51
|
Kang WH, Park YH, Park HM. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J Biol Chem 2010; 285:13797-806. [PMID: 20200159 PMCID: PMC2859543 DOI: 10.1074/jbc.m110.113555] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disruption of the fission yeast LAMMER kinase, Lkh1, gene resulted in diverse phenotypes, including adhesive filamentous growth and oxidative stress sensitivity, but an exact cellular function had not been assigned to Lkh1. Through an in vitro pull-down approach, a transcriptional repressor, Tup12, was identified as an Lkh1 binding partner. Interactions between Lkh1 and Tup11 or Tup12 were confirmed by in vitro and in vivo binding assays. Tup proteins were phosphorylated by Lkh1 in a LAMMER motif-dependent manner. The LAMMER motif was also necessary for substrate recognition in vitro and cellular function in vivo. Transcriptional activity assays using promoters negatively regulated by Tup11 and Tup12 showed 6 or 2 times higher activity in the Δlkh1 mutant than the wild type, respectively. Northern analysis revealed derepressed expression of the fbp1+ mRNA in Δlkh1 and in Δtup11Δtup12 mutant cells under repressed conditions. Δlkh1 and Δtup11Δtup12 mutant cells showed flocculation, which was reversed by co-expression of Tup11 and -12 with Ssn6. Here, we presented a new aspect of the LAMMER kinase by demonstrating that the activities of global transcriptional repressors, Tup11 and Tup12, were positively regulated by Lkh1-mediated phosphorylation.
Collapse
Affiliation(s)
- Won-Hwa Kang
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Gung-dong 220, Yuseong-gu, Daejeon 305-764, Korea
| | | | | |
Collapse
|
52
|
Sharma M, Brantley JG, Vassmer D, Chaturvedi G, Baas J, Vanden Heuvel GB. The homeodomain protein Cux1 interacts with Grg4 to repress p27 kip1 expression during kidney development. Gene 2009; 439:87-94. [PMID: 19332113 PMCID: PMC2742960 DOI: 10.1016/j.gene.2009.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 01/19/2023]
Abstract
The homeodomain protein Cux1 is highly expressed in the nephrogenic zone of the developing kidney where it functions to regulate cell proliferation. Here we show that Cux1 directly interacts with the co-repressor Grg4 (Groucho 4), a known effector of Notch signaling. Promoter reporter based luciferase assays revealed enhanced repression of p27(kip1) promoter activity by Cux1 in the presence of Grg4. Chromatin immunoprecipitation (ChIP) assays demonstrated the direct interaction of Cux1 with p27(kip1) in newborn kidney tissue in vivo. ChIP assays also identified interactions of Cux1, Grg4, HDAC1, and HDAC3 with p27(kip1) at two separate sites in the p27(kip1) promoter. DNAse1 footprinting experiments revealed that Cux1 binds to the p27(kip1) promoter on the sequence containing two Sp1 sites and a CCAAT box approximately 500 bp from the transcriptional start site, and to an AT rich sequence approximately 1.5 kb from the transcriptional start site. Taken together, these results identify Grg4 as an interacting partner for Cux1 and suggest a mechanism of p27(kip1) repression by Cux1 during kidney development.
Collapse
Affiliation(s)
- Madhulika Sharma
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Jennifer G. Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Dianne Vassmer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Gaurav Chaturvedi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Jennifer Baas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Gregory B. Vanden Heuvel
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| |
Collapse
|
53
|
The Rpd3/HDAC complex is present at the URS1 cis-element with hyperacetylated histone H3. Biosci Biotechnol Biochem 2009; 73:378-84. [PMID: 19202282 DOI: 10.1271/bbb.80621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In eukaryotes, the hypoacetylated state of histone N-terminal lysines at many gene-promoters, which is created by histone deacetylases (HDACs), is changed to the hyperacetylated state by the function of histone acetyltransferases (HATs) upon transcription activation. Although much insight has been obtained to date as to how modification of the histone tail regulates gene expression, little is known about how the transition between the unmodified and modified states takes place. In Saccharomyces cerevisiae, the HDAC complex containing Rpd3 (Rpd3L) represses the transcription of several sets of genes through the URS1 cis-element. We found that the histone H3 acetylation level at the URS1 of seven genes (INO1, CAT2, ACS1, YAT1, RIM4, CRC1, and SIP4) was elevated in the presence of Rpd3/HDAC in growth in acetate-containing medium (YPA), suggesting that a mechanism that regulates HDAC activity is present in this organism. The biological significance of this phenomenon is discussed below.
Collapse
|
54
|
Choi JK, Hwang S, Kim YJ. Stochastic and regulatory role of chromatin silencing in genomic response to environmental changes. PLoS One 2008; 3:e3002. [PMID: 18714342 PMCID: PMC2500160 DOI: 10.1371/journal.pone.0003002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/29/2008] [Indexed: 01/23/2023] Open
Abstract
Phenotypic diversity and fidelity can be balanced by controlling stochastic molecular mechanisms. Epigenetic silencing is one that has a critical role in stress response. Here we show that in yeast, incomplete silencing increases stochastic noise in gene expression, probably owing to unstable chromatin structure. Telomere position effect is suggested as one mechanism. Expression diversity in a population achieved in this way may render a subset of cells to readily respond to various acute stresses. By contrast, strong silencing tends to suppress noisy expression of genes, in particular those involved in life cycle control. In this regime, chromatin may act as a noise filter for precisely regulated responses to environmental signals that induce huge phenotypic changes such as a cell fate transition. These results propose modulation of chromatin stability as an important determinant of environmental adaptation and cellular differentiation.
Collapse
Affiliation(s)
- Jung Kyoon Choi
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Sohyun Hwang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
55
|
Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 2008; 178:145-56. [PMID: 18202364 DOI: 10.1534/genetics.107.081315] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adhesins play a central role in the cellular response of eukaryotic microorganisms to their host environment. In pathogens such as Candida spp. and other fungi, adhesins are responsible for adherence to mammalian tissues, and in Saccharomyces spp. yeasts also confer adherence to solid surfaces and to other yeast cells. The analysis of FLO11, the main adhesin identified in Saccharomyces cerevisiae, has revealed complex mechanisms, involving both genetic and epigenetic regulation, governing the expression of this critical gene. We designed a genomewide screen to identify new regulators of this pivotal adhesin in budding yeasts. We took advantage of a specific FLO11 allele that confers very high levels of FLO11 expression to wild "flor" strains of S. cerevisiae. We screened for mutants that abrogated the increased FLO11 expression of this allele using the loss of the characteristic fluffy-colony phenotype and a reporter plasmid containing GFP controlled by the same FLO11 promoter. Using this approach, we isolated several genes whose function was essential to maintain the expression of FLO11. In addition to previously characterized activators, we identified a number of novel FLO11 activators, which reveal the pH response pathway and chromatin-remodeling complexes as central elements involved in FLO11 activation.
Collapse
|
56
|
Abstract
Transcriptional repressor proteins play key roles in the control of gene expression in development. For the Drosophila embryo, the following two functional classes of repressors have been described: short-range repressors such as Knirps that locally inhibit the activity of enhancers and long-range repressors such as Hairy that can dominantly inhibit distal elements. Several long-range repressors interact with Groucho, a conserved corepressor that is homologous to mammalian TLE proteins. Groucho interacts with histone deacetylases and histone proteins, suggesting that it may effect repression by means of chromatin modification; however, it is not known how long-range effects are mediated. Using embryo chromatin immunoprecipitation, we have analyzed a Hairy-repressible gene in the embryo during activation and repression. When inactivated, repressors, activators, and coactivators cooccupy the promoter, suggesting that repression is not accomplished by the displacement of activators or coactivators. Strikingly, the Groucho corepressor is found to be recruited to the transcribed region of the gene, contacting a region of several kilobases, concomitant with a loss of histone H3 and H4 acetylation. Groucho has been shown to form higher-order complexes in vitro; thus, our observations suggest that long-range effects may be mediated by a "spreading" mechanism, modifying chromatin over extensive regions to inhibit transcription.
