51
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
52
|
Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat Genet 2018; 50:865-873. [PMID: 29736015 PMCID: PMC6317521 DOI: 10.1038/s41588-018-0115-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
DNA methylation is essential for gene regulation, transposon silencing,
and imprinting. Although the generation of specific DNA methylation patterns is
critical for these processes, how methylation is regulated at individual loci
remains unclear. Here we show that a family of four putative chromatin
remodeling factors, CLASSY (CLSY) 1–4, are required for both
locus-specific and global regulation of DNA methylation in
Arabidopsis. Mechanistically, these factors act in
connection with RNA polymerase-IV (Pol-IV) to control the production of
24-nucleotide small interfering RNAs (24nt-siRNAs), which guide DNA methylation.
Individually, the CLSYs regulate Pol-IV-chromatin association and 24nt-siRNA
production at thousands of distinct loci, and together, they regulate
essentially all 24nt-siRNAs. Depending on the CLSYs involved, this regulation
relies on different repressive chromatin modifications to facilitate
locus-specific control of DNA methylation. Given the conservation between
methylation systems in plants and mammals, analogous pathways likely operate in
a broad range of organisms.
Collapse
|
53
|
Wendte JM, Haag JR, Singh J, McKinlay A, Pontes OM, Pikaard CS. Functional Dissection of the Pol V Largest Subunit CTD in RNA-Directed DNA Methylation. Cell Rep 2018; 19:2796-2808. [PMID: 28658626 DOI: 10.1016/j.celrep.2017.05.091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/06/2017] [Accepted: 05/27/2017] [Indexed: 12/31/2022] Open
Abstract
Plant multisubunit RNA polymerase V (Pol V) transcription recruits Argonaute-small interfering RNA (siRNA) complexes that specify sites of RNA-directed DNA methylation (RdDM) for gene silencing. Pol V's largest subunit, NRPE1, evolved from the largest subunit of Pol II but has a distinctive C-terminal domain (CTD). We show that the Pol V CTD is dispensable for catalytic activity in vitro yet essential in vivo. One CTD subdomain (DeCL) is required for Pol V function at virtually all loci. Other CTD subdomains have locus-specific effects. In a yeast two-hybrid screen, the 3'→ 5' exoribonuclease RRP6L1 was identified as an interactor with the DeCL and glutamine-serine (QS)-rich subdomains located downstream of an Argonaute-binding subdomain. Experimental evidence indicates that RRP6L1 trims the 3' ends of Pol V transcripts sliced by Argonaute 4 (AGO4), suggesting a model whereby the CTD enables the spatial and temporal coordination of AGO4 and RRP6L1 RNA processing activities.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Jeremy R Haag
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jasleen Singh
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Anastasia McKinlay
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Olga M Pontes
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Craig S Pikaard
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
54
|
Wakiyama M, Ogami K, Iwaoka R, Aoki K, Hoshino SI. MicroRNP-mediated translational activation of nonadenylated mRNAs in a mammalian cell-free system. Genes Cells 2018; 23:332-344. [PMID: 29626383 DOI: 10.1111/gtc.12580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate translation and mRNA stability by binding target mRNAs in complex with Argonaute (AGO) proteins. AGO interacts with a member of the TNRC6 family proteins to form a microRNP complex, which recruits the CCR4-NOT complex to accelerate deadenylation and inhibits translation. MicroRNAs primarily repress translation of target mRNAs but have been shown to enhance translation of a specific type of target reporter mRNAs in various experimental systems: G0 quiescent mammalian cells, Xenopus laevis oocytes, Drosophila embryo extracts, and HeLa cells. In all of the cases mentioned, a common feature of the activated target mRNAs is the lack of a poly(A) tail. Here, we show let-7-microRNP-mediated translational activation of nonadenylated target mRNAs in a mammalian cell-free system, which contains over-expressed AGO2, TNRC6B, and PAPD7 (TUTase5, TRF4-1). Importantly, translation of nonadenylated mRNAs was activated also by tethered TNRC6B silencing domain (SD), in the presence of PAPD7. Deletion of the poly(A)-binding protein (PABP) interacting motif (PAM2) from the TNRC6B-SD abolished the translational activation, suggesting the involvement of PABP in the process. Similar results were also obtained in cultured HEK293T cells. This work may provide novel insights into microRNP-mediated mRNA regulation.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Koichi Ogami
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Ryo Iwaoka
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Kazuma Aoki
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
55
|
Sheu-Gruttadauria J, MacRae IJ. Phase Transitions in the Assembly and Function of Human miRISC. Cell 2018; 173:946-957.e16. [PMID: 29576456 DOI: 10.1016/j.cell.2018.02.051] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
miRISC is a multi-protein assembly that uses microRNAs (miRNAs) to identify mRNAs targeted for repression. Dozens of miRISC-associated proteins have been identified, and interactions between many factors have been examined in detail. However, the physical nature of the complex remains unknown. Here, we show that two core protein components of human miRISC, Argonaute2 (Ago2) and TNRC6B, condense into phase-separated droplets in vitro and in live cells. Phase separation is promoted by multivalent interactions between the glycine/tryptophan (GW)-rich domain of TNRC6B and three evenly spaced tryptophan-binding pockets in the Ago2 PIWI domain. miRISC droplets formed in vitro recruit deadenylation factors and sequester target RNAs from the bulk solution. The condensation of miRISC is accompanied by accelerated deadenylation of target RNAs bound to Ago2. The combined results may explain how miRISC silences mRNAs of varying size and structure and provide experimental evidence that protein-mediated phase separation can facilitate an RNA processing reaction.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Abstract
ARGONAUTE (AGO) proteins are eukaryotic RNA silencing effectors that interact with their binding partners via short peptide motifs known as AGO hooks. AGO hooks tend to cluster in one region of the protein to create an AGO-binding platform. In addition to the presence of AGO hooks, AGO-binding platforms are intrinsically disordered, contain tandem repeat arrays, and have weak sequence conservation even between close relatives. These characteristics make it difficult to identify and perform evolutionary analysis of these regions. Because of their weak sequence conservation, only a few AGO-binding platforms are characterized, and the evolution of these regions is only poorly understood. In this chapter we describe modules developed for computational identification and evolutionary analysis of AGO-binding platforms, with particular emphasis on understanding evolution of the tandem repeat arrays.
