in the cochlear nucleus of another Hox member, Hoxa2, regulates the guidance receptor Rig1 and contralateral connectivity in the sound localization circuit. Some of the auditory dysfunctions described in our mouse models resemble pathological hearing conditions in humans, in which patients have an elevated hearing threshold sensitivity, as recorded in audiograms. Thus, this study provides mechanistic insight into the genetic and functional regulation of Hox genes during development and assembly of the auditory system.
Collapse
Affiliation(s)
- Maria Di Bonito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
| | - Yuichi Narita
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Bice Avallone
- Department of Biological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Luigi Sequino
- Institute of Audiology, University “Federico II”, Naples, Italy
| | - Marta Mancuso
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Gennaro Andolfi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Anna Maria Franzè
- Institute of Genetics and Biophysics “A. Buzzati Traverso” C.N.R., Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (FMR); (MS)
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
- * E-mail: (FMR); (MS)
| |
Collapse
|
67
|
Andrade R, Haj-Dahmane S. Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci 2013; 4:22-5. [PMID: 23336040 DOI: 10.1021/cn300224n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 12/24/2022] Open
Abstract
The dorsal raphe nucleus contains one of the largest groups of serotonergic neurons in the mammalian brain and is the main site of origin of the serotonergic projection to the cerebral cortex. Early electrophysiological studies suggested that serotonergic neurons in this cell group formed a homogeneous cell class. More recent studies however have reported heterogeneity among the core anatomical and electrophysiological properties of these neurons, thus raising the possibility that serotonergic neurons of this cell group may form two or more distinct cell classes. In this Viewpoint, we review these findings and suggest ways to look at cellular heterogeneity among serotonergic neurons.
Collapse
Affiliation(s)
- Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Samir Haj-Dahmane
- Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York, United States
| |
Collapse
|
68
|
Gotoh H, Ono K, Nomura T, Takebayashi H, Harada H, Nakamura H, Ikenaka K. Nkx2.2+ progenitors generate somatic motoneurons in the chick spinal cord. PLoS One 2013; 7:e51581. [PMID: 23284718 PMCID: PMC3524189 DOI: 10.1371/journal.pone.0051581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous classes of neurons are present in the spinal cord and are essential for its function. Expression patterns of transcription factors in neural progenitor cells determine neuron subtypes during development. Nkx2.2 is expressed in the progenitor cell pool located just ventrally to the Olig2-positive pool and is indispensable for V3 interneuron generation in the spinal cord and also for visceral motoneuron generation in the hindbrain. However, whether Nkx2.2-positive progenitor cells generate diverse classes of neuron is not fully understood. Using a chick lineage tracing method in a genetically-defined manner, we found that Nkx2.2-expressing progenitor cells differentiate into general visceral motoneurons as well as sim1-positive V3 interneurons. Surprisingly, we further observed that Nkx2.2-expressing progenitors differentiate into somatic motoneuron. Our findings suggest that the different classes of motoneurons are derived from more complex sources than were previously expected in the chick spinal cord.
Collapse
Affiliation(s)
- Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail: (HG); (KI)
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Japan Science and Technology Agency (JST), PRESTO, Saitama, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Japan Science and Technology Agency (JST), PRESTO, Saitama, Japan
| | - Hidekiyo Harada
- Department of Molecular Neurobiology, Graduate School of Life Sciences, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University of Advanced Studies (Sokendai), Kanagawa, Japan
- * E-mail: (HG); (KI)
| |
Collapse
|
69
|
Hoekstra EJ, von Oerthel L, van der Linden AJA, Smidt MP. Phox2b influences the development of a caudal dopaminergic subset. PLoS One 2012; 7:e52118. [PMID: 23251691 PMCID: PMC3522650 DOI: 10.1371/journal.pone.0052118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/08/2012] [Indexed: 12/01/2022] Open
Abstract
The developing mesodiencephalic dopaminergic (mdDA) neuronal field can be subdivided into several molecularly distinct domains that arise due to spatiotemporally distinct origins of the neurons and distinct transcriptional pathways controlling these neuronal subsets. Two large anatomically and functionally different subdomains are formed that eventually give rise to the SNc and VTA, but more subsets exist which require detailed characterization in order to better understand the development of the functionally different mdDA subsets, and subset-specific vulnerability. In this study, we aimed to characterize the role of transcription factor Phox2b in the development of mdDA neurons. We provide evidence that Phox2b is co-expressed with TH in a dorsal-caudal subset of neurons in the mdDA neuronal field during embryonic development. Moreover, Phox2b transcripts were identified in FAC-sorted Pitx3 positive neurons. Subsequent analysis of Phox2b mutant embryos revealed that in the absence of Phox2b, a decrease of TH expression occurred specifically in the midbrain neuronal subset that normally co-expresses Phox2b with TH. Our data suggest that Phox2b is, next to the known role in the development of the oculomotor complex, involved in the development of a specific caudal mdDA neuronal subset.
Collapse
Affiliation(s)
- Elisa J. Hoekstra
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars von Oerthel
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie J. A. van der Linden
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten P. Smidt
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
70
|
Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 2012; 218:1229-77. [PMID: 23052546 PMCID: PMC3748323 DOI: 10.1007/s00429-012-0456-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/08/2012] [Indexed: 12/18/2022]
Abstract
The raphe nuclei represent the origin of central serotonergic projections. The literature distinguishes seven nuclei grouped into rostral and caudal clusters relative to the pons. The boundaries of these nuclei have not been defined precisely enough, particularly with regard to developmental units, notably hindbrain rhombomeres. We hold that a developmental point of view considering rhombomeres may explain observed differences in connectivity and function. There are twelve rhombomeres characterized by particular genetic profiles, and each develops between one and four distinct serotonergic populations. We have studied the distribution of the conventional seven raphe nuclei among these twelve units. To this aim, we correlated 5-HT-immunoreacted neurons with rhombomeric boundary landmarks in sagittal mouse brain sections at different developmental stages. Furthermore, we performed a partial genoarchitectonic analysis of the developing raphe nuclei, mapping all known serotonergic differentiation markers, and compared these results, jointly with others found in the literature, with our map of serotonin-containing populations, in order to examine regional variations in correspondence. Examples of regionally selective gene patterns were identified. As a result, we produced a rhombomeric classification of some 45 serotonergic populations, and suggested a corresponding modified terminology. Only a minor rostral part of the dorsal raphe nucleus lies in the midbrain. Some serotonergic neurons were found in rhombomere 4, contrary to the conventional assumption that it lacks such neurons. We expect that our reclassification of raphe nuclei may be useful for causal analysis of their differential molecular specification, as well as for studies of differential connectivity and function.