Collapse
|
57
|
Kobayashi Y, Inai T, Mizunuma M, Okada I, Shitamukai A, Hirata D, Miyakawa T. Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress. Biochem Biophys Res Commun 2008; 368:50-5. [PMID: 18201562 DOI: 10.1016/j.bbrc.2008.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Accepted: 01/09/2008] [Indexed: 11/19/2022]
Abstract
In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general transcriptional corepressor. This repression is mediated by recruitment of the Tup1-Cyc8 complex to target promoters through sequence-specific DNA-binding proteins such as Sko1, which mediates the HOG pathway-dependent regulation. We identified tup1 and cyc8 mutant alleles as the suppressor of osmo-sensitivity of the hog1Delta strain. In these mutants, although the expression of the genes under the control of DNA-binding proteins other than Sko1 was apparently normal, the Sko1-regulated genes GRE2 and AHP1 were derepressed under non-stress conditions, suggesting that the Tup1 and Cyc8 mutant proteins were specifically defective in the repression of the Sko1-dependent genes. Chromatin immunoprecipitation analyses of the GRE2 promoter in the mutants demonstrated that the Sko1-Tup1-Cyc8 complex was localized to the promoter, together with Gcn5/SAGA, suggesting that the erroneous recruitment of SAGA to the promoter led to the derepression.
Collapse
Affiliation(s)
- Yoshifumi Kobayashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Sekiya T, Zaret KS. Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell 2007; 28:291-303. [PMID: 17964267 PMCID: PMC2083644 DOI: 10.1016/j.molcel.2007.10.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 07/13/2007] [Accepted: 08/12/2007] [Indexed: 11/21/2022]
Abstract
Groucho-related (Gro/TLE/Grg) corepressors meditate embryonic segmentation, dorsal-ventral patterning, neurogenesis, and Notch and Wnt signaling. Although Gro/TLE/Grgs disrupt activator complexes and recruit histone deacetylases (HDAC), activator complexes can be disrupted in various ways, HDAC recruitment does not account for full corepressor activity, and a direct role for Gro/TLE/Grg binding and altering chromatin structure has not been explored. Using diverse chromatin substrates in vitro, we show that Grg3 creates higher-order, condensed complexes of polynucleosome arrays. Surprisingly, such complexes are in an open, exposed configuration. We find that chromatin binding enables Grg3 recruitment by a transcription factor and the creation of a closed, poorly accessible domain spanning three to four nucleosomes. Targeted recruitment of Grg3 blankets a similar-sized region in vivo, impairing activator recruitment and repressing transcription. These activities of a Groucho protein represent a newly discovered mechanism which differs from that of other classes of corepressors.
Collapse
Affiliation(s)
- Takashi Sekiya
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | |
Collapse
|
59
|
Durand-Dubief M, Sinha I, Fagerström-Billai F, Bonilla C, Wright A, Grunstein M, Ekwall K. Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing. EMBO J 2007; 26:2477-88. [PMID: 17446861 PMCID: PMC1868902 DOI: 10.1038/sj.emboj.7601690] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/23/2007] [Indexed: 11/09/2022] Open
Abstract
Expression profiling, ChiP-CHIP and phenotypic analysis were used to investigate the functional relationships of class III NAD(+)-dependent HDACs (Sirtuins) in fission yeast. We detected significant histone acetylation increases in Sirtuin mutants at their specific genomic binding targets and were thus able to identify an in vivo substrate preference for each Sirtuin. At heterochromatic loci, we demonstrate that although Hst2 is mainly cytoplasmic, a nuclear pool of Hst2 colocalizes with the other Sirtuins at silent regions (cen, mat, tel, rDNA), and that like the other Sirtuins, Hst2 is required for rDNA and centromeric silencing. Interestingly we found specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation. Hst2 directly represses genes involved in transport and membrane function, whereas Hst4 represses amino-acid biosynthesis genes and Tf2 retrotransposons. A specific role for Hst4 in Tf2 5' mRNA processing was revealed. Thus, Sirtuins share functions at many genomic targets, but Hst2 and Hst4 have also evolved unique functions in gene regulation.
Collapse
Affiliation(s)
- Mickaël Durand-Dubief
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, Huddinge, Sweden
| | - Indranil Sinha
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, Huddinge, Sweden
| | - Fredrik Fagerström-Billai
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, Huddinge, Sweden
| | - Carolina Bonilla
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, Huddinge, Sweden
| | - Anthony Wright
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, Huddinge, Sweden
| | - Michael Grunstein
- Department of Biological Chemistry, Geffen School of Medicine at UCLA, and the Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, Los Angeles, CA, USA
| | - Karl Ekwall
- Karolinska Institutet, Department of Biosciences/School of Life Sciences, University College Södertörn, Huddinge, Sweden
| |
Collapse
|
60
|
Teng Y, Yu Y, Ferreiro JA, Waters R. Histone acetylation, chromatin remodelling, transcription and nucleotide excision repair in S. cerevisiae: studies with two model genes. DNA Repair (Amst) 2007; 4:870-83. [PMID: 15950549 DOI: 10.1016/j.dnarep.2005.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
We describe the technology and two model systems in yeast designed to study nucleotide excision repair (NER) in relation to transcription and chromatin modifications. We employed the MFA2 and MET16 genes as models. How transcription-coupled (TCR) and global genome repair (GGR) operate at the transcriptionally active and/or repressed S. cerevisiae MFA2 locus, and how this relates to nucleosome positioning are considered. We discuss the role of the Gcn5p histone acetyltransferase, also associated with MFA2's transcriptional activation, in facilitating efficient NER at the transcriptionally active and inactive genes. The effect of Gcn5p's absence in reducing NER was local and UV stimulates Gcn5p-mediated histone acetylation at the repressed MFA2 promoter. After UV irradiation Swi2p is partly responsible for facilitating access to restriction of DNA in the cores of the nucleosomes at the MFA2 promoter. The data suggest similarities between chromatin remodelling for NER and transcription, yet differences must exist to ensure this gene remains repressed in alpha cells during NER. For MET16, we consider experiments examining chromatin structure, transcription and repair in wild type and cbf1Delta cells under repressing or derepressing conditions. Cbf1p is a sequence specific DNA binding protein required for MET16 chromatin remodelling and transcription.
Collapse
Affiliation(s)
- Yumin Teng
- Department of Pathology, University Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
61
|
Sharma VM, Tomar RS, Dempsey AE, Reese JC. Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 2007; 27:3199-210. [PMID: 17296735 PMCID: PMC1899941 DOI: 10.1128/mcb.02311-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray and genetic studies of Saccharomyces cerevisiae have demonstrated that histone deacetylases (HDACs) are required for transcriptional activation and repression, but the mechanism by which they activate transcription remains poorly understood. We show that two HDACs, RPD3 and HOS2, are required for the activation of DNA damage-inducible genes RNR3 and HUG1. Using mutants specific for the Rpd3L complex, we show that the complex is responsible for regulating RNR3. Furthermore, unlike what was described for the GAL genes, Rpd3L regulates the activation of RNR3 by deacetylating nucleosomes at the promoter, not at the open reading frame. Rpd3 is recruited to the upstream repression sequence of RNR3, which surprisingly does not require Tup1 or Crt1. Chromatin remodeling and TFIID recruitment are largely unaffected in the Deltarpd3/Deltahos2 mutant, but the recruitment of RNA polymerase II is strongly reduced, arguing that Rpd3 and Hos2 regulate later stages in the assembly of the preinitiation complex or facilitate multiple rounds of polymerase recruitment. Furthermore, the histone H4 acetyltransferase Esa1 is required for the activation of RNR3 and HUG1. Thus, reduced or unregulated constitutive histone H4 acetylation is detrimental to promoter activity, suggesting that HDAC-dependent mechanisms are in place to reset promoters to allow high levels of transcription.
Collapse
Affiliation(s)
- Vishva Mitra Sharma
- Penn State University, Department of Biochemistry and Molecular Biology, 203 Althouse Lab, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
62
|
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007; 27:2037-47. [PMID: 17210643 PMCID: PMC1820486 DOI: 10.1128/mcb.02297-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.