Collapse
|
57
|
Liu W, Duttke SH, Hetzel J, Groth M, Feng S, Gallego-Bartolome J, Zhong Z, Kuo HY, Wang Z, Zhai J, Chory J, Jacobsen SE. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. NATURE PLANTS 2018; 4:181-188. [PMID: 29379150 PMCID: PMC5832601 DOI: 10.1038/s41477-017-0100-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/27/2017] [Indexed: 05/03/2023]
Abstract
Small RNAs regulate chromatin modifications such as DNA methylation and gene silencing across eukaryotic genomes. In plants, RNA-directed DNA methylation (RdDM) requires 24-nucleotide small interfering RNAs (siRNAs) that bind to ARGONAUTE 4 (AGO4) and target genomic regions for silencing. RdDM also requires non-coding RNAs transcribed by RNA polymerase V (Pol V) that probably serve as scaffolds for binding of AGO4-siRNA complexes. Here, we used a modified global nuclear run-on protocol followed by deep sequencing to capture Pol V nascent transcripts genome-wide. We uncovered unique characteristics of Pol V RNAs, including a uracil (U) common at position 10. This uracil was complementary to the 5' adenine found in many AGO4-bound 24-nucleotide siRNAs and was eliminated in a siRNA-deficient mutant as well as in the ago4/6/9 triple mutant, suggesting that the +10 U signature is due to siRNA-mediated co-transcriptional slicing of Pol V transcripts. Expression of wild-type AGO4 in ago4/6/9 mutants was able to restore slicing of Pol V transcripts, but a catalytically inactive AGO4 mutant did not correct the slicing defect. We also found that Pol V transcript slicing required SUPPRESSOR OF TY INSERTION 5-LIKE (SPT5L), an elongation factor whose function is not well understood. These results highlight the importance of Pol V transcript slicing in RNA-mediated transcriptional gene silencing, which is a conserved process in many eukaryotes.
Collapse
Affiliation(s)
- Wanlu Liu
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sascha H Duttke
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan Hetzel
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin Groth
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hsuan Yu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jixian Zhai
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven E Jacobsen
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
58
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
59
|
Kumar V, Khare T, Shriram V, Wani SH. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. PLANT CELL REPORTS 2018; 37:61-75. [PMID: 28951953 DOI: 10.1007/s00299-017-2210-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/12/2017] [Indexed: 05/07/2023]
Abstract
Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19-24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192101, India.
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
60
|
Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi. Proc Natl Acad Sci U S A 2017; 114:E11208-E11217. [PMID: 29237752 DOI: 10.1073/pnas.1714579115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Some long noncoding RNAs (ncRNAs) transcribed by RNA polymerase II (RNAPII) are retained on chromatin, where they regulate RNAi and chromatin structure. The molecular basis of this retention remains unknown. We show that in fission yeast serine 7 (Ser7) of the C-terminal domain (CTD) of RNAPII is required for efficient siRNA generation for RNAi-dependent heterochromatin formation. Surprisingly, Ser7 facilitates chromatin retention of nascent heterochromatic RNAs (hRNAs). Chromatin retention of hRNAs and siRNA generation requires both Ser7 and an RNA-binding activity of the chromodomain of Chp1, a subunit of the RNA-induced transcriptional silencing (RITS) complex. Furthermore, RITS associates with RNAPII in a Ser7-dependent manner. We propose that Ser7 promotes cotranscriptional chromatin retention of hRNA by recruiting the RNA-chromatin connector protein Chp1, which facilitates RNAi-dependent heterochromatin formation. Our findings reveal a function of the CTD code: linking ncRNA transcription to RNAi for heterochromatin formation.
Collapse
|
61
|
D'Ario M, Griffiths-Jones S, Kim M. Small RNAs: Big Impact on Plant Development. TRENDS IN PLANT SCIENCE 2017; 22:1056-1068. [PMID: 29032035 DOI: 10.1016/j.tplants.2017.09.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
While the role of proteins in determining cell identity has been extensively studied, the contribution of small noncoding RNA molecules such as miRNAs and siRNAs has been also recognised. miRNAs bind to complementary sites in target mRNA molecules to trigger the degradation or translational inhibition of those targets. Recent studies have revealed that miRNAs play pivotal roles in key developmental processes such as patterning of the embryo, meristem, leaf, and flower. Furthermore, these miRNAs have been recruited throughout plant evolution into pathways that create diverse plant organ forms and shapes. This review focuses on the roles of miRNAs in establishing plant cell identity during key plant development processes and creating morphological diversity during plant evolution.
Collapse
Affiliation(s)
- Marco D'Ario
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Minsung Kim
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
62
|
Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses. Int J Mol Sci 2017; 18:ijms18112300. [PMID: 29104238 PMCID: PMC5713270 DOI: 10.3390/ijms18112300] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 11/23/2022] Open
Abstract
Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.
Collapse
|
63
|
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC. Structural disorder in plant proteins: where plasticity meets sessility. Cell Mol Life Sci 2017; 74:3119-3147. [PMID: 28643166 PMCID: PMC11107788 DOI: 10.1007/s00018-017-2557-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023]
Abstract
Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.