Collapse
|
71
|
Arnes L, Leclerc K, Friel JM, Hipkens SB, Magnuson MA, Sussel L. Generation of Nkx2.2:lacZ mice using recombination-mediated cassette exchange technology. Genesis 2012; 50:612-24. [PMID: 22539496 DOI: 10.1002/dvg.22037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/16/2012] [Accepted: 04/19/2012] [Indexed: 11/08/2022]
Abstract
Nkx2.2 encodes a homeodomain transcription factor required for the correct specification and/or differentiation of cells in the pancreas, intestine, and central nervous system (CNS). To follow the fate of cells deleted for Nkx2.2 within these tissues, we generated Nkx2.2:lacZ knockin mice using a recombination-mediated cassette exchange (RMCE) approach. Expression analysis of lacZ and/or β-galactosidase in Nkx2.2(lacZ/+) heterozygote embryos and adults demonstrates that lacZ faithfully recapitulates endogenous Nkx2.2 expression. Furthermore, the Nkx2.2(lacZ/lacZ) homozygous embryos display phenotypes indistinguishable from the previously characterized Nkx2.2(-/-) strain. LacZ expression analyses in the Nkx2.2(lacZ/lacZ) homozygous embryos indicate that Nkx2.2-expressing progenitor cells within the pancreas are generated in their normal numbers and are not mislocalized within the pancreatic ductal epithelium or developing islets. In the CNS of Nkx2.2(lacZ/lacZ) embryos, LacZ-expressing cells within the ventral P3 progenitor domain display different migration properties depending on the developmental stage and their respective differentiation potential.
Collapse
Affiliation(s)
- Luis Arnes
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
72
|
Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 2012; 15:519-27. [PMID: 22366757 DOI: 10.1038/nn.3039] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription regulatory networks governing the genesis, maturation and maintenance of vertebrate brain serotonin (5-HT) neurons determine the level of serotonergic gene expression and signaling throughout an animal's lifespan. Recent studies suggest that alterations in these networks can cause behavioral and physiological pathogenesis in mice. Here, we synthesize findings from vertebrate loss-of-function and gain-of-function studies to build a new model of the transcriptional regulatory networks that specify 5-HT neurons during fetal life, integrate them into CNS circuitry in early postnatal life and maintain them in adulthood. We then describe findings from animal and human genetic studies that support possible alterations in the activity of serotonergic regulatory networks in the etiology of mental illness. We conclude with a discussion of the potential utility of our model, as an experimentally well-defined molecular pathway, to predict and interpret the biological effect of genetic variation that may be discovered in the orthologous human network.
Collapse
|
73
|
Homeoprotein Phox2b commands a somatic-to-visceral switch in cranial sensory pathways. Proc Natl Acad Sci U S A 2011; 108:20018-23. [PMID: 22128334 DOI: 10.1073/pnas.1110416108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Taste and most sensory inputs required for the feedback regulation of digestive, respiratory, and cardiovascular organs are conveyed to the central nervous system by so-called "visceral" sensory neurons located in three cranial ganglia (geniculate, petrosal, and nodose) and integrated in the hindbrain by relay sensory neurons located in the nucleus of the solitary tract. Visceral sensory ganglia and the nucleus of the solitary tract all depend for their formation on the pan-visceral homeodomain transcription factor Phox2b, also required in efferent neurons to the viscera. We show here, by genetically tracing Phox2b(+) cells, that in the absence of the protein, many visceral sensory neurons (first- and second-order) survive. However, they adopt a fate--including molecular signature, cell positions, and axonal projections--akin to that of somatic sensory neurons (first- and second-order), located in the trigeminal, superior, and jugular ganglia and the trigeminal sensory nuclei, that convey touch and pain sensation from the oro-facial region. Thus, the cranial sensory pathways, somatic and visceral, are related, and Phox2b serves as a developmental switch from the former to the latter.
Collapse
|
74
|
Kiyasova V, Gaspar P. Development of raphe serotonin neurons from specification to guidance. Eur J Neurosci 2011; 34:1553-62. [DOI: 10.1111/j.1460-9568.2011.07910.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
75
|
Simeone A, Puelles E, Omodei D, Acampora D, Di Giovannantonio LG, Di Salvio M, Mancuso P, Tomasetti C. Otx genes in neurogenesis of mesencephalic dopaminergic neurons. Dev Neurobiol 2011; 71:665-79. [PMID: 21309083 DOI: 10.1002/dneu.20877] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail.