Collapse
Affiliation(s)
- Odeniel Sertil
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
63
|
Hirota K, Hoffman CS, Ohta K. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. EUKARYOTIC CELL 2006; 5:1980-9. [PMID: 17028240 PMCID: PMC1694817 DOI: 10.1128/ec.00272-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/26/2006] [Indexed: 11/20/2022]
Abstract
The Schizosaccharomyces pombe global corepressors Tup11 and Tup12, which are orthologs of Saccharomyces cerevisiae Tup1, are involved in glucose-dependent transcriptional repression and chromatin alteration of the fbp1+ gene. The fbp1+ promoter contains two regulatory elements, UAS1 and UAS2, one of which (UAS2) serves as a binding site for two antagonizing C2H2 Zn finger transcription factors, the Rst2 activator and the Scr1 repressor. In this study, we analyzed the role of Tup proteins and Scr1 in chromatin remodeling at fbp1+ during glucose repression. We found that Scr1, cooperating with Tup11 and Tup12, functions to maintain the chromatin of the fbp1+ promoter in a transcriptionally inactive state under glucose-rich conditions. Consistent with this notion, Scr1 is quickly exported from the nucleus to the cytoplasm at the initial stage of derepression, immediately after glucose starvation, at which time Rst2 is known to be imported into the nucleus. In addition, chromatin immunoprecipitation assays revealed a switching of Scr1 to Rst2 bound at UAS2 during glucose derepression. On the other hand, Tup11 and Tup12 persist in the nucleus and bind to the fbp1+ promoter under both derepressed and repressed conditions. These observations suggest that Tup1-like proteins recruited to the fbp1+ promoter are controlled by either of two antagonizing C2H2 Zn finger proteins. We propose that the actions of Tup11 and Tup12 are regulated by reciprocal nuclear shuttling of the two antagonizing Zn finger proteins in response to the extracellular glucose concentration. This notion provides new insights into the molecular mechanisms of the Tup family corepressors in gene regulation.
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic System Regulation Laboratory, RIKEN (The Institute of Physical and Chemical Research), Discovery Research Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
64
|
Buck MJ, Lieb JD. A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nat Genet 2006; 38:1446-51. [PMID: 17099712 PMCID: PMC2756100 DOI: 10.1038/ng1917] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/04/2006] [Indexed: 01/17/2023]
Abstract
Organisms respond to changes in their environment, and many such responses are initiated at the level of gene transcription. Here, we provide evidence for a previously undiscovered mechanism for directing transcriptional regulators to new binding targets in response to an environmental change. We show that repressor-activator protein 1 (Rap1), a master regulator of yeast metabolism, binds to an expanded target set after glucose depletion despite decreasing protein levels and no evidence of posttranslational modification. Computational analysis predicts that proteins capable of recruiting the chromatin regulator Tup1 act to restrict the binding distribution of Rap1 in the presence of glucose. Deletion of the gene(s) encoding Tup1, recruiters of Tup1 or chromatin regulators recruited by Tup1 cause Rap1 to bind specifically and inappropriately to low-glucose targets. These data, combined with whole-genome measurements of nucleosome occupancy and Tup1 distribution, provide evidence for a mechanism of dynamic target specification that coordinates the genome-wide distribution of intermediate-affinity DNA sequence motifs with chromatin-mediated regulation of accessibility to those sites.
Collapse
Affiliation(s)
- Michael J Buck
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
65
|
Fagerström-Billai F, Durand-Dubief M, Ekwall K, Wright APH. Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol Cell Biol 2006; 27:1069-82. [PMID: 17101775 PMCID: PMC1800702 DOI: 10.1128/mcb.01674-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Ssn6 and Tup1 proteins form a corepressor complex that is recruited to target genes by DNA-bound repressor proteins. Repression occurs via several mechanisms, including interaction with hypoacetylated N termini of histones, recruitment of histone deacetylases (HDACs), and interactions with the RNA polymerase II holoenzyme. The distantly related fission yeast, Schizosaccharomyces pombe, has two partially redundant Tup1-like proteins that are dispensable during normal growth. In contrast, we show that Ssn6 is an essential protein in S. pombe, suggesting a function that is independent of Tup11 and Tup12. Consistently, the group of genes that requires Ssn6 for their regulation overlaps but is distinct from the group of genes that depend on Tup11 or Tup12. Global chip-on-chip analysis shows that Ssn6 is almost invariably found in the same genomic locations as Tup11 and/or Tup12. All three corepressor subunits are generally bound to genes that are selectively regulated by Ssn6 or Tup11/12, and thus, the subunit specificity is probably manifested in the context of a corepressor complex containing all three subunits. The corepressor binds to both the intergenic and coding regions of genes, but differential localization of the corepressor within genes does not appear to account for the selective dependence of target genes on the Ssn6 or Tup11/12 subunits. Ssn6, Tup11, and Tup12 are preferentially found at genomic locations at which histones are deacetylated, primarily by the Clr6 class I HDAC. Clr6 is also important for the repression of corepressor target genes. Interestingly, a subset of corepressor target genes, including direct target genes affected by Ssn6 overexpression, is associated with the function of class II (Clr3) and III (Hst4 and Sir2) HDACs.
Collapse
|
66
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 439] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
67
|
Klinkenberg LG, Webb T, Zitomer RS. Synergy among differentially regulated repressors of the ribonucleotide diphosphate reductase genes of Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1007-17. [PMID: 16835445 PMCID: PMC1489293 DOI: 10.1128/ec.00045-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ssn6/Tup1 general repression complex represses transcription of a number of regulons through recruitment by regulon-specific DNA-binding repressors. Rox1 and Mot3 are Ssn6/Tup1-recruiting, DNA-binding proteins that repress the hypoxic genes, and Rfx1 is a Ssn6/Tup1-recruiting, a DNA-binding protein that represses the DNA damage-inducible genes. We previously reported that Rox1 and Mot3 functioned synergistically to repress a subset of the hypoxic genes and that this synergy resulted from an indirect interaction through Ssn6. We report here cross-regulation between Rox1 and Mot3 and Rfx1 in the regulation of the RNR genes encoding ribonucleotide diphosphate reductase. Using a set of strains containing single and multiple mutations in the repressor encoding genes and lacZ fusions to the RNR2 to -4 genes, we demonstrated that Rox1 repressed all three genes and that Mot3 repressed RNR3 and RNR4. Each repressor could act synergistically with the others, and synergy required closely spaced sites. Using artificial constructs containing two repressor sites, we confirmed that all three proteins could function synergistically but that two Rox1 sites or two Rfx1 sites could not. The significance of this synergy lies in the ability to repress gene transcription strongly under normal growth conditions, and yet allow robust induction under conditions that inactivate only one of the repressors. Since the interaction between the proteins is indirect, the evolution of dually regulated genes requires only the acquisition of closely spaced repressor sites.
Collapse
Affiliation(s)
- Lee G Klinkenberg
- Department of Biological Sciences, University at Albany/SUNY, 1400 Washington Ave., Albany, New York 12222, USA
| | | | | |
Collapse
|
68
|
Morohashi N, Yamamoto Y, Kuwana S, Morita W, Shindo H, Mitchell AP, Shimizu M. Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome. EUKARYOTIC CELL 2006; 5:1925-33. [PMID: 16980406 PMCID: PMC1694797 DOI: 10.1128/ec.00105-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, a-cell-specific genes are repressed in MATalpha cells by alpha2/Mcm1, acting in concert with the Ssn6-Tup1 corepressors and the Isw2 chromatin remodeling complex, and nucleosome positioning has been proposed as one mechanism of repression. However, prior studies showed that nucleosome positioning is not essential for repression by alpha2/Mcm1 in artificial reporter plasmids, and the importance of the nucleosome positioning remains questionable. We have tested the function of positioned nucleosomes through alteration of genomic chromatin at the a-cell-specific gene BAR1. We report here that a positioned nucleosome in the BAR1 promoter is disrupted in cis by the insertion of diverse DNA sequences such as poly(dA) . poly(dT) and poly(dC-dG) . poly(dC-dG), leading to inappropriate partial derepression of BAR1. Also, we show that isw2 mutation causes loss of nucleosome positioning in BAR1 in MATalpha cells as well as partial disruption of repression. Thus, nucleosome positioning is required for full repression, but loss of nucleosome positioning is not sufficient to relieve repression completely. Even though disruption of nucleosome positioning by the cis- and trans-acting modulators of chromatin has a modest effect on the level of transcription, it causes significant degradation of the alpha-mating pheromone in MATalpha cells, thereby affecting its cell type identity. Our results illustrate a useful paradigm for analysis of chromatin structural effects at genomic loci.