Collapse
Affiliation(s)
- Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico.
| | - Cesar L Cuevas-Velazquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Paulette S Romero-Pérez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - David F Rendón-Luna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Caspar C C Chater
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| |
Collapse
|
64
|
Elkayam E, Faehnle CR, Morales M, Sun J, Li H, Joshua-Tor L. Multivalent Recruitment of Human Argonaute by GW182. Mol Cell 2017; 67:646-658.e3. [PMID: 28781232 PMCID: PMC5915679 DOI: 10.1016/j.molcel.2017.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
In miRNA-mediated gene silencing, the physical interaction between human Argonaute (hAgo) and GW182 (hGW182) is essential for facilitating the downstream silencing of the targeted mRNA. GW182 can interact with hAgo via three of the GW/WG repeats in its Argonaute-binding domain: motif-1, motif-2, and the hook motif. The structure of hAgo1 in complex with the hook motif of hGW182 reveals a "gate"-like interaction that is critical for GW182 docking into one of hAgo1's tryptophan-binding pockets. We show that hAgo1 and hAgo2 have a single GW182-binding site and that miRNA binding increases hAgo's affinity to GW182. With target binding occurring rapidly, this ensures that only mature RISC would be recruited for silencing. Finally, we show that hGW182 can recruit up to three copies of hAgo via its three GW motifs. This may explain the observed cooperativity in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Elad Elkayam
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Faehnle
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marjorie Morales
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Undergraduate Research Program, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jingchuan Sun
- Department of Biochemistry and Cell Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Huilin Li
- Department of Biochemistry and Cell Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Leemor Joshua-Tor
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
65
|
Structural Foundations of RNA Silencing by Argonaute. J Mol Biol 2017; 429:2619-2639. [PMID: 28757069 DOI: 10.1016/j.jmb.2017.07.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.
Collapse
|
66
|
Kenesi E, Carbonell A, Lózsa R, Vértessy B, Lakatos L. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC. Nucleic Acids Res 2017; 45:7736-7750. [PMID: 28499009 PMCID: PMC5737661 DOI: 10.1093/nar/gkx379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Rita Lózsa
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest H-1116, Hungary
| | - Beáta Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1114, Hungary
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest H-1114, Hungary
| | - Lóránt Lakatos
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Dermatological Research Group
- Department of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
67
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
68
|
Hauptmann J, Meister G. Peptide-Based Isolation of Argonaute Protein Complexes Using Ago-APP. Methods Mol Biol 2017; 1580:107-116. [PMID: 28439830 DOI: 10.1007/978-1-4939-6866-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Argonaute (Ago) proteins bind small RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), which guide them to distinct mRNAs for post-transcriptional gene silencing. Mammalian miRNA-guided gene silencing pathways mainly lead to translational repression and mRNA destabilization. To facilitate these processes, Ago proteins bind members of the GW protein family, which form central interaction platforms for the recruitment of downstream effector proteins. GW proteins use tryptophane residues (W) to bind to the surface of Ago proteins. This high affinity interaction is retained when a short, GST-fused GW peptide is used in biochemical pull-down experiments-an approach referred to as "Ago Affinity Purification by Peptides" (Ago-APP). Since the binding interface is conserved among different paralogues and different species, Ago-APP represents a universal tool to purify Ago proteins and associated small RNAs using samples from species with conserved miRNA pathways.
Collapse
|
69
|
Zielezinski A, Karlowski WM. Identification and Analysis of WG/GW ARGONAUTE-Binding Domains. Methods Mol Biol 2017; 1640:241-256. [PMID: 28608348 DOI: 10.1007/978-1-4939-7165-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
WG/GW domains recruit ARGONAUTE (AGO) proteins to distinct silencing effector complexes using combinations of just two amino acids: tryptophan (W) and glycine (G), forming a wide arsenal of highly simplified interaction surfaces. These unstructured domains exhibit very low sequence identity and excessive length polymorphism, which makes identification of new AGO-binding proteins a challenging task as they escape detection with standard sequence comparison-based methods (e.g., BLAST, HMMER).In this chapter, we explain the use of tools for prediction of AGO-binding WG/GW domains in protein sequences. We also show how to computationally explore an up-to-date information about AGO-interacting proteins and discover new properties of WG/GW domains. Finally, we encourage readers to explore the game-like web application for in silico designing/modifying AGO-binding sequences as well as modeling mutagenesis experiments and predicting their potential effect on AGO-binding activity.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
70
|
Sahoo MR, Gaikwad S, Khuperkar D, Ashok M, Helen M, Yadav SK, Singh A, Magre I, Deshmukh P, Dhanvijay S, Sahoo PK, Ramtirtha Y, Madhusudhan MS, Gayathri P, Seshadri V, Joseph J. Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC. EMBO Rep 2016; 18:241-263. [PMID: 28039207 DOI: 10.15252/embr.201642386] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/13/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNA (miRNA)-guided mRNA repression, mediated by the miRNA-induced silencing complex (miRISC), is an important component of post-transcriptional gene silencing. However, how miRISC identifies the target mRNA in vivo is not well understood. Here, we show that the nucleoporin Nup358 plays an important role in this process. Nup358 localizes to the nuclear pore complex and to the cytoplasmic annulate lamellae (AL), and these structures dynamically associate with two mRNP granules: processing bodies (P bodies) and stress granules (SGs). Nup358 depletion disrupts P bodies and concomitantly impairs the miRNA pathway. Furthermore, Nup358 interacts with AGO and GW182 proteins and promotes the association of target mRNA with miRISC A well-characterized SUMO-interacting motif (SIM) in Nup358 is sufficient for Nup358 to directly bind to AGO proteins. Moreover, AGO and PIWI proteins interact with SIMs derived from other SUMO-binding proteins. Our study indicates that Nup358-AGO interaction is important for miRNA-mediated gene silencing and identifies SIM as a new interacting motif for the AGO family of proteins. The findings also support a model wherein the coupling of miRISC with the target mRNA could occur at AL, specialized domains within the ER, and at the nuclear envelope.