Collapse
Affiliation(s)
- Antonio Simeone
- CEINGE Biotecnologie Avanzate, SEMM European School of Molecular Medicine, via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P. Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 2011; 361:12-26. [PMID: 22019302 DOI: 10.1016/j.ydbio.2011.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/22/2023]
Abstract
The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
77
|
Ramanantsoa N, Matrot B, Vardon G, Lajard AM, Voituron N, Dauger S, Denjean A, Hilaire G, Gallego J. Impaired ventilatory and thermoregulatory responses to hypoxic stress in newborn phox2b heterozygous knock-out mice. Front Physiol 2011; 2:61. [PMID: 21977017 PMCID: PMC3178811 DOI: 10.3389/fphys.2011.00061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022] Open
Abstract
The Phox2b genesis necessary for the development of the autonomic nervous system, and especially, of respiratory neuronal circuits. In the present study, we examined the role of Phox2b in ventilatory and thermoregulatory responses to hypoxic stress, which are closely related in the postnatal period. Hypoxic stress was generated by strong thermal stimulus, combined or not with reduced inspired O(2). To this end, we exposed 6-day-old Phox2b(+/-) pups and their wild-type littermates (Phox2b(+/+)) to hypoxia (10% O(2)) or hypercapnia (8% CO(2)) under thermoneutral (33°C) or cold (26°C) conditions. We found that Phox2b(+/-) pups showed less normoxic ventilation (V(E)) in the cold than Phox2b(+/+) pups. Phox2b(+/-) pups also showed lower oxygen consumption (VO(2)) in the cold, reflecting reduced thermogenesis and a lower body temperature. Furthermore, while the cold depressed ventilatory responses to hypoxia and hypercapnia in both genotype groups, this effect was less pronounced in Phox2b(+/-) pups. Finally, because serotonin (5-HT) neurons are pivotal to respiratory and thermoregulatory circuits and depend on Phox2b for their differentiation, we studied 5-HT metabolism using high pressure liquid chromatography, and found that it was altered in Phox2b(+/-) pups. We conclude that Phox2b haploinsufficiency alters the ability of newborns to cope with metabolic challenges, possibly due to 5-HT signaling impairments.
Collapse
Affiliation(s)
- Nelina Ramanantsoa
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
| | - Boris Matrot
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
| | - Guy Vardon
- Faculty of Medicine, University of AmiensAmiens, France
| | - Anne-Marie Lajard
- CNRS, UMR 6231, Faculty Saint Jérôme, Research Center of Neurobiology and Neurophysiology of Marseille, University of Aix-Marseille II and IIIMarseille, France
| | - Nicolas Voituron
- CNRS, UMR 6231, Faculty Saint Jérôme, Research Center of Neurobiology and Neurophysiology of Marseille, University of Aix-Marseille II and IIIMarseille, France
| | - Stéphane Dauger
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
- Pediatric Intensive Care Unit, AP–HP, Robert Debré HospitalParis, France
| | - André Denjean
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
- Physiology Department, AP–HP, Robert Debré HospitalParis, France
| | - Gérard Hilaire
- CNRS, UMR 6231, Faculty Saint Jérôme, Research Center of Neurobiology and Neurophysiology of Marseille, University of Aix-Marseille II and IIIMarseille, France
| | - Jorge Gallego
- INSERM, UMR 676, Robert Debré HospitalParis, France
- Faculty of Medicine, University Denis DiderotParis, France
| |
Collapse
|
78
|
Nefzger CM, Haynes JM, Pouton CW. Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 2011; 29:928-39. [PMID: 21472823 DOI: 10.1002/stem.640] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigation of serotonergic neuronal activity and its relationship to disease has been limited by a lack of physiologically relevant in vitro cell models. Serotonergic neurons derived from embryonic stem cells (ESCs) could provide a platform for such studies and provide models for use in drug discovery. Here, we report enhancement of serotonergic differentiation using a genetic approach. Expression of Gata2 increased the yield of serotonergic neurons. Enhancement was only achieved when Gata2 was expressed under the control of the tissue-specific promoter of the transcription factor Nkx6.1. High levels of Gata2 expression in ESCs compromised pluripotency and induced non-neuronal differentiation. Combined directed expression of Gata2, proneural gene Mash1, and forkhead transcription factor Foxa2 further enhanced serotonergic neural differentiation, resulting in a 10-fold increase in serotonin content. These neurons were also capable of depolarization (KCl, 30 mM)-induced elevations of intracellular Ca(2+) . The presence of sonic hedgehog during differentiation produced a further modest increase in numbers (1.5-fold). Transgene expression did not influence the number of tyrosine hydroxylase positive neurons in the cultures after 20 days, implying that Gata2, Mash1, and Foxa2 modulate in vitro differentiation at a time beyond the decision-point for dopaminergic or nondopaminergic commitment. This study demonstrates that the directed expression of specific transcription factors enhances serotonergic neuron differentiation in vitro and highlights the importance of transgene expression at the right stage of ESC differentiation to effect the generation of a desired neural subtype.
Collapse
Affiliation(s)
- Christian M Nefzger
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | | | | |
Collapse
|
79
|
Deneris ES. Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience 2011; 197:17-27. [PMID: 21920412 DOI: 10.1016/j.neuroscience.2011.08.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
Abstract
New molecular genetics approaches have been developed over the past several years to study brain serotonin (5-HT) neuron development and the roles of 5-HT neurons in behavior and physiology. These approaches were enabled by manipulation of the gene encoding the Pet-1 ETS transcription factor whose expression in the brain is restricted to developing and adult 5-HT neurons. Targeting of the Pet-1 gene led to the development of a mouse line with a severe and stable deficiency of embryonic 5-HT-synthesizing neurons. The Pet-1 transcription regulatory region has been used to create several new 5-HT neuron-type transgenic tools that have greatly increased the experimental accessibility of the small number of brain 5-HT neurons. Permanent and specific marking of 5-HT neurons with Pet-1-based transgenic tools have now been used for flow cytometry, whole cell electrophysiological recordings, progenitor fate mapping, and live time lapse imaging of these neurons. Additional tools provide multiple strategies for conditional temporal targeting of gene expression in 5-HT neurons at different stages of life. Pet-1-based approaches have led to advances in understanding the role of 5-HT neurons in respiration, thermoregulation, emotional behaviors, maternal behavior, and the mechanism of antipsychotic drug actions. In addition, these approaches have begun to reveal the molecular basis of 5-HT neuron heterogeneity and the transcriptional mechanisms that direct 5-HT neuron-type identity, maturation, and maintenance.