Collapse
Affiliation(s)
- Nobuyuki Morohashi
- Department of Chemistry, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Malavé TM, Dent SYR. Transcriptional repression by Tup1–Ssn6This paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:437-43. [PMID: 16936817 DOI: 10.1139/o06-073] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Tup1–Ssn6 complex from budding yeast is one of the best studied corepressors and has served as a model for the study of similar corepressor complexes in higher eukaryotes. Tup1–Ssn6 represses multiple subsets of genes when recruited to promoters by sequence-specific DNA binding repressors. Tup1–Ssn6 mediated repression involves interactions among the corepressor and hypoacetylated histones, histone deacetylases, and the RNA transcriptional machinery. Nucleosome positioning is also involved in repression of a subset of Tup1–Ssn6 regulated genes. These findings highlight the importance of chromatin modification states in Tup1–Ssn6 mediated repression. Here we review the multiple mechanisms involved in repression and discuss Tup1–Ssn6 homolog functions in higher organisms. We also present a model for how repression by Tup1–Ssn6 may be established.
Collapse
Affiliation(s)
- Tania M Malavé
- Department of Biochemistry and Molecular Biology, U.T. M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
70
|
Abstract
Upc2p and Ecm22p are a pair of transcription factors responsible for the basal and induced expression of genes encoding enzymes of ergosterol biosynthesis in yeast (ERG genes). Upc2p plays a second role as a regulator of hypoxically expressed genes. Both sterols and heme depend upon molecular oxygen for their synthesis, and thus the levels of both have the potential to act as indicators of the oxygen environment of cells. Hap1p is a heme-dependent transcription factor that both Upc2 and Ecm22p depend upon for basal level expression of ERG genes. However, induction of both ERG genes and the hypoxically expressed DAN/TIR genes by Upc2p and Ecm22p occurred in response to sterol depletion rather than to heme depletion. Indeed, upon sterol depletion, Upc2p no longer required Hap1p to activate ERG genes. Mot3p, a broadly acting repressor/activator protein, was previously shown to repress ERG gene expression, but the mechanism was unclear. We established that Mot3p bound directly to Ecm22p and repressed Ecm22p- but not Upc2p-mediated gene induction.
Collapse
Affiliation(s)
- Brandon S J Davies
- Department of Molecular and Cellular Biology, Division of Genetics, Genomics, and Development, University of California, Berkeley, California 94701-3202, USA
| | | |
Collapse
|
71
|
Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 2006; 25:11171-83. [PMID: 16314536 PMCID: PMC1316967 DOI: 10.1128/mcb.25.24.11171-11183.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cyc8p/Tup1p complex mediates repression of diverse genes in Saccharomyces cerevisiae and is recruited by DNA binding proteins specific for the different sets of repressed genes. By screening the yeast deletion library, we identified Cyc8p as a coactivator for Gcn4p, a transcriptional activator of amino acid biosynthetic genes. Deletion of CYC8 confers sensitivity to an inhibitor of isoleucine/valine biosynthesis and impairs activation of Gcn4p-dependent reporters and authentic amino acid biosynthetic target genes. Deletion of TUP1 produces similar but less severe activation defects in vivo. Although expression of Gcn4p is unaffected by deletion of CYC8, chromatin immunoprecipitation assays reveal a strong defect in binding of Gcn4p at the target genes ARG1 and ARG4 in cyc8Delta cells and to a lesser extent in tup1Delta cells. The defects in Gcn4p binding and transcriptional activation in cyc8Delta cells cannot be overcome by Gcn4p overexpression but are partially suppressed in tup1Delta cells. The impairment of Gcn4p binding in cyc8Delta and tup1Delta cells is severe enough to reduce recruitment of SAGA, Srb mediator, TATA binding protein, and RNA polymerase II to the ARG1 and ARG4 promoters, accounting for impaired transcriptional activation of these genes in both mutants. Cyc8p and Tup1p are recruited to the ARG1 and ARG4 promoters, consistent with a direct role for this complex in stimulating Gcn4p occupancy of the upstream activation sequence (UAS). Interestingly, Gcn4p also stimulates binding of Cyc8p/Tup1p at the 3' ends of these genes, raising the possibility that Cyc8p/Tup1p influences transcription elongation. Our findings reveal a novel coactivator function for Cyc8p/Tup1p at the level of activator binding and suggest that Gcn4p may enhance its own binding to the UAS by recruiting Cyc8p/Tup1p.
Collapse
Affiliation(s)
- Soon-Ja Kim
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
72
|
van Oevelen CJC, van Teeffelen HAAM, van Werven FJ, Timmers HTM. Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem 2005; 281:4523-31. [PMID: 16368692 DOI: 10.1074/jbc.m509330200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAGA complex is dependent on the release of Ssn6p-Tup1p repression by Snf1p. In addition, we found that the Gcn5p subunit of the SAGA complex preferentially acetylates histone H3K18 on the HXT2 and HXT4 promoters and that Gcn5p activity is required for removal of histone H3 from the HXT4 promoter TATA region. In contrast, histone H3 removal from the HXT2 promoter does not require Gcn5p. In conclusion, although similar protein complexes are involved, induction of HXT2 and HXT4 displays important mechanistic differences.
Collapse
Affiliation(s)
- Chris J C van Oevelen
- Department of Physiological Chemistry, Division of Biomedical Genetics, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
73
|
Gomes KN, Freitas SMAC, Pais TM, Fietto JLR, Totola AH, Arantes RME, Martins A, Lucas C, Schuller D, Casal M, Castro IM, Fietto LG, Brandão RL. Deficiency of Pkc1 activity affects glycerol metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:767-76. [PMID: 15851105 DOI: 10.1016/j.femsyr.2005.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 01/04/2005] [Accepted: 01/17/2005] [Indexed: 12/17/2022] Open
Abstract
Protein kinase C is apparently involved in the control of many cellular systems: the cell wall integrity pathway, the synthesis of ribosomes, the appropriated reallocation of transcription factors under specific stress conditions and also the regulation of N-glycosylation activity. All these observations suggest the existence of additional targets not yet identified. In the context of the control of carbon metabolism, previous data had demonstrated that Pkc1p might play a central role in the control of cellular growth and metabolism in yeast. In particular, it has been suggested that it might be involved in the derepression of genes under glucose-repression by driving an appropriated subcellular localization of transcriptional factors, such as Mig1p. In this work, we show that a pkc1Delta mutant is unable to grow on glycerol because it cannot perform the derepression of the GUT1 gene that encodes glycerol kinase. Additionally, active transport is also partially affected. Using this phenotype, we were able to isolate a new pkc1Delta revertant. We also isolated two transformants identified as the nuclear exportin Msn5 and the histone deacetylase Hos2 extragenic suppressors of this mutation. Based on these results, we postulate that Pkc1p may be involved in the control of the cellular localization and/or regulation of the activity of nuclear proteins implicated in gene expression.
Collapse
Affiliation(s)
- Katia N Gomes
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Deparatmento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, 35.400-000 Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Tripic T, Edmondson DG, Davie JK, Strahl BD, Dent SYR. The Set2 methyltransferase associates with Ssn6 yet Tup1-Ssn6 repression is independent of histone methylation. Biochem Biophys Res Commun 2005; 339:905-14. [PMID: 16329992 DOI: 10.1016/j.bbrc.2005.11.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/14/2005] [Indexed: 11/24/2022]
Abstract
The Tup1-Ssn6 corepressor regulates the expression of diverse classes of genes in Saccharomyces cerevisiae. Chromatin is an important component of Tup1-Ssn6-mediated repression. Tup1 binds to underacetylated tails of histones H3 and H4, and requires multiple histone deacetylases for the repression. Here we examine if histone methylation, in addition to histone deacetylation, plays a role in Tup1-Ssn6 repression. We found that like other genes, Tup1-Ssn6 target genes exhibit increased levels of histone H3 lysine 4 trimethylation upon activation. However, deletion of individual or multiple histone methyltransferases and other SET-domain containing genes has no apparent effect on Tup1-Ssn6-mediated repression of a number of well-defined targets. Interestingly, we discovered that Ssn6 interacts with Set2. Although deletion of SET2 does not affect Tup1-Ssn6 repression of a number of target genes, Ssn6 may utilize Set2 in specific contexts to regulate gene repression.