Collapse
Affiliation(s)
- Manas Ranjan Sahoo
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Swati Gaikwad
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Maitreyi Ashok
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Mary Helen
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Prachi Deshmukh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Supriya Dhanvijay
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Yogendra Ramtirtha
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Pananghat Gayathri
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| |
Collapse
|
71
|
Lahmy S, Pontier D, Bies-Etheve N, Laudié M, Feng S, Jobet E, Hale CJ, Cooke R, Hakimi MA, Angelov D, Jacobsen SE, Lagrange T. Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev 2016; 30:2565-2570. [PMID: 27986858 PMCID: PMC5204349 DOI: 10.1101/gad.289553.116] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022]
Abstract
RNA polymerase V (Pol V) long noncoding RNAs (lncRNAs) have been proposed to guide ARGONAUTE4 (AGO4) to chromatin in RNA-directed DNA methylation (RdDM) in plants. Here, we provide evidence, based on laser UV-assisted zero-length cross-linking, for functionally relevant AGO4-DNA interaction at RdDM targets. We further demonstrate that Pol V lncRNAs or the act of their transcription are required to lock Pol V holoenzyme into a stable DNA-bound state that allows AGO4 recruitment via redundant glycine-tryptophan/tryptophan-glycine AGO hook motifs present on both Pol V and its associated factor, SPT5L. We propose a model in which AGO4-DNA interaction could be responsible for the unique specificities of RdDM.
Collapse
Affiliation(s)
- Sylvie Lahmy
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| | - Dominique Pontier
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| | - Natacha Bies-Etheve
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| | - Michèle Laudié
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| | - Suhua Feng
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edouard Jobet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| | - Christopher J Hale
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Pathology, Center for Precision Diagnostics, University of Washington, Seattle, Washington 98195, USA
| | - Richard Cooke
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), UMR5309, CNRS, U1209, Institut National de la Santé et de la Recherche Médicale (INSERM), Grenoble Alpes University, 38000 Grenoble, France
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), UMR 5239, CNRS/École Normale Supérieure de Lyon (ENSL)/Université Claude Bernard Lyon 1 (UCBL), 69007 Lyon, France.,Institut NeuroMyogène (INMG), UMR 5310, CNRS/UCBL/ENSL, 69007 Lyon, France
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, California 90095, USA.,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Thierry Lagrange
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), 66860 Perpignan, France
| |
Collapse
|
72
|
Jannot G, Michaud P, Quévillon Huberdeau M, Morel-Berryman L, Brackbill JA, Piquet S, McJunkin K, Nakanishi K, Simard MJ. GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis. PLoS Genet 2016; 12:e1006484. [PMID: 27935964 PMCID: PMC5147811 DOI: 10.1371/journal.pgen.1006484] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/15/2016] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs and Argonaute form the microRNA induced silencing complex or miRISC that recruits GW182, causing mRNA degradation and/or translational repression. Despite the clear conservation and molecular significance, it is unknown if miRISC-GW182 interaction is essential for gene silencing during animal development. Using Caenorhabditis elegans to explore this question, we examined the relationship and effect on gene silencing between the GW182 orthologs, AIN-1 and AIN-2, and the microRNA-specific Argonaute, ALG-1. Homology modeling based on human Argonaute structures indicated that ALG-1 possesses conserved Tryptophan-binding Pockets required for GW182 binding. We show in vitro and in vivo that their mutations severely altered the association with AIN-1 and AIN-2. ALG-1 tryptophan-binding pockets mutant animals retained microRNA-binding and processing ability, but were deficient in reporter silencing activity. Interestingly, the ALG-1 tryptophan-binding pockets mutant phenocopied the loss of alg-1 in worms during larval stages, yet was sufficient to rescue embryonic lethality, indicating the dispensability of AINs association with the miRISC at this developmental stage. The dispensability of AINs in miRNA regulation is further demonstrated by the capacity of ALG-1 tryptophan-binding pockets mutant to regulate a target of the embryonic mir-35 microRNA family. Thus, our results demonstrate that the microRNA pathway can act independently of GW182 proteins during C. elegans embryogenesis.
Collapse
Affiliation(s)
- Guillaume Jannot
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Pascale Michaud
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Miguel Quévillon Huberdeau
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Louis Morel-Berryman
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - James A. Brackbill
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandra Piquet
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Katherine McJunkin
- Program in Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kotaro Nakanishi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Martin J. Simard
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada
- Laval University Cancer Research Centre, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
73
|
Trujillo JT, Beilstein MA, Mosher RA. The Argonaute-binding platform of NRPE1 evolves through modulation of intrinsically disordered repeats. THE NEW PHYTOLOGIST 2016; 212:1094-1105. [PMID: 27431917 PMCID: PMC5125548 DOI: 10.1111/nph.14089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/04/2016] [Indexed: 05/26/2023]
Abstract
Argonaute (Ago) proteins are important effectors in RNA silencing pathways, but they must interact with other machinery to trigger silencing. Ago hooks have emerged as a conserved motif responsible for interaction with Ago proteins, but little is known about the sequence surrounding Ago hooks that must restrict or enable interaction with specific Argonautes. Here we investigated the evolutionary dynamics of an Ago-binding platform in NRPE1, the largest subunit of RNA polymerase V. We compared NRPE1 sequences from > 50 species, including dense sampling of two plant lineages. This study demonstrates that the Ago-binding platform of NRPE1 retains Ago hooks, intrinsic disorder, and repetitive character while being highly labile at the sequence level. We reveal that loss of sequence conservation is the result of relaxed selection and frequent expansions and contractions of tandem repeat arrays. These factors allow a complete restructuring of the Ago-binding platform over 50-60 million yr. This evolutionary pattern is also detected in a second Ago-binding platform, suggesting it is a general mechanism. The presence of labile repeat arrays in all analyzed NRPE1 Ago-binding platforms indicates that selection maintains repetitive character, potentially to retain the ability to rapidly restructure the Ago-binding platform.