Collapse
Affiliation(s)
- E S Deneris
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH 44106, USA.
| |
Collapse
|
80
|
Deng Q, Andersson E, Hedlund E, Alekseenko Z, Coppola E, Panman L, Millonig JH, Brunet JF, Ericson J, Perlmann T. Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 2011; 138:3399-408. [PMID: 21752929 DOI: 10.1242/dev.065482] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The severe disorders associated with a loss or dysfunction of midbrain dopamine neurons (DNs) have intensified research aimed at deciphering developmental programs controlling midbrain development. The homeodomain proteins Lmx1a and Lmx1b are important for the specification of DNs during embryogenesis, but it is unclear to what degree they may mediate redundant or specific functions. Here, we provide evidence showing that DN progenitors in the ventral midbrain can be subdivided into molecularly distinct medial and lateral domains, and these subgroups show different sensitivity to the loss of Lmx1a and Lmx1b. Lmx1a is specifically required for converting non-neuronal floor-plate cells into neuronal DN progenitors, a process that involves the establishment of Notch signaling in ventral midline cells. On the other hand, lateral DN progenitors that do not appear to originate from the floor plate are selectively ablated in Lmx1b mutants. In addition, we also reveal an unanticipated role for Lmx1b in regulating Phox2a expression and the sequential specification of ocular motor neurons (OMNs) and red nucleus neurons (RNNs) from progenitors located lateral to DNs in the midbrain. Our data therefore establish that Lmx1b influences the differentiation of multiple neuronal subtypes in the ventral midbrain, whereas Lmx1a appears to be exclusively devoted to the differentiation of the DN lineage.
Collapse
Affiliation(s)
- Qiaolin Deng
- Karolinska Institutet, Department of Cell and Molecular Biology, von Eulers väg 3, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Nobels väg 3, Karolinska Institutet, 71 77 Stockholm, Sweden
| | - Elisabet Andersson
- Karolinska Institutet, Department of Cell and Molecular Biology, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Eva Hedlund
- Ludwig Institute for Cancer Research, Nobels väg 3, Karolinska Institutet, 71 77 Stockholm, Sweden
| | - Zhanna Alekseenko
- Karolinska Institutet, Department of Cell and Molecular Biology, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Eva Coppola
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, 75005, Paris, France
| | - Lia Panman
- Ludwig Institute for Cancer Research, Nobels väg 3, Karolinska Institutet, 71 77 Stockholm, Sweden
| | - James H. Millonig
- UMDNJ, Neuroscience and Cell Biology, CABM, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jean-Francois Brunet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, 75005, Paris, France
| | - Johan Ericson
- Karolinska Institutet, Department of Cell and Molecular Biology, von Eulers väg 3, 171 77 Stockholm, Sweden
| | - Thomas Perlmann
- Karolinska Institutet, Department of Cell and Molecular Biology, von Eulers väg 3, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Nobels väg 3, Karolinska Institutet, 71 77 Stockholm, Sweden
| |
Collapse
|
81
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
82
|
Panman L, Andersson E, Alekseenko Z, Hedlund E, Kee N, Mong J, Uhde C, Deng Q, Sandberg R, Stanton L, Ericson J, Perlmann T. Transcription Factor-Induced Lineage Selection of Stem-Cell-Derived Neural Progenitor Cells. Cell Stem Cell 2011; 8:663-75. [PMID: 21624811 DOI: 10.1016/j.stem.2011.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 02/03/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
|
83
|
Lillesaar C. The serotonergic system in fish. J Chem Neuroanat 2011; 41:294-308. [PMID: 21635948 DOI: 10.1016/j.jchemneu.2011.05.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/07/2011] [Accepted: 05/16/2011] [Indexed: 01/20/2023]
Abstract
Neurons using serotonin (5-HT) as neurotransmitter and/or modulator have been identified in the central nervous system in representatives from all vertebrate clades, including jawless, cartilaginous and ray-finned fishes. The aim of this review is to summarize our current knowledge about the anatomical organization of the central serotonergic system in fishes. Furthermore, selected key functions of 5-HT will be described. The main focus will be the adult brain of teleosts, in particular zebrafish, which is increasingly used as a model organism. It is used to answer not only genetic and developmental biology questions, but also issues concerning physiology, behavior and the underlying neuronal networks. The many evolutionary conserved features of zebrafish combined with the ever increasing number of genetic tools and its practical advantages promise great possibilities to increase our understanding of the serotonergic system. Further, comparative studies including several vertebrate species will provide us with interesting insights into the evolution of this important neurotransmitter system.
Collapse
Affiliation(s)
- Christina Lillesaar
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development (NED), Institute of Neurobiology Albert Fessard, Gif-sur-Yvette, France.
| |
Collapse
|
84
|
Wang PX, Yu ZW, Wong S, Jin TR. Nkx6.2 synergizes with Cdx-2 in stimulating proglucagon gene expression. World J Diabetes 2011; 2:66-74. [PMID: 21691557 PMCID: PMC3116010 DOI: 10.4239/wjd.v2.i5.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate whether the transactivator of the proglucagon gene (Gcg), Cdx-2, synergizes with other transcription factors in stimulating Gcg expression and the trans-differentiation of Gcg-expressing cells.
METHODS: We conducted affinity chromatography to identify proteins that interact with Cdx-2, using GST-tagged Cdx-2 against cell lysates from pancreatic InR1-G9 and intestinal GLUTag cell lines. This was followed by a mass-spectrometry analysis. From a potential Cdx-2 interaction protein identified, we examined its expression in pancreatic and gut endocrine cells, confirmed its interaction with Cdx-2 by GST-pull down and determined its effect in provoking Gcg expression in cell lines that do not express endogenous Gcg.