Collapse
Affiliation(s)
- Tamara Tripic
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
75
|
Türkel S. Non-histone proteins Nhp6A and Nhp6B are required for the regulated expression of SUC2 gene of Saccharomyces cerevisiae. J Biosci Bioeng 2005; 98:9-13. [PMID: 16233659 DOI: 10.1016/s1389-1723(04)70235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Transcription of the SUC2 gene that encodes invertase enzyme is controlled by glucose repression and derepression mechanisms in Saccharomyces cerevisiae. Several regulatory factors such as Mig1p complex, Gcr1p, Hxk2p, nucleosomes, and the Snf1p kinase complex have been identified as the regulators of SUC2 transcription. The results presented in this study indicate that the non-histone proteins Nhp6A and Nhp6B were also required for the regulated expression of SUC2 gene. Expression of the SUC2 gene reduced to one-fiftieth-one-tenth in the Deltanhp6A Deltanhp6B double mutant strain depending on the growth conditions. Moreover, SUC2 expression and invertase synthesis became constitutive after long-term derepression, and decreased to a low level in Deltanhp6A Deltanhp6B double deletion mutant. A time course analysis of the invertase synthesis revealed that both the repression and derepression rates were very slow in the Deltanhp6A Deltanhp6B double mutant yeast. These results indicate that the architectural transcription factors Nhp6A and Nhp6B play a very critical role in the regulation of SUC2 gene expression.
Collapse
Affiliation(s)
- Sezai Türkel
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059-Bursa, Turkey.
| |
Collapse
|
76
|
Zhang Z, Reese JC. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 2005; 25:7399-411. [PMID: 16107689 PMCID: PMC1190298 DOI: 10.1128/mcb.25.17.7399-7411.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In Saccharomyces cerevisiae, the repressor Crt1 and the global corepressor Ssn6-Tup1 repress the DNA damage-inducible ribonucleotide reductase (RNR) genes. Initiation of DNA damage signals causes the release of Crt1 and Ssn6-Tup1 from the promoter, coactivator recruitment, and derepression of transcription, indicating that Crt1 plays a crucial role in the switch between gene repression and activation. Here we have mapped the functional domains of Crt1 and identified two independent repression domains and a region required for gene activation. The N terminus of Crt1 is the major repression domain, it directly binds to the Ssn6-Tup1 complex, and its repression activities are dependent upon Ssn6-Tup1 and histone deacetylases (HDACs). In addition, we identified a C-terminal repression domain, which is independent of Ssn6-Tup1 and HDACs and functions at native genes in vivo. Furthermore, we show that TFIID and SWI/SNF bind to a region within the N terminus of Crt1, overlapping with but distinct from the Ssn6-Tup1 binding and repression domain, suggesting that Crt1 may have activator functions. Crt1 mutants were constructed to dissect its activator and repressor functions. All of the mutants were competent for repression of the DNA damage-inducible genes, but a majority were "derepression-defective" mutants. Further characterization of these mutants indicated that they are capable of receiving DNA damage signals and releasing the Ssn6-Tup1 complex from the promoter but are selectively impaired for TFIID and SWI/SNF recruitment. These results imply a two-step activation model of the DNA damage-inducible genes and that Crt1 functions as a signal-dependent dual-transcription activator and repressor that acts in a transient manner.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | |
Collapse
|
77
|
Abstract
The proteins termed TLE in humans, Grg in mice and Groucho in Drosophila constitute a family of transcriptional corepressors. In mammalians there are five different genes encoding an even larger number of proteins. Interactions between these TLE/Grg proteins and an array of transcription factors has been described. But is there any specificity? This review tries to make a case for a non-redundant function of individual TLE/Grg proteins. The specificity may be brought about by a tightly controlled temporo-spatial expression pattern, post-translational modifications, and subtle structural differences leading to distinct preferences for interacting transcription factors. A confirmation of this concept will ultimately need to come from genetic experiments.
Collapse
Affiliation(s)
- Malgorzata Gasperowicz
- Department of Internal Medicine, Division of Haematology and Oncology, University of Freiburg Medical Centre, 79106 Freiburg, Germany
| | | |
Collapse
|
78
|
Yang XJ, Grégoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 2005; 25:2873-84. [PMID: 15798178 PMCID: PMC1069616 DOI: 10.1128/mcb.25.8.2873-2884.2005] [Citation(s) in RCA: 326] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, McGill University Health Center, 687 Pine Ave. West, Montréal, Quebec H3A 1A1, Canada.
| | | |
Collapse
|
79
|
Fagerström-Billai F, Wright APH. Functional comparison of the Tup11 and Tup12 transcriptional corepressors in fission yeast. Mol Cell Biol 2005; 25:716-27. [PMID: 15632072 PMCID: PMC543428 DOI: 10.1128/mcb.25.2.716-727.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene duplication is considered an important evolutionary mechanism. Unlike many characterized species, the fission yeast Schizosaccharomyces pombe contains two paralogous genes, tup11+ and tup12+, that encode transcriptional corepressors similar to the well-characterized budding yeast Tup1 protein. Previous reports have suggested that Tup11 and Tup12 proteins play redundant roles. Consistently, we show that the two Tup proteins can interact together when expressed at normal levels and that each can independently interact with the Ssn6 protein, as seen for Tup1 in budding yeast. However, tup11- and tup12- mutants have different phenotypes on media containing KCl and CaCl2. Consistent with the functional difference between tup11- and tup12- mutants, we identified a number of genes in genome-wide gene expression experiments that are differentially affected by mutations in the tup11+ and tup12+ genes. Many of these genes are differentially derepressed in tup11- mutants and are over-represented in genes that have previously been shown to respond to a range of different stress conditions. Genes specifically derepressed in tup12- mutants require the Ssn6 protein for their repression. As for Tup12, Ssn6 is also required for efficient adaptation to KCl- and CaCl2-mediated stress. We conclude that Tup11 and Tup12 are at least partly functionally diverged and suggest that the Tup12 and Ssn6 proteins have adopted a specific role in regulation of the stress response.
Collapse
|
80
|
Sabet N, Volo S, Yu C, Madigan JP, Morse RH. Genome-wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast. Mol Cell Biol 2004; 24:8823-33. [PMID: 15456858 PMCID: PMC517902 DOI: 10.1128/mcb.24.20.8823-8833.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone amino termini have emerged as key targets for a variety of modifying enzymes that function as transcriptional coactivators and corepressors. However, an important question that has remained largely unexplored is the extent to which specific histone amino termini are required for the activating and repressive functions of these enzymes, Here we address this issue by focusing on the prototypical histone deacetylase, Rpd3p, in the budding yeast Saccharomyces cerevisiae. We show that targeting Rpd3p to a reporter gene in this yeast can partially repress transcription when either the histone H3 or the histone H4 amino terminus is deleted, indicating that the "tails" are individually dispensable for repression by Rpd3p. In contrast, we find that the effect of rpd3 gene disruption on global gene expression is considerably reduced in either a histone H3Delta1-28 (H3 lacking the amino-terminal 28 amino acids) or a histone H4(K5,8,12,16Q) (H4 with lysine residues 5, 8, 12, and 16 changed to glutamine residues) background compared to the wild-type background, indicating a requirement for one or both of these histone tails in Rpd3p-mediated regulation for many genes. These results suggest that acetylation of either the H3 or the H4 amino terminus could suffice to allow the activation of such genes. We also examine the relationship between H3 tails and H4 tails in global gene expression and find substantial overlap among the gene sets regulated by these histone tails. We also show that the effects on genome-wide expression of deleting the H3 or H4 amino terminus are similar but not identical to the effects of mutating the lysine residues in these same regions. These results indicate that the gene regulatory potential of the H3 and H4 amino termini is substantially but not entirely contained in these modifiable lysine residues.
Collapse
Affiliation(s)
- Nevin Sabet
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | | | | | | | | |
Collapse
|
81
|
Mathias JR, Hanlon SE, O'Flanagan RA, Sengupta AM, Vershon AK. Repression of the yeast HO gene by the MATalpha2 and MATa1 homeodomain proteins. Nucleic Acids Res 2004; 32:6469-78. [PMID: 15598821 PMCID: PMC545453 DOI: 10.1093/nar/gkh985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-alpha2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-alpha2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-alpha2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-alpha2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-alpha2 prevents DNA binding by activator proteins resulting in repression of HO.