Collapse
Affiliation(s)
- Joshua T Trujillo
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721-0036, USA
| | - Mark A Beilstein
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721-0036, USA
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721-0036, USA
| |
Collapse
|
74
|
Affiliation(s)
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-75005 Paris, France;
| |
Collapse
|
75
|
Böhmdorfer G, Sethuraman S, Rowley MJ, Krzyszton M, Rothi MH, Bouzit L, Wierzbicki AT. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife 2016; 5. [PMID: 27779094 PMCID: PMC5079748 DOI: 10.7554/elife.19092] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 01/10/2023] Open
Abstract
RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI:http://dx.doi.org/10.7554/eLife.19092.001
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shriya Sethuraman
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, United States
| | - M Jordan Rowley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Michal Krzyszton
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - M Hafiz Rothi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lilia Bouzit
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
76
|
Bejerman N, Mann KS, Dietzgen RG. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing. Virus Res 2016; 224:19-28. [PMID: 27543392 DOI: 10.1016/j.virusres.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 11/16/2022]
Abstract
Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
77
|
Schalk C, Drevensek S, Kramdi A, Kassam M, Ahmed I, Cognat V, Graindorge S, Bergdoll M, Baumberger N, Heintz D, Bowler C, Genschik P, Barneche F, Colot V, Molinier J. DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape. THE PLANT CELL 2016; 28:2043-2059. [PMID: 27531226 PMCID: PMC5059809 DOI: 10.1105/tpc.16.00474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 05/22/2023]
Abstract
In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress.
Collapse
Affiliation(s)
- Catherine Schalk
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Stéphanie Drevensek
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Amira Kramdi
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Mohamed Kassam
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Ikhlak Ahmed
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Valérie Cognat
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Fredy Barneche
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Vincent Colot
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Jean Molinier
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| |
Collapse
|
78
|
Untiveros M, Olspert A, Artola K, Firth AE, Kreuze JF, Valkonen JPT. A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. MOLECULAR PLANT PATHOLOGY 2016; 17:1111-23. [PMID: 26757490 PMCID: PMC4979677 DOI: 10.1111/mpp.12366] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 05/20/2023]
Abstract
The single-stranded, positive-sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted to contain a third ORF, called pispo, which overlaps the 3' third of the P1 region. Recently, pipo has been shown to be expressed via polymerase slippage at a conserved GA6 sequence. Here, we show that pispo is also expressed via polymerase slippage at a GA6 sequence, with higher slippage efficiency (∼5%) than at the pipo site (∼1%). Transient expression of recombinant P1 or the 'transframe' product, P1N-PISPO, in Nicotiana benthamiana suppressed local RNA silencing (RNAi), but only P1N-PISPO inhibited short-distance movement of the silencing signal. These results reveal that polymerase slippage in potyviruses is not limited to pipo expression, but can be co-opted for the evolution and expression of further novel gene products.
Collapse
Affiliation(s)
- Milton Untiveros
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Allan Olspert
- Department of Pathology, Division of Virology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Katrin Artola
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrew E Firth
- Department of Pathology, Division of Virology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
79
|
Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:140-148. [PMID: 27521981 DOI: 10.1016/j.bbagrm.2016.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
RNA-directed chromatin modification that includes cytosine methylation silences transposable elements in both plants and mammals, contributing to genome defense and stability. In Arabidopsis thaliana, most RNA-directed DNA methylation (RdDM) is guided by small RNAs derived from double-stranded precursors synthesized at cytosine-methylated loci by nuclear multisubunit RNA Polymerase IV (Pol IV), in close partnership with the RNA-dependent RNA polymerase, RDR2. These small RNAs help keep transposons transcriptionally inactive. However, if transposons escape silencing, and are transcribed by multisubunit RNA polymerase II (Pol II), their mRNAs can be recognized and degraded, generating small RNAs that can also guide initial DNA methylation, thereby enabling subsequent Pol IV-RDR2 recruitment. In both pathways, the small RNAs find their target sites by interacting with longer noncoding RNAs synthesized by multisubunit RNA Polymerase V (Pol V). Despite a decade of progress, numerous questions remain concerning the initiation, synthesis, processing, size and features of the RNAs that drive RdDM. Here, we review recent insights, questions and controversies concerning RNAs produced by Pols IV and V, and their functions in RdDM. We also provide new data concerning Pol V transcript 5' and 3' ends. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
80
|
Accurate Chromosome Segregation at First Meiotic Division Requires AGO4, a Protein Involved in RNA-Dependent DNA Methylation in Arabidopsis thaliana. Genetics 2016; 204:543-553. [PMID: 27466226 DOI: 10.1534/genetics.116.189217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
The RNA-directed DNA methylation (RdDM) pathway is important for the transcriptional repression of transposable elements and for heterochromatin formation. Small RNAs are key players in this process by regulating both DNA and histone methylation. Taking into account that methylation underlies gene silencing and that there are genes with meiosis-specific expression profiles, we have wondered whether genes involved in RdDM could play a role during this specialized cell division. To address this issue, we have characterized meiosis progression in pollen mother cells from Arabidopsis thaliana mutant plants defective for several proteins related to RdDM. The most relevant results were obtained for ago4-1 In this mutant, meiocytes display a slight reduction in chiasma frequency, alterations in chromatin conformation around centromeric regions, lagging chromosomes at anaphase I, and defects in spindle organization. These abnormalities lead to the formation of polyads instead of tetrads at the end of meiosis, and might be responsible for the fertility defects observed in this mutant. Findings reported here highlight an involvement of AGO4 during meiosis by ensuring accurate chromosome segregation at anaphase I.