RESULTS: We identified 18 potential Cdx-2 interacting proteins. One of them is Nkx6.2. This homeodomain (HD) protein is expressed in pancreatic α and intestinal endocrine L cells but not in insulin producing cell lines, including In111. Nkx6.2, but not Nkx6.1, was shown to interact with Cdx-2, detected by GST-pull down. Furthermore, Nkx6.2 was found to synergize with Cdx-2 in provoking Gcg expression when they were ectopically expressed in the In111 cell line. Finally, when Cdx-2 and Nkx6.2 were co-transfected into the undifferentiated rat intestinal IEC-6 cell line, it produced detectable amount of Gcg mRNA.
CONCLUSION: Cdx-2 recruits Nkx6.2 in exerting its effect in stimulating Gcg expression. Our observations further support the notion that multiple HD proteins, including Cdx-2 and Nkx6.2, are involved in the regulation of Gcg expression and the genesis of Gcg-producing cells.
Collapse
Affiliation(s)
- Pei-Xiang Wang
- Pei-Xiang Wang, Zhi-Wen Yu, Tian-Ru Jin, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | |
Collapse
|
85
|
Champagnat J, Morin-Surun MP, Bouvier J, Thoby-Brisson M, Fortin G. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011; 178:146-55. [PMID: 21527363 DOI: 10.1016/j.resp.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Foetal breathing in mice results from prenatal activity of the two coupled hindbrain oscillators considered to be responsible for respiratory rhythm generation after birth: the pre-Bötzinger complex (preBötC) is active shortly before the onset of foetal breathing; the parafacial respiratory group (e-pF in embryo) starts activity one day earlier. Transcription factors have been identified that are essential to specify neural progenitors and lineages forming each of these oscillators during early development of the neural tube: Hoxa1, Egr2 (Krox20), Phox2b, Lbx1 and Atoh1 for the e-pF; Dbx1 and Evx1 for the preBötC which eventually grow contralateral axons requiring expression of Robo3. Inactivation of the genes encoding these factors leads to mis-specification of these neurons and distinct breathing abnormalities: apneic patterns and loss of central chemosensitivity for the e-pF (central congenital hypoventilation syndrome, CCHS, in humans), complete loss of breathing for the preBötC, right-left desynchronized breathing in Robo3 mutants. Mutations affecting development in more rostral (pontine) respiratory territories change the shape of the inspiratory drive without affecting the rhythm. Other (primordial) embryonic oscillators start in the mouse three days before the e-pF, to generate low frequency (LF) rhythms that are probably required for activity-dependent development of neurones at embryonic stages; in the foetus, however, they are actively silenced to avoid detrimental interaction with the on-going respiratory rhythm. Altogether, these observations provide a strong support to the previously proposed hypothesis that the functional organization of the respiratory generator is specified at early stages of development and is dual in nature, comprising two serially non-homologous oscillators.
Collapse
Affiliation(s)
- Jean Champagnat
- Neurobiologie et Développement (UPR 3294, CNRS), Neuro-Sud Paris (IFR 144), Centre de Recherche de Gif-sur Yvette (CNRS, FRC 3115), Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
86
|
Wong EYM, Wang XA, Mak SS, Sae-Pang JJ, Ling KW, Fritzsch B, Sham MH. Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning. Dev Biol 2011; 352:382-92. [PMID: 21320481 DOI: 10.1016/j.ydbio.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 11/30/2010] [Accepted: 02/04/2011] [Indexed: 11/15/2022]
Abstract
The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished. The hindbrain neuronal defects of the Hoxb3(Tg) mutant mice were similar to those of Hoxb1(-/-) mutants. Therefore, we hypothesized that Hoxb3 could directly suppress Hoxb1 expression. We first identified a novel Hoxb3 binding site S3 on the Hoxb1 locus and confirmed protein binding to this site by EMSA, and by in vivo ChIP analysis using P19 cells and hindbrain tissues from the Hoxb3(Tg) mutant. We further showed that Hoxb3 could suppress Hoxb1 transcriptional activity by chick in ovo luciferase reporter assay. Moreover, in E10.5 wildtype caudal hindbrain, where Hoxb1 is not expressed, we showed by in vivo ChIP that Hoxb3 was consistently bound to the S3 site on the Hoxb1 gene. This study reveals a novel negative regulatory mechanism by which Hoxb3 as a posterior gene serves to restrict Hoxb1 expression in r4 by direct transcriptional repression to maintain the rhombomere identity.
Collapse
Affiliation(s)
- Elaine Y M Wong
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
87
|
Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M. The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 2010; 174:76-88. [PMID: 20801236 PMCID: PMC2993113 DOI: 10.1016/j.resp.2010.08.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 01/11/2023]
Abstract
Serotonin (5-HT) is a neuromodulator-transmitter influencing global brain function. Past and present findings illustrate a prominent role for 5-HT in the modulation of ponto-medullary autonomic circuits. 5-HT is also involved in the control of neurotrophic processes during pre- and postnatal development of neural circuits. The functional implications of 5-HT are particularly illustrated in the alterations to the serotonergic system, as seen in a wide range of neurological disorders. This article reviews the role of 5-HT in the development and control of respiratory networks in the ponto-medullary brainstem. The review further examines the role of 5-HT in breathing disorders occurring at different stages of life, in particular, the neonatal neurodevelopmental diseases such as Rett, sudden infant death and Prader-Willi syndromes, adult diseases such as sleep apnoea and mental illness linked to neurodegeneration.