Collapse
Affiliation(s)
- Jonathan R Mathias
- Waksman Institute and Department of Molecular Biology and Biochemistry, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ 08854-8020, USA
| | | | | | | | | |
Collapse
|
82
|
Macfarlan T, Kutney S, Altman B, Montross R, Yu J, Chakravarti D. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J Biol Chem 2004; 280:7346-58. [PMID: 15561719 DOI: 10.1074/jbc.m411675200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identities of signal transducer proteins that integrate histone hypoacetylation and transcriptional repression are largely unknown. Here we demonstrate that THAP7, an uncharacterized member of the recently identified THAP (Thanatos-associated protein) family of proteins, is ubiquitously expressed, associates with chromatin, and represses transcription. THAP7 binds preferentially to hypoacetylated (un-, mono-, and diacetylated) histone H4 tails in vitro via its C-terminal 77 amino acids. Deletion of this domain, or treatment of cells with the histone deacetylase inhibitor TSA, which leads to histone hyperacetylation, partially disrupts THAP7/chromatin association in living cells. THAP7 coimmunoprecipitates with histone deacetylase 3 (HDAC3) and the nuclear hormone receptor corepressor (NCoR) and represses transcription as a Gal4 fusion protein. Chromatin immunoprecipitation assays demonstrate that these corepressors are recruited to promoters in a THAP7 dependent manner and promote histone H3 hypoacetylation. The conserved THAP domain is a key determinant for full HDAC3 association in vitro, and both the THAP domain and the histone interaction domain are important for the repressive properties of THAP7. Full repression mediated by THAP7 is also dependent on NCoR expression. We hypothesize that THAP7 is a dual function repressor protein that actively targets deacetylation of histone H3 necessary to establish transcriptional repression and functions as a signal transducer of the repressive mark of hypoacetylated histone H4. This is the first demonstration of the transcriptional regulatory properties of a human THAP domain protein, and a critical identification of a potential transducer of the repressive signal of hypoacetylated histone H4 in higher eukaryotes.
Collapse
|
83
|
Toleman C, Paterson AJ, Whisenhunt TR, Kudlow JE. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J Biol Chem 2004; 279:53665-73. [PMID: 15485860 DOI: 10.1074/jbc.m410406200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histones and transcription factors are regulated by a number of post-translational modifications that in turn regulate the transcriptional activity of genes. These modifications occur in large, multisubunit complexes. We have reported previously that mSin3A can recruit O-GlcNAc transferase (OGT) along with histone deacetylase into such a corepressor complex. This physical association allows OGT to act cooperatively with histone deacetylation in gene repression by catalyzing the O-GlcNAc modification on specific transcription factors to inhibit their activity. For rapid, reversible gene regulation, the enzymes responsible for the converse reactions must be present. Here, we report that O-GlcNAcase, which is responsible for the removal of O-GlcNAc additions on nuclear and cytosolic proteins, possesses intrinsic histone acetyltransferase (HAT) activity in vitro. Free as well as reconstituted nucleosomal histones are substrates of this bifunctional enzyme. This protein, now termed NCOAT (nuclear cytoplasmic O-GlcNAcase and acetyltransferase) has a typical HAT domain that has both active and inactive states. This finding demonstrates that NCOAT may be regulated to reduce the state of glycosylation of transcriptional activators while increasing the acetylation of histones to allow for the concerted activation of eukaryotic gene transcription.
Collapse
Affiliation(s)
- Clifford Toleman
- Department of Cell Biology, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
84
|
Simms TA, Miller EC, Buisson NP, Jambunathan N, Donze D. The Saccharomyces cerevisiae TRT2 tRNAThr gene upstream of STE6 is a barrier to repression in MATalpha cells and exerts a potential tRNA position effect in MATa cells. Nucleic Acids Res 2004; 32:5206-13. [PMID: 15459290 PMCID: PMC521669 DOI: 10.1093/nar/gkh858] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A growing body of evidence suggests that genes transcribed by RNA polymerase III exhibit multiple functions within a chromosome. While the predominant function of these genes is the synthesis of RNA molecules, certain RNA polymerase III genes also function as genomic landmarks. Transfer RNA genes are known to exhibit extra-transcriptional activities such as directing Ty element integration, pausing of replication forks, overriding nucleosome positioning sequences, repressing neighboring genes (tRNA position effect), and acting as a barrier to the spread of repressive chromatin. This study was designed to identify other tRNA loci that may act as barriers to chromatin-mediated repression, and focused on TRT2, a tRNA(Thr) adjacent to the STE6 alpha2 operator. We show that TRT2 acts as a barrier to repression, protecting the upstream CBT1 gene from the influence of the STE6 alpha2 operator in MATalpha cells. Interestingly, deletion of TRT2 results in an increase in CBT1 mRNA levels in MATa cells, indicating a potential tRNA position effect. The transcription of TRT2 itself is unaffected by the presence of the alpha2 operator, suggesting a hierarchy that favors assembly of the RNA polymerase III complex versus assembly of adjacent alpha2 operator-mediated repressed chromatin structures. This proposed hierarchy could explain how tRNA genes function as barriers to the propagation of repressive chromatin.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters
- Chromosomes, Fungal
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Gene Silencing
- Genes, Fungal
- Glycoproteins
- Histones/metabolism
- Homeodomain Proteins/genetics
- Operator Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Transfer, Thr/biosynthesis
- RNA, Transfer, Thr/genetics
- Repressor Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Tiffany A Simms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
85
|
Zhang Z, Reese JC. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 2004; 279:39240-50. [PMID: 15254041 DOI: 10.1074/jbc.m407159200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Ssn6-Tup1 corepressor complex regulates many genes in Saccharomyces cerevisiae. Three mechanisms have been proposed to explain its repression functions: 1) nucleosome positioning by binding histone tails; 2) recruitment of histone deacetylases; and 3) direct interference with the general transcription machinery or activators. It is unclear if Ssn6-Tup1 utilizes each of these mechanisms at a single gene in a redundant manner or each individually at different loci. A systematic analysis of the contribution of each mechanism at a native promoter has not been reported. Here we employed a genetic strategy to analyze the contributions of nucleosome positioning, histone deacetylation, and Mediator interference in the repression of chromosomal Tup1 target genes in vivo. We exploited the fact that Ssn6-Tup1 requires the ISW2 chromatin remodeling complex to establish nucleosome positioning in vivo to disrupt chromatin structure without affecting other Tup1 repression functions. Deleting ISW2, the histone deacetylase gene HDA1, or genes encoding Mediator subunits individually caused slight or no derepression of RNR3 and HUG1. However, when Mediator mutations were combined with Deltaisw2 or Deltahda1 mutations, enhanced transcription was observed, and the strongest level of derepression was observed in triple Deltaisw2/Deltahda1/Mediator mutants. The increased transcription in the mutants was not due to the loss of Tup1 at the promoter and correlated with increased TBP cross-linking to promoters. Thus, Tup1 utilizes multiple redundant mechanisms to repress transcription of native genes, which may be important for it to act as a global corepressor at a wide variety of promoters.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
86
|
Hirota K, Hoffman CS, Shibata T, Ohta K. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot. Genetics 2004; 165:505-15. [PMID: 14573465 PMCID: PMC1462784 DOI: 10.1093/genetics/165.2.505] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function.
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
87
|
Puig S, Lau M, Thiele DJ. Cti6 Is an Rpd3-Sin3 Histone Deacetylase-associated Protein Required for Growth under Iron-limiting Conditions in Saccharomyces cerevisiae. J Biol Chem 2004; 279:30298-306. [PMID: 15133041 DOI: 10.1074/jbc.m313463200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron and copper are redox active metals essential for life. In the budding yeast Saccharomyces cerevisiae, expression of iron and copper genes involved in metal acquisition and utilization is tightly regulated at the transcriptional level. In addition iron and copper metabolism are inextricably linked because of the dependence on copper as a co-factor for iron uptake or mobilization. To further identify genes that function in iron and copper homeostasis, we screened for novel yeast mutants defective for iron limiting growth and thereby identified the CTI6 gene. Cti6 is a PHD finger-containing protein that has been shown to participate in the interaction of the Ssn6-Tup1 co-repressor with the Gcn5-containing SAGA chromatin-remodeling complex. In this report we show that CTI6 mRNA levels are increased under iron-limiting conditions, and that cti6 mutants display a growth defect under conditions of iron deprivation. Furthermore, we demonstrate that Cti6 is a nuclear protein that functionally associates with the Rpd3-Sin3 histone deacetylase complex involved in transcriptional repression. Cti6 demonstrates Rpd3-dependent transcriptional repression, and cti6 mutants exhibit an enhanced silencing of telomeric, rDNA and HMR loci, similar to mutants in genes encoding other Rpd3-Sin3-associated proteins. Microarray experiments with cti6 mutants grown under iron-limiting conditions show a down-regulation of telomeric genes and an up-regulation of Aft1 and Tup1 target genes involved in iron and oxygen regulation. Taken together, these data suggest a specific role for Cti6 in the regulation of gene expression under conditions of iron limitation.