Collapse
|
81
|
Flamand MN, Wu E, Vashisht A, Jannot G, Keiper BD, Simard MJ, Wohlschlegel J, Duchaine TF. Poly(A)-binding proteins are required for microRNA-mediated silencing and to promote target deadenylation in C. elegans. Nucleic Acids Res 2016; 44:5924-35. [PMID: 27095199 PMCID: PMC4937315 DOI: 10.1093/nar/gkw276] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023] Open
Abstract
Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3' termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans PABPs (PAB-1 and PAB-2) in miRNA-mediated silencing, and elucidate their mechanisms of action using concerted genetics, protein interaction analyses, and cell-free assays. We find that C. elegans PABPs are required for miRNA-mediated silencing in embryonic and larval developmental stages, where they act through a multi-faceted mechanism. Depletion of PAB-1 and PAB-2 results in loss of both poly(A)-dependent and -independent translational silencing. PABPs accelerate miRNA-mediated deadenylation, but this contribution can be modulated by 3'UTR sequences. While greater distances with the poly(A) tail exacerbate dependency on PABP for deadenylation, more potent miRNA-binding sites partially suppress this effect. Our results refine the roles of PABPs in miRNA-mediated silencing and support a model wherein they enable miRNA-binding sites by looping the 3'UTR poly(A) tail to the bound miRISC and deadenylase.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Edlyn Wu
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine & Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ajay Vashisht
- Department of Biological Chemistry David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guillaume Jannot
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval (Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Quebec City, QC G1R 2J6, Canada
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval (Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Quebec City, QC G1R 2J6, Canada
| | - James Wohlschlegel
- Department of Biological Chemistry David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada Division of Experimental Medicine & Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
82
|
Mann KS, Johnson KN, Carroll BJ, Dietzgen RG. Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology 2016; 490:27-40. [PMID: 26808923 DOI: 10.1016/j.virol.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
Abstract
Plant viruses have evolved to undermine the RNA silencing pathway by expressing suppressor protein(s) that interfere with one or more key components of this antiviral defense. Here we show that the recently identified RNA silencing suppressor (RSS) of lettuce necrotic yellows virus (LNYV), phosphoprotein P, binds to RNA silencing machinery proteins AGO1, AGO2, AGO4, RDR6 and SGS3 in protein-protein interaction assays when transiently expressed. In planta, we demonstrate that LNYV P inhibits miRNA-guided AGO1 cleavage and translational repression, and RDR6/SGS3-dependent amplification of silencing. Analysis of LNYV P deletion mutants identified a C-terminal protein domain essential for both local RNA silencing suppression and interaction with AGO1, AGO2, AGO4, RDR6 and SGS3. In contrast to other viral RSS known to disrupt AGO activity, LNYV P sequence does not contain any recognizable GW/WG or F-box motifs. This suggests that LNYV P may represent a new class of AGO binding proteins.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
83
|
Fátyol K, Ludman M, Burgyán J. Functional dissection of a plant Argonaute. Nucleic Acids Res 2016; 44:1384-97. [PMID: 26673719 PMCID: PMC4756824 DOI: 10.1093/nar/gkv1371] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
RNA guided ribonuclease complexes play central role in RNA interference. Members of the evolutionarily conserved Argonaute protein family form the catalytic cores of these complexes. Unlike a number of other plant Argonautes, the role of AGO2 has been obscure until recently. Newer data, however, have indicated its involvement in various biotic and abiotic stress responses. Despite its suggested importance, there is no detailed characterization of this protein to date. Here we report cloning and molecular characterization of the AGO2 protein of the virological model plant Nicotiana benthamiana. We show that AGO2 can directly repress translation via various miRNA target site constellations (ORF, 3' UTR). Interestingly, although AGO2 seems to be able to silence gene expression in a slicing independent fashion, its catalytic activity is still a prerequisite for efficient translational repression. Additionally, mismatches between the 3' end of the miRNA guide strand and the 5' end of the target site enhance gene silencing by AGO2. Several functionally important amino acid residues of AGO2 have been identified that affect its small RNA loading, cleavage activity, translational repression potential and antiviral activity. The data presented here help us to understand how AGO2 aids plants to deal with stress.