Collapse
Affiliation(s)
- Gérard Hilaire
- Mp3-respiration team, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Unité Mixte de Recherche 6231, CNRS - Université Aix-Marseille II & III, Faculté Saint Jérôme 13397 Marseille Cedex 20, France
| | - Nicolas Voituron
- Mp3-respiration team, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Unité Mixte de Recherche 6231, CNRS - Université Aix-Marseille II & III, Faculté Saint Jérôme 13397 Marseille Cedex 20, France
| | - Clément Menuet
- Mp3-respiration team, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Unité Mixte de Recherche 6231, CNRS - Université Aix-Marseille II & III, Faculté Saint Jérôme 13397 Marseille Cedex 20, France
| | - Ronaldo M. Ichiyama
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Hari H. Subramanian
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Mathias Dutschmann
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| |
Collapse
|
88
|
Coppola E, d'Autréaux F, Rijli FM, Brunet JF. Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 2010; 137:4211-20. [PMID: 21068058 DOI: 10.1242/dev.056747] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transcriptional determinants of neuronal identity often stay expressed after their downstream genetic program is launched. Whether this maintenance of expression plays a role is for the most part unknown. Here, we address this question for the paralogous paired-like homeobox genes Phox2a and Phox2b, which specify several classes of visceral neurons at the progenitor stage in the central and peripheral nervous systems. By temporally controlled inactivation of Phox2b, we find that the gene, which is required in ventral neural progenitors of the hindbrain for the production of branchio-visceral motoneuronal precursors, is also required in these post-mitotic precursors to maintain their molecular signature - including downstream transcription factors - and allow their tangential migration and the histogenesis of the corresponding nuclei. Similarly, maintenance of noradrenergic differentiation during embryogenesis requires ongoing expression of Phox2b in sympathetic ganglia, and of Phox2a in the main noradrenergic center, the locus coeruleus. These data illustrate cases where the neuronal differentiation program does not unfold as a transcriptional `cascade' whereby downstream events are irreversibly triggered by an upstream regulator, but instead require continuous transcriptional input from it.
Collapse
Affiliation(s)
- Eva Coppola
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | | | | | | |
Collapse
|
89
|
Honig G, Liou A, Berger M, German MS, Tecott LH. Precise pattern of recombination in serotonergic and hypothalamic neurons in a Pdx1-cre transgenic mouse line. J Biomed Sci 2010; 17:82. [PMID: 20950489 PMCID: PMC2966455 DOI: 10.1186/1423-0127-17-82] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 10/17/2010] [Indexed: 11/25/2022] Open
Abstract
Background Multicellular organisms are characterized by a remarkable diversity of morphologically distinct and functionally specialized cell types. Transgenic techniques for the manipulation of gene expression in specific cellular populations are highly useful for elucidating the development and function of these cellular populations. Given notable similarities in developmental gene expression between pancreatic β-cells and serotonergic neurons, we examined the pattern of Cre-mediated recombination in the nervous system of a widely used mouse line, Pdx1-cre (formal designation, Tg(Ipf1-cre)89.1Dam), in which the expression of Cre recombinase is driven by regulatory elements upstream of the pdx1 (pancreatic-duodenal homeobox 1) gene. Methods Single (hemizygous) transgenic mice of the pdx1-creCre/0 genotype were bred to single (hemizygous) transgenic reporter mice (Z/EG and rosa26R lines). Recombination pattern was examined in offspring using whole-mount and sectioned histological preparations at e9.5, e10.5, e11.5, e16.5 and adult developmental stages. Results In addition to the previously reported pancreatic recombination, recombination in the developing nervous system and inner ear formation was observed. In the central nervous system, we observed a highly specific pattern of recombination in neuronal progenitors in the ventral brainstem and diencephalon. In the rostral brainstem (r1-r2), recombination occurred in newborn serotonergic neurons. In the caudal brainstem, recombination occurred in non-serotonergic cells. In the adult, this resulted in reporter expression in the vast majority of forebrain-projecting serotonergic neurons (located in the dorsal and median raphe nuclei) but in none of the spinal cord-projecting serotonergic neurons of the caudal raphe nuclei. In the adult caudal brainstem, reporter expression was widespread in the inferior olive nucleus. In the adult hypothalamus, recombination was observed in the arcuate nucleus and dorsomedial hypothalamus. Recombination was not observed in any other region of the central nervous system. Neuronal expression of endogenous pdx1 was not observed. Conclusions The Pdx1-cre mouse line, and the regulatory elements contained in the corresponding transgene, could be a valuable tool for targeted genetic manipulation of developing forebrain-projecting serotonergic neurons and several other unique neuronal sub-populations. These results suggest that investigators employing this mouse line for studies of pancreatic function should consider the possible contributions of central nervous system effects towards resulting phenotypes.
Collapse
Affiliation(s)
- Gerard Honig
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
90
|
Goridis C, Dubreuil V, Thoby-Brisson M, Fortin G, Brunet JF. Phox2b, congenital central hypoventilation syndrome and the control of respiration. Semin Cell Dev Biol 2010; 21:814-22. [DOI: 10.1016/j.semcdb.2010.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
91
|
Abstract
By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO(2) in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO(2) during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH-dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake-promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
92
|
Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES. Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci 2010; 13:1190-8. [PMID: 20818386 PMCID: PMC2947586 DOI: 10.1038/nn.2623] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/23/2010] [Indexed: 12/11/2022]
Abstract
Transcriptional cascades are required for the specification of serotonin (5-HT) neurons and behaviors modulated by 5-HT. Several cascade factors are expressed throughout the lifespan, which suggests that their control of behavior might not be temporally restricted to programming normal numbers of 5-HT neurons. We used new mouse conditional targeting approaches to investigate the ongoing requirements for Pet-1 (also called Fev), a cascade factor that is required for the initiation of 5-HT synthesis, but whose expression persists into adulthood. We found that Pet-1 was required after the generation of 5-HT neurons for multiple steps in 5-HT neuron maturation, including axonal innervation of the somatosensory cortex, expression of appropriate firing properties, and the expression of the Htr1a and Htr1b autoreceptors. Pet-1 was still required in adult 5-HT neurons to preserve normal anxiety-related behaviors through direct autoregulated control of serotonergic gene expression. These findings indicate that Pet-1 is required across the lifespan of the mouse and that behavioral pathogenesis can result from both developmental and adult-onset alterations in serotonergic transcription.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Cell Differentiation
- Chromatin Immunoprecipitation/methods
- Estrogen Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- In Vitro Techniques
- Luminescent Proteins/genetics
- Male
- Maze Learning/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Motor Activity/drug effects
- Motor Activity/genetics
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- RNA, Messenger/metabolism
- Raphe Nuclei/cytology
- Raphe Nuclei/embryology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin/physiology
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Receptor Agonists/pharmacology
- Somatosensory Cortex/cytology
- Somatosensory Cortex/embryology
- Tamoxifen/pharmacology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tryptophan Hydroxylase/metabolism
- Xanthenes/metabolism
Collapse
Affiliation(s)
- Chen Liu
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
93
|
Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 2010; 13:1066-74. [PMID: 20680010 DOI: 10.1038/nn.2622] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/22/2010] [Indexed: 01/04/2023]
Abstract
Breathing is a bilaterally synchronous behavior that relies on a respiratory rhythm generator located in the brainstem. An essential component of this generator is the preBötzinger complex (preBötC), which paces inspirations. Little is known about the developmental origin of the interneuronal populations forming the preBötC oscillator network. We found that the homeobox gene Dbx1 controls the fate of glutamatergic interneurons required for preBötC rhythm generation in the mouse embryo. We also found that a conditional inactivation in Dbx1-derived cells of the roundabout homolog 3 (Robo3) gene, which is necessary for axonal midline crossing, resulted in left-right de-synchronization of the preBötC oscillator. Together, these findings identify Dbx1-derived interneurons as the core rhythmogenic elements of the preBötC oscillator and indicate that Robo3-dependent guidance signaling in these cells is required for bilaterally synchronous activity.