Collapse
Affiliation(s)
- Sergi Puig
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
88
|
Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:4769-80. [PMID: 15143171 PMCID: PMC416400 DOI: 10.1128/mcb.24.11.4769-4780.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of eukaryotic genomes follows a temporally staged program, in which late origin firing often occurs within domains of altered chromatin structure(s) and silenced genes. Histone deacetylation functions in gene silencing in some late-replicating regions, prompting an investigation of the role of histone deacetylation in replication timing control in Saccharomyces cerevisiae. Deletion of the histone deacetylase Rpd3 or its interacting partner Sin3 caused early activation of late origins at internal chromosomal loci but did not alter the initiation timing of early origins or a late-firing, telomere-proximal origin. By delaying initiation relative to the earliest origins, Rpd3 enables regulation of late origins by the intra-S replication checkpoint. RPD3 deletion suppresses the slow S phase of clb5Delta cells by enabling late origins to fire earlier, suggesting that Rpd3 modulates the initiation timing of many origins throughout the genome. Examination of factors such as Ume6 that function together with Rpd3 in transcriptional repression indicates that Rpd3 regulates origin initiation timing independently of its role in transcriptional repression. This supports growing evidence that for much of the S. cerevisiae genome transcription and replication timing are not linked.
Collapse
Affiliation(s)
- Jennifer G Aparicio
- Department of Biological Sciences, University of Southern California, 835 W. 37th St., SHS172, Los Angeles, CA 90089-1340, USA.
| | | | | | | |
Collapse
|
89
|
Zhang Z, Reese JC. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 2004; 23:2246-57. [PMID: 15116071 PMCID: PMC419907 DOI: 10.1038/sj.emboj.7600227] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/08/2004] [Indexed: 12/30/2022] Open
Abstract
The Imitation SWItch (ISWI) chromatin remodeling factors have been implicated in nucleosome positioning. In vitro, they can mobilize nucleosomes bi-directionally, making it difficult to envision how they can establish precise translational positioning of nucleosomes in vivo. It has been proposed that they require other cellular factors to do so, but none has been identified thus far. Here, we demonstrate that both ISW2 and TUP1 are required to position nucleosomes across the entire coding sequence of the DNA damage-inducible gene RNR3. The chromatin structure downstream of the URS is indistinguishable in Deltaisw2 and Deltatup1 mutants, and the crosslinking of Tup1 and Isw2 to RNR3 is independent of each other, indicating that both complexes are required to maintain repressive chromatin structure. Furthermore, Tup1 repressed RNR3 and blocked preinitiation complex formation in the Deltaisw2 mutant, even though nucleosome positioning was completely disrupted over the promoter and ORF. Our study has revealed a novel collaboration between two nucleosome-positioning activities in vivo, and suggests that disruption of nucleosome positioning is insufficient to cause a high level of transcription.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 203 Althouse Laboratory, University Park, Pennsylvania, PA 16802, USA. Tel.: +1 814 865 1976; Fax: +1 814 863 7024; E-mail:
| |
Collapse
|
90
|
Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeast TATA box-containing genes. Cell 2004; 116:699-709. [PMID: 15006352 DOI: 10.1016/s0092-8674(04)00205-3] [Citation(s) in RCA: 506] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/26/2003] [Accepted: 01/08/2004] [Indexed: 11/21/2022]
Abstract
Despite being one of the first eukaryotic transcriptional regulatory elements identified, the sequence of a native TATA box and its significance remain elusive. Applying criteria associated with TATA boxes we queried several Saccharomyces genomes and arrived at the consensus TATA(A/T)A(A/T)(A/G). Approximately 20% of yeast genes contain a TATA box. Strikingly, TATA box-containing genes are associated with responses to stress, are highly regulated, and preferentially utilize SAGA rather than TFIID when compared to TATA-less promoters. Transcriptional regulation in yeast appears to be mechanistically bipolar, possibly reflecting a need to balance inducible stress-related responses with constitutive housekeeping functions.
Collapse
Affiliation(s)
- Andrew D Basehoar
- Graduate Program in Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
91
|
Hirota K, Hasemi T, Yamada T, Mizuno KI, Hoffman CS, Shibata T, Ohta K. Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. Nucleic Acids Res 2004; 32:855-62. [PMID: 14762213 PMCID: PMC373364 DOI: 10.1093/nar/gkh251] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The specific induction of genes in response to distinct environmental stress is vital for all eukaryotes. To study the mechanisms that result in selective gene responses, we examined the role of the fission yeast Tup1 family repressors in chromatin regulation. We found that chromatin structure around a cAMP-responsive element (CRE)-like sequence in ade6-M26 that is bound by Atf1.Pcr1 transcriptional activation was altered in response to osmotic stress but not to heat and oxidative stresses. Such chromatin structure alteration occurred later than the Atf1 phosphorylation but correlated well with stress-induced transcriptional activation at ade6-M26. This chromatin structure alteration required components for the stress-activated protein kinase (SAPK) cascade and both subunits of the M26-binding CREB/ATF-type protein Atf1.Pcr1. Cation stress and glucose starvation selectively caused chromatin structure alteration around CRE-like sequences in cta3(+) and fbp1(+) promoters, respectively, in correlation with transcriptional activation. However, the tup11Delta tup12Delta double deletion mutants lost the selectivity of stress responses of chromatin structure and transcriptional regulation of cta3(+) and fbp1(+). These data indicate that the Tup1-like repressors regulate the chromatin structure to ensure the specificity of gene activation in response to particular stresses. Such a role for these proteins may serve as a paradigm for the regulation of stress response in higher eukaryotes.
Collapse
MESH Headings
- Activating Transcription Factor 1
- Cations/pharmacology
- Chromatin/drug effects
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly/drug effects
- Environment
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/genetics
- Glucose/pharmacology
- Hot Temperature
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mutation/genetics
- Nitrogen/deficiency
- Nitrogen/pharmacology
- Osmotic Pressure/drug effects
- Oxidative Stress
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Schizosaccharomyces/drug effects
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Signal Transduction/drug effects
- Substrate Specificity
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, RIKEN (Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
92
|
Huisinga KL, Pugh BF. A Genome-Wide Housekeeping Role for TFIID and a Highly Regulated Stress-Related Role for SAGA in Saccharomyces cerevisiae. Mol Cell 2004; 13:573-85. [PMID: 14992726 DOI: 10.1016/s1097-2765(04)00087-5] [Citation(s) in RCA: 438] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 11/26/2003] [Accepted: 12/12/2003] [Indexed: 11/17/2022]
Abstract
TFIID and SAGA share a common set of TAFs, regulate chromatin, and deliver TBP to promoters. Here we examine their relationship within the context of the Saccharomyces cerevisiae genome-wide regulatory network. We find that while TFIID and SAGA make overlapping contributions to the expression of all genes, TFIID function predominates at approximately 90% and SAGA at approximately 10% of the measurable genome. Strikingly, SAGA-dominated genes are largely stress induced and TAF independent, and are downregulated by the coordinate action of a variety of chromatin, TBP, and RNA polymerase II regulators. In contrast, the TFIID-dominated class is less regulated, but is highly dependent upon TAFs, including those shared between TFIID and SAGA. These two distinct modes of transcription regulation might reflect the need to balance inducible stress responses with the steady output of housekeeping genes.
Collapse
Affiliation(s)
- Kathryn L Huisinga
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
93
|
Boukaba A, Georgieva EI, Myers FA, Thorne AW, López-Rodas G, Crane-Robinson C, Franco L. A Short-range Gradient of Histone H3 Acetylation and Tup1p Redistribution at the Promoter of the Saccharomyces cerevisiae SUC2 Gene. J Biol Chem 2004; 279:7678-84. [PMID: 14670975 DOI: 10.1074/jbc.m310849200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin immunoprecipitation assays are used to map H3 and H4 acetylation over the promoter nucleosomes and the coding region of the Saccharomyces cerevisiae SUC2 gene, under repressed and derepressed conditions, using wild type and mutant strains. In wild type cells, a high level of H3 acetylation at the distal end of the promoter drops sharply toward the proximal nucleosome that covers the TATA box, a gradient that become even steeper on derepression. In contrast, substantial H4 acetylation shows no such gradient and extends into the coding region. Overall levels of both H3 and H4 acetylation rise on derepression. Mutation of GCN5 or SNF2 lead to substantially reduced SUC2 expression; in gnc5 there is no reduction in basal H3 acetylation, but large reductions occur on derepression. SNF2 mutation has little effect on H3 acetylation, so SAGA and SWI/SNF recruitment seem to be independent events. H4 acetylation is little affected by either GCN5 or SNF2 mutation. In a double snf2/gcn5 mutant (very low SUC2 expression), H3 acetylation is at the minimal level, but H4 acetylation remains largely unaffected. Transcription is thus linked to H3 but not H4 acetylation. Chromatin immunoprecipitation assays show that Tup1p is evenly distributed over the four promoter nucleosomes in repressed wild type cells but redistributes upstream on derepression, a movement probably linked to its conversion from a repressor to an activator.
