51
|
Bondada MS, Yao Y, Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA 2019; 5:ncrna5010024. [PMID: 30871221 PMCID: PMC6468363 DOI: 10.3390/ncrna5010024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that fine-tune the responses of the cell by modulating the cell transcriptome and gene expression. MicroRNA 155 (miR-155) is a conserved multifunctional miRNA involved in multiple roles including the modulation of the immune responses. When deregulated, miR-155 can also contribute to cancer as has been demonstrated in several human malignancies such as diffuse large B cell lymphoma, chronic lymphocytic leukemia, as well as in Epstein⁻Barr virus (EBV)-induced B cell transformation. Avian oncogenic viruses such as Marek's disease virus (MDV), avian leukosis virus (ALV), and reticuloendotheliosis virus (REV) that account for more than 90% of cancers in avian species, also make use of the miR-155 pathway during oncogenesis. While oncogenic retroviruses, such as ALV, activate miR-155 by insertional activation, acutely transforming retroviruses use transduced oncogenes such as v-rel to upregulate miR-155 expression. MDV on the other hand, encodes a functional miR-155 ortholog mdv1-miR-M4, similar to the miR-155 ortholog kshv-miR-K11 present in Kaposi's sarcoma-associated herpesvirus (KSHV). We have shown that mdv1-miR-M4 is critical for the induction of MDV-induced lymphomas further demonstrating the oncogenic potential of miR-155 pathway in cancers irrespective of the diverse etiology. In this review, we discuss on our current understanding of miR-155 function in virus-induced lymphomas focusing primarily on avian oncogenic viruses.
Collapse
Affiliation(s)
- Megha Sravani Bondada
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yongxiu Yao
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Venugopal Nair
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom..
| |
Collapse
|
52
|
Gallo A, Vella S, Tuzzolino F, Cuscino N, Cecchettini A, Ferro F, Mosca M, Alevizos I, Bombardieri S, Conaldi PG, Baldini C. MicroRNA-mediated Regulation of Mucin-type O-glycosylation Pathway: A Putative Mechanism of Salivary Gland Dysfunction in Sjögren Syndrome. J Rheumatol 2019; 46:1485-1494. [PMID: 30824638 DOI: 10.3899/jrheum.180549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate microRNA (miRNA) that is potentially implicated in primary Sjögren syndrome (pSS)-related salivary hypofunction in labial salivary glands and to study miRNA-mediated mechanisms underlying oral dryness and altered rheology, focusing on the mucin O-glycosylation pathway. METHODS We performed miRNA expression profiling in minor salivary gland samples of patients with pSS presenting a different impairment in their unstimulated salivary flow rate. A computational in silico analysis was performed to identify genes and pathways that might be modulated by the deregulated miRNA that we had identified. To confirm in silico analysis, expression levels of genes encoding for glycosyltransferases and glycan-processing enzymes were investigated using Human Glycosylation-RT2 Profiler PCR Array. RESULTS Among 754 miRNA analyzed, we identified 126 miRNA that were significantly deregulated in pSS compared to controls, with a trend that was inversely proportional with the impairment of salivary flow rates. An in silico approach pinpointed that several upregulated miRNA in patients with pSS target important genes in the mucin O-glycosylation. We confirmed this prediction by quantitative real-time PCR, highlighting the