Collapse
|
94
|
Karlsson D, Baumgardt M, Thor S. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 2010; 8:e1000368. [PMID: 20485487 PMCID: PMC2867937 DOI: 10.1371/journal.pbio.1000368] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues. The generation of distinct neuronal subtypes at different axial levels relies upon both anteroposterior and temporal cues. However, the integration between these cues is poorly understood. In the Drosophila central nervous system, the segmentally repeated neuroblast 5–6 generates a unique group of neurons, the Apterous (Ap) cluster, only in thoracic segments. Recent studies have identified elaborate genetic pathways acting to control the generation of these neurons. These insights, combined with novel markers, provide a unique opportunity for addressing how anteroposterior and temporal cues are integrated to generate segment-specific neuronal subtypes. We find that Pbx/Meis, Hox, and temporal genes act in three different ways. Posteriorly, Pbx/Meis and posterior Hox genes block lineage progression within an early temporal window, by triggering cell cycle exit. Because Ap neurons are generated late in the thoracic 5–6 lineage, this prevents generation of Ap cluster cells in the abdomen. Thoracically, Pbx/Meis and anterior Hox genes integrate with late temporal genes to specify Ap clusters, via activation of a specific feed-forward loop. In brain segments, “Ap cluster cells” are present but lack both proper Hox and temporal coding. Only by simultaneously altering Hox and temporal gene activity in all segments can Ap clusters be generated throughout the neuroaxis. This study provides the first detailed analysis, to our knowledge, of an identified neuroblast lineage along the entire neuroaxis, and confirms the concept that lineal homologs of truncal neuroblasts exist throughout the developing brain. We furthermore provide the first insight into how Hox/Pbx/Meis anteroposterior and temporal cues are integrated within a defined lineage, to specify unique neuronal identities only in thoracic segments. This study reveals a surprisingly restricted, yet multifaceted, function of both anteroposterior and temporal cues with respect to lineage control and cell fate specification. An animal's nervous system contains a wide variety of neuronal subtypes generated from neural progenitor (“stem”) cells, which generate different types of neurons at different axial positions and time points. Hence, the generation and specification of unique neuronal subtypes is dependent upon the integration of both spatial and temporal cues within distinct stem cells. The nature of this integration is poorly understood. We have addressed this issue in the Drosophila neuroblast 5–6 lineage. This stem cell is generated in all 18 segments of the central nervous system, stretching from the brain down to the abdomen of the fly, but a larger lineage containing a well-defined set of cells—the Apterous (Ap) cluster—is generated only in thoracic segments. We show that segment-specific generation of the Ap cluster neurons is achieved by the integration of the anteroposterior and temporal cues in several different ways. Generation of the Ap neurons in abdominal segments is prevented by anteroposterior cues stopping the cell cycle in the stem cell at an early stage. In brain segments, late-born neurons are generated, but are differently specified due to the presence of different anteroposterior and temporal cues. Finally, in thoracic segments, the temporal and spatial cues integrate on a highly limited set of target genes to specify the Ap cluster neurons.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
- * E-mail:
| |
Collapse
|
95
|
Goridis C, Brunet JF. Central chemoreception: lessons from mouse and human genetics. Respir Physiol Neurobiol 2010; 173:312-21. [PMID: 20307691 DOI: 10.1016/j.resp.2010.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
The response to increased P(CO(2)) in the brain is an essential drive to breathe and required for CO(2) and pH homeostasis in the blood, but where and how CO(2) is sensed are still contentious issues. Here, we review evidence from mouse and human genetics that argue for the crucial role in CO(2) chemosensitivity of a limited set of central neurons that express the Phox2b transcription factor and are disabled by Phox2b mutations. A common trait of different Phox2b mutations that impair CO(2) responsiveness in the embryo and respiration in neonates is the depletion of Phox2b-expressing neurons in the retrotrapezoid nucleus, providing genetic evidence for their importance for proper breathing and central chemosensitivity at birth.