Collapse
Affiliation(s)
- Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre Szent-Györgyi Albert u. 4. Gödöllő 2100, Hungary
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre Szent-Györgyi Albert u. 4. Gödöllő 2100, Hungary
| | - József Burgyán
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre Szent-Györgyi Albert u. 4. Gödöllő 2100, Hungary
| |
Collapse
|
84
|
Fang X, Qi Y. RNAi in Plants: An Argonaute-Centered View. THE PLANT CELL 2016; 28:272-85. [PMID: 26869699 PMCID: PMC4790879 DOI: 10.1105/tpc.15.00920] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Argonaute (AGO) family proteins are effectors of RNAi in eukaryotes. AGOs bind small RNAs and use them as guides to silence target genes or transposable elements at the transcriptional or posttranscriptional level. Eukaryotic AGO proteins share common structural and biochemical properties and function through conserved core mechanisms in RNAi pathways, yet plant AGOs have evolved specialized and diversified functions. This Review covers the general features of AGO proteins and highlights recent progress toward our understanding of the mechanisms and functions of plant AGOs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
85
|
Zhang C, Wu Z, Li Y, Wu J. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants. Front Microbiol 2015; 6:1237. [PMID: 26617580 PMCID: PMC4637412 DOI: 10.3389/fmicb.2015.01237] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| | - Jianguo Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China ; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| |
Collapse
|
86
|
Lu X, Wang W, Ren W, Chai Z, Guo W, Chen R, Wang L, Zhao J, Lang Z, Fan Y, Zhao J, Zhang C. Genome-Wide Epigenetic Regulation of Gene Transcription in Maize Seeds. PLoS One 2015; 10:e0139582. [PMID: 26469520 PMCID: PMC4607434 DOI: 10.1371/journal.pone.0139582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/15/2015] [Indexed: 11/21/2022] Open
Abstract
Background Epigenetic regulation is well recognized for its importance in gene expression in organisms. DNA methylation, an important epigenetic mark, has received enormous attention in recent years as it’s a key player in many biological processes. It remains unclear how DNA methylation contributes to gene transcription regulation in maize seeds. Here, we take advantage of recent technologies to examine the genome-wide association of DNA methylation with transcription of four types of DNA sequences, including protein-coding genes, pseudogenes, transposable elements, and repeats in maize embryo and endosperm, respectively. Results The methylation in CG, CHG and CHH contexts plays different roles in the control of gene expression. Methylation around the transcription start sites and transcription stop regions of protein-coding genes is negatively correlated, but in gene bodies positively correlated, to gene expression level. The upstream regions of protein-coding genes are enriched with 24-nt siRNAs and contain high levels of CHH methylation, which is correlated to gene expression level. The analysis of sequence content within CG, CHG, or CHH contexts reveals that only CHH methylation is affected by its local sequences, which is different from Arabidopsis. Conclusions In summary, we conclude that methylation-regulated transcription varies with the types of DNA sequences, sequence contexts or parts of a specific gene in maize seeds and differs from that in other plant species. Our study helps people better understand from a genome-wide viewpoint that how transcriptional expression is controlled by DNA methylation, one of the important factors influencing transcription, and how the methylation is associated with small RNAs.
Collapse
Affiliation(s)
- Xiaoduo Lu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weixuan Wang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Wen Ren
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhenguang Chai
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Wenzhu Guo
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Rumei Chen
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Lei Wang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Jun Zhao
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Zhihong Lang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Yunliu Fan
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- * E-mail: (Jiuran Zhao); (CZ)
| | - Chunyi Zhang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
- * E-mail: (Jiuran Zhao); (CZ)
| |
Collapse
|
87
|
Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, Rusch D, Tang H, Pikaard CS. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife 2015; 4:e09591. [PMID: 26430765 PMCID: PMC4716838 DOI: 10.7554/elife.09591] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3' termini. The 24 nt siRNAs primarily correspond to the 5' or 3' ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.
Collapse
Affiliation(s)
- Todd Blevins
- Howard Hughes Medical Institute, Indiana University, Bloomington, United States
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, United States
- School of Informatics and Computing, Indiana University, Bloomington, United States
| | - Vibhor Mishra
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Michelle Marasco
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Jing Wang
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Doug Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, United States
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, United States
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, United States
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
88
|
Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol 2015; 25:651-665. [PMID: 26437588 DOI: 10.1016/j.tcb.2015.07.011] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs, which regulate complementary mRNAs by inducing translational repression and mRNA decay. Although this dual repression system seems to operate in both animals and plants, genetic and biochemical studies suggest that the mechanism underlying the miRNA-mediated silencing is different in the two kingdoms. Here, we review the recent progress in our understanding of how miRNAs mediate translational repression and mRNA decay, and discuss the contributions of the two silencing modes to the overall silencing effect in both kingdoms.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
89
|
Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:154-64. [PMID: 26344361 PMCID: PMC4618083 DOI: 10.1016/j.pbi.2015.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 05/19/2023]
Abstract
Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1,2,3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insights into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin.
Collapse
Affiliation(s)
- Ming Zhou
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
90
|
Wang F, Polydore S, Axtell MJ. More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:118-24. [PMID: 26246393 PMCID: PMC4732885 DOI: 10.1016/j.pbi.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 05/19/2023]
Abstract
MicroRNAs, which target mRNAs for post-transcriptional regulation, and heterochromatic siRNAs, which target chromatin causing DNA methylation, make up the majority of the endogenous regulatory small RNA pool in most plant specimens. They both function to guide Argonaute proteins to targeted nucleic acids on the basis of complementarity. Recent work on plant miRNA-target interactions has clarified the general ''rules' of complementarity, while also providing several intriguing exceptions to these rules. In addition, emerging evidence suggests that several factors besides miRNA-target complementarity affect plant miRNA function. For heterochromatic siRNAs, recent work has made progress towards comprehensively identifying potential target regions, but numerous fundamental questions remain to be answered.
Collapse
Affiliation(s)
- Feng Wang
- Plant Biology Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Seth Polydore
- Genetics Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Plant Biology Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Genetics Ph.D. Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
91
|
Abstract
During microRNA (miRNA)-guided gene silencing, Argonaute (Ago) proteins interact with a member of the TNRC6/GW protein family. Here we used a short GW protein-derived peptide fused to GST and demonstrate that it binds to Ago proteins with high affinity. This allows for the simultaneous isolation of all Ago protein complexes expressed in diverse species to identify associated proteins, small RNAs, or target mRNAs. We refer to our method as "Ago protein Affinity Purification by Peptides" (Ago-APP). Furthermore, expression of this peptide competes for endogenous TNRC6 proteins, leading to global inhibition of miRNA function in mammalian cells.