Collapse
Affiliation(s)
- Abdelhalim Boukaba
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, E-46100 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
94
|
Affiliation(s)
- Judith K Davie
- Department of Biochemistry and Molecular Biology, M. D. Anderson Cancer Center, University of Texas Houston, Texas 77030, USA
| | | |
Collapse
|
95
|
Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003; 72:481-516. [PMID: 12676793 DOI: 10.1146/annurev.biochem.72.121801.161547] [Citation(s) in RCA: 598] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomes are organized into active regions known as euchromatin and inactive regions known as heterochromatin, or silenced chromatin. This review describes contemporary knowledge and models for how silenced chromatin in Saccharomyces cerevisiae forms, functions, and is inherited. In S. cerevisiae, Sir proteins are the key structural components of silenced chromatin. Sir proteins interact first with silencers, which dictate which regions are silenced, and then with histone tails in nucleosomes as the Sir proteins spread from silencers along chromosomes. Importantly, the spreading of silenced chromatin requires the histone deacetylase activity of Sir2p. This requirement leads to a general model for the spreading and inheritance of silenced chromatin or other special chromatin states. Such chromatin domains are marked by modifications of the nucleosomes or DNA, and this mark is able to recruit an enzyme that makes further marks. Thus, among different organisms, multiple forms of repressive chromatin can be formed using similar strategies but completely different proteins. We also describe emerging evidence that mutations that cause global changes in the modification of histones can alter the balance between euchromatin and silenced chromatin within a cell.
Collapse
Affiliation(s)
- Laura N Rusche
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202, USA.
| | | | | |
Collapse
|
96
|
Davie JK, Edmondson DG, Coco CB, Dent SYR. Tup1-Ssn6 Interacts with Multiple Class I Histone Deacetylases in Vivo. J Biol Chem 2003; 278:50158-62. [PMID: 14525981 DOI: 10.1074/jbc.m309753200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tup1-Ssn6 corepressor complex in Saccharomyces cerevisiae represses the transcription of a diverse set of genes. Chromatin is an important component of Tup1-Ssn6-mediated repression. Tup1 binds to underacetylated histone tails and requires multiple histone deacetylases (HDACs) for its repressive functions. Here, we describe physical interactions of the corepressor complex with the class I HDACs Rpd3, Hos2, and Hos1. In contrast, no in vivo interaction was observed between Tup-Ssn6 and Hda1, a class II HDAC. We demonstrate that Rpd3 interacts with both Tup1 and Ssn6. Rpd3 and Hos2 interact with Ssn6 independently of Tup1 via distinct tetratricopeptide domains within Ssn6, suggesting that these two HDACs may contact the corepressor at the same time.
Collapse
Affiliation(s)
- Judith K Davie
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
97
|
Trojer P, Brandtner EM, Brosch G, Loidl P, Galehr J, Linzmaier R, Haas H, Mair K, Tribus M, Graessle S. Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res 2003; 31:3971-81. [PMID: 12853613 PMCID: PMC167634 DOI: 10.1093/nar/gkg473] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/15/2003] [Accepted: 05/15/2003] [Indexed: 11/12/2022] Open
Abstract
Acetylation is the most prominent modification on core histones that strongly affects nuclear processes such as DNA replication, DNA repair and transcription. Enzymes responsible for the dynamic equilibrium of histone acetylation are histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this paper we describe the identification of novel HDACs from the filamentous fungi Aspergillus nidulans and the maize pathogen Cochliobolus carbonum. Two of the enzymes are homologs of Saccharomyces cerevisiae HOS3, an enzyme that has not been identified outside of the established yeast systems until now. One of these homologs, HosB, showed intrinsic HDAC activity and remarkable resistance against HDAC inhibitors like trichostatin A (TSA) when recombinant expressed in an Escherichia coli host system. Phylo genetic analysis revealed that HosB, together with other fungal HOS3 orthologs, is a member of a separate group within the classical HDACs. Immunological investigations with partially purified HDAC activities of Aspergillus showed that all classical enzymes are part of high molecular weight complexes and that a TSA sensitive class 2 HDAC constitutes the major part of total HDAC activity of the fungus. However, further biochemical analysis also revealed an NAD(+)-dependent activity that could be separated from the other activities by different types of chromatography and obviously represents an enzyme of the sirtuin class.
Collapse
Affiliation(s)
- Patrick Trojer
- Department of Molecular Biology, University of Innsbruck, Peter-Mayr-Strasse 4b, Innsbruck, A-6020, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 337] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
99
|
Mukai Y, Davie JK, Dent SYR. Physical and functional interaction of the yeast corepressor Tup1 with mRNA 5'-triphosphatase. J Biol Chem 2003; 278:18895-901. [PMID: 12637515 DOI: 10.1074/jbc.m302155200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tup1-Ssn6 complex is an important corepressor in Saccharomyces cerevisiae that inhibits transcription through interactions with the basal transcription machinery and by remodeling chromatin. In a two-hybrid screen for factors that interact with the Schizosaccharomyces pombe Tup1 ortholog, Tup11, we isolated the pct1+ cDNA. The pct1+ gene encodes an mRNA 5'-triphosphatase, which catalyzes the first step of mRNA capping reactions. Pct1 did not interact with the S. pombe Ssn6 ortholog. In vitro glutathione S-transferase pull-down experiments revealed that Pct1 binds to the WD repeat regions of Tup11 and the functionally redundant Tup12 protein. Similarly, the S. cerevisiae Tup1 protein associates with the mRNA 5'-triphosphatase encoded by the CET1 gene. The highly conserved C-terminal domain of Cet1 interacts with Tup1 in vitro, and Tup1-Ssn6 complexes co-purify with the Cet1 protein, indicating that in vivo interactions also occur between these proteins. Over-expression of CET1 compromised repression of an MFA2-lacZ reporter gene that is subject to Tup1-Ssn6 repression. These genetic and biochemical interactions between Tup1-Ssn6 and Cet1 indicate that the capping enzyme associated with RNA polymerase II is a target of the corepressor complex.
Collapse
Affiliation(s)
- Yukio Mukai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
100
|
Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A. TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol Microbiol 2003; 48:85-94. [PMID: 12657047 DOI: 10.1046/j.1365-2958.2003.03426.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungal pathogenesis is frequently associated with dimorphism - morphological changes between yeast and filamentous forms. Penicillium marneffei, an opportunistic human pathogen, exhibits temperature-dependent dimorphism, with growth at 25 degrees C as filamentous multinucleate hyphae switching at 37 degrees C to uninucleate yeast cells associated with intracellular pathogenesis. The filamentous hyphae also undergo asexual development generating uninucleate spores, the infectious propagules. Both processes require a switch to coupled nuclear and cell division. Homologous regulators, including Tup1p/GROUCHO-related WD40 repeat transcription factors, control dimorphism in Candida albicans and asexual development in Aspergillus nidulans. Unlike these fungi, P. marneffei has both developmental programmes allowing examination of common and programme-specific controls. We show that deletion of tupA, the P. marneffei TUP1 homologue, confers reduced filamentation and inappropriate yeast morphogenesis at 25 degrees C, in stark contrast to constitutive filamentation observed when C. albicans TUP1 is deleted. Deletion of tupA also confers premature brlA-dependent asexual development, unlike reduced asexual development in the corresponding A. nidulans rcoA deletion mutant. Furthermore, the A. nidulans rcoA deletion mutant is self-sterile, and we show that tupA from P. marneffei, which lacks an apparent sexual cycle, complements both the asexual and sexual development phenotypes. Therefore, TupA coordinates cell fate by promoting filamentation and repressing both spore and yeast morphogenetic programmes.
Collapse
Affiliation(s)
- Richard B Todd
- Department of Genetics, The University of Melbourne, 3010, Australia
| | | | | | | |
Collapse
|