Collapse
Affiliation(s)
- Christo Goridis
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Paris, France.
| | | |
Collapse
|
96
|
Abstract
The molecular architecture of developing serotonin (5HT) neurons is poorly understood, yet its determination is likely to be essential for elucidating functional heterogeneity of these cells and the contribution of serotonergic dysfunction to disease pathogenesis. Here, we describe the purification of postmitotic embryonic 5HT neurons by flow cytometry for whole-genome microarray expression profiling of this unitary monoaminergic neuron type. Our studies identified significantly enriched expression of hundreds of unique genes in 5HT neurons, thus providing an abundance of new serotonergic markers. Furthermore, we identified several hundred transcripts encoding homeodomain, axon guidance, cell adhesion, intracellular signaling, ion transport, and imprinted genes associated with various neurodevelopmental disorders that were differentially enriched in developing rostral and caudal 5HT neurons. These findings suggested a homeodomain code that distinguishes rostral and caudal 5HT neurons. Indeed, verification studies demonstrated that Hmx homeodomain and Hox gene expression defined an Hmx(+) rostral subtype and Hox(+) caudal subtype. Expression of engrailed genes in a subset of 5HT neurons in the rostral domain further distinguished two subtypes defined as Hmx(+)En(+) and Hmx(+)En(-). The differential enrichment of gene sets for different canonical pathways and gene ontology categories provided additional evidence for heterogeneity between rostral and caudal 5HT neurons. These findings demonstrate a deep transcriptome and biological pathway duality for neurons that give rise to the ascending and descending serotonergic subsystems. Our databases provide a rich, clinically relevant resource for definition of 5HT neuron subtypes and elucidation of the genetic networks required for serotonergic function.
Collapse
|
97
|
Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 2010; 29:14836-46. [PMID: 19940179 DOI: 10.1523/jneurosci.2623-09.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2-, neurokinin1 receptor-, and Atoh1-expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic tools. We generated two conditional Phox2b mutations, which target different subsets of Phox2b-expressing cells, but have in common a massive depletion of RTN neurons. In both conditional mutants as well as in the previously described Phox2b(27Ala) mutants, in which the RTN is also compromised, the respiratory-like rhythmic activity normally seen in the parafacial region of fetal brainstem preparations was completely abrogated. Rhythmic motor bursts were recorded from the phrenic nerve roots in the mutants, but their frequency was markedly reduced. Both the rhythmic activity in the RTN region and the phrenic nerve discharges responded to a low pH challenge in control, but not in the mutant embryos. Together, our results provide genetic evidence for the essential role of the Phox2b-expressing RTN neurons both in establishing a normal respiratory rhythm before birth and in providing chemosensory drive.
Collapse
|
98
|
Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. Proc Natl Acad Sci U S A 2009; 106:19185-90. [PMID: 19850875 DOI: 10.1073/pnas.0904285106] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Midbrain dopamine neurons (mDA) are important regulators of diverse physiological functions, including movement, attention, and reward behaviors. Accordingly, aberrant function of dopamine neurons underlies a wide spectrum of disorders, such as Parkinson's disease (PD), dystonia, and schizophrenia. The distinct functions of the dopamine system are carried out by neuroanatomically discrete subgroups of dopamine neurons, which differ in gene expression, axonal projections, and susceptibility in PD. The developmental underpinnings of this heterogeneity are undefined. We have recently shown that in the embryonic CNS, mDA originate from the midbrain floor plate, a ventral midline structure that is operationally defined by the expression of the molecule Shh. Here, we develop these findings to reveal that in the embryonic midbrain, the spatiotemporally dynamic Shh domain defines multiple progenitor pools. We deduce 3 distinct progenitor pools, medial, intermediate, and lateral, which contribute to different mDA clusters. The earliest progenitors to express Shh, here referred to as the medial pool, contributes neurons to the rostral linear nucleus and mDA of the ventral tegmental area/interfascicular regions, but remarkably, little to the substantia nigra pars compacta. The intermediate Shh+ progenitors give rise to neurons of all dopaminergic nuclei, including the SNpc. The last and lateral pool of Shh+ progenitors generates a cohort that populates the red nucleus, Edinger Westphal nucleus, and supraoculomotor nucleus and cap. Subsequently, these lateral Shh+ progenitors produce mDA. This refined ontogenetic definition will expand understanding of dopamine neuron biology and selective susceptibility, and will impact stem cell-derived therapies and models for PD.
Collapse
|
99
|
Amiel J, Dubreuil V, Ramanantsoa N, Fortin G, Gallego J, Brunet JF, Goridis C. PHOX2B in respiratory control: Lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol 2009; 168:125-32. [DOI: 10.1016/j.resp.2009.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/24/2022]
|
100
|
Andreae LC, Lumsden A, Gilthorpe JD. Chick Lrrn2, a novel downstream effector of Hoxb1 and Shh, functions in the selective targeting of rhombomere 4 motor neurons. Neural Dev 2009; 4:27. [PMID: 19602272 PMCID: PMC2716342 DOI: 10.1186/1749-8104-4-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Capricious is a Drosophila adhesion molecule that regulates specific targeting of a subset of motor neurons to their muscle target. We set out to identify whether one of its vertebrate homologues, Lrrn2, might play an analogous role in the chick. RESULTS We have shown that Lrrn2 is expressed from early development in the prospective rhombomere 4 (r4) of the chick hindbrain. Subsequently, its expression in the hindbrain becomes restricted to a specific group of motor neurons, the branchiomotor neurons of r4, and their pre-muscle target, the second branchial arch (BA2), along with other sites outside the hindbrain. Misexpression of the signalling molecule Sonic hedgehog (Shh) via in ovo electroporation results in upregulation of Lrrn2 exclusively in r4, while the combined expression of Hoxb1 and Shh is sufficient to induce ectopic Lrrn2 in r1/2. Misexpression of Lrrn2 in r2/3 results in axonal rerouting from the r2 exit point to the r4 exit point and BA2, suggesting a direct role in motor axon guidance. CONCLUSION Lrrn2 acts downstream of Hoxb1 and plays a role in the selective targeting of r4 motor neurons to BA2.
Collapse
Affiliation(s)
- Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jonathan D Gilthorpe
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|