Collapse
|
92
|
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16:421-33. [PMID: 26077373 DOI: 10.1038/nrg3965] [Citation(s) in RCA: 1369] [Impact Index Per Article: 136.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5'-to-3' exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5'-to-3' degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging.
Collapse
Affiliation(s)
- Stefanie Jonas
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| |
Collapse
|
93
|
Xie M, Yu B. siRNA-directed DNA Methylation in Plants. Curr Genomics 2015; 16:23-31. [PMID: 25937811 PMCID: PMC4412961 DOI: 10.2174/1389202915666141128002211] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/02/2022] Open
Abstract
DNA cytosine methylationis an important epigenetic process that is correlated with transgene silencing, transposon suppression, and gene imprinting. In plants, small interfering RNAs (siRNAs) can trigger DNA methylation at loci containing their homolog sequences through a process called RNA-directed DNA methylation (RdDM). In canonical RdDM, 24 nucleotide (nt) siRNAs (ra-siRNAs) will be loaded into their effector protein called ARGONAUTE 4 (AGO4) and subsequently targeted to RdDM loci through base-pairing with the non-coding transcripts produced by DNA-directed RNA Polymerase V. Then, the AGO4-ra-siRNA will recruit the DNA methyltransferase to catalyze de novo DNA methylation. Recent studies also identified non-canonical RdDM pathways that involve microRNAs or 21 nt siRNAs. These RdDM pathways are biologically important since they control responses biotic and abiotic stresses, maintain genome stability and regulate development. Here, we summarize recent pro-gresses of mechanisms governing canonical and non-canonical RdDM pathways.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| |
Collapse
|
94
|
Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, Chen X, Arteaga-Vázquez M, Beilstein MA, Mosher RA. Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Mol Biol Evol 2015; 32:1788-99. [PMID: 25767205 PMCID: PMC4476159 DOI: 10.1093/molbev/msv060] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence.
Collapse
Affiliation(s)
- Yi Huang
- The School of Plant Sciences, The University of Arizona
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona
| | | | - Ana Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | - Mario Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | | | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona The Bio5 Institute, The University of Arizona
| |
Collapse
|
95
|
Clavel M, Pélissier T, Descombin J, Jean V, Picart C, Charbonel C, Saez-Vásquez J, Bousquet-Antonelli C, Deragon JM. Parallel action of AtDRB2 and RdDM in the control of transposable element expression. BMC PLANT BIOLOGY 2015; 15:70. [PMID: 25849103 PMCID: PMC4351826 DOI: 10.1186/s12870-015-0455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants and animals, a large number of double-stranded RNA binding proteins (DRBs) have been shown to act as non-catalytic cofactors of DICERs and to participate in the biogenesis of small RNAs involved in RNA silencing. We have previously shown that the loss of Arabidopsis thaliana's DRB2 protein results in a significant increase in the population of RNA polymerase IV (p4) dependent siRNAs, which are involved in the RNA-directed DNA methylation (RdDM) process. RESULTS Surprisingly, despite this observation, we show in this work that DRB2 is part of a high molecular weight complex that does not involve RdDM actors but several chromatin regulator proteins, such as MSI4, PRMT4B and HDA19. We show that DRB2 can bind transposable element (TE) transcripts in vivo but that drb2 mutants do not have a significant variation in TE DNA methylation. CONCLUSION We propose that DRB2 is part of a repressive epigenetic regulator complex involved in a negative feedback loop, adjusting epigenetic state to transcription level at TE loci, in parallel of the RdDM pathway. Loss of DRB2 would mainly result in an increased production of TE transcripts, readily converted in p4-siRNAs by the RdDM machinery.
Collapse
Affiliation(s)
- Marion Clavel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: IBMP, UPR 2357, 12, rue du général Zimmer, 67084 Strasbourg cedex, France
| | - Thierry Pélissier
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: UMR6293 CNRS - INSERM U1103 – GreD, Clermont Université, 24 avenue des Landais, B.P. 80026, 63171 Aubière Cedex, France
| | - Julie Descombin
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Viviane Jean
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Claire Picart
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cyril Charbonel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Julio Saez-Vásquez
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cécile Bousquet-Antonelli
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Jean-Marc Deragon
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| |
Collapse
|
96
|
Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex. Nat Struct Mol Biol 2015; 22:328-35. [PMID: 25730778 DOI: 10.1038/nsmb.2979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 01/31/2015] [Indexed: 12/29/2022]
Abstract
Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute's association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein-containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes.
Collapse
|
97
|
Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:911-6. [PMID: 25561521 DOI: 10.1073/pnas.1423603112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase domains rearranged methylase 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation.
Collapse
|
98
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
99
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
100
|
Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO J 2014; 34:581-92. [PMID: 25527293 DOI: 10.15252/embj.201489453] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Argonaute (AGO) family proteins are conserved key components of small RNA-induced silencing pathways. In the RNA-directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4- and AGO6-dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic interactions between AGO4 and AGO6. Immunofluorescence revealed that AGO4 and AGO6 differ in their subnuclear co-localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent from perinucleolar foci, where Pol V and AGO4 are co-localized. In the nucleoplasm, AGO4 displays a strong co-localization with Pol II, whereas AGO6 co-localizes with Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically interacts with AGO4 but not AGO6, and the levels of Pol V-dependent scaffold RNAs and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4. Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Weiqiang Qian
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yueh-Ju Hou
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Yang Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Jianping Zhou
- School of Life Science and Technology University of Electronic Science and Technology of China, Chengdu Sichuan, China
| | - Gaimei Liang
- Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan Shanxi, China
| | - Na Liu
- Department of Horticulture, Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant Zhejiang University, Hangzhou Zhejiang, China
| | - Chunguo Wang
- College of Life Sciences Nankai University, Tianjin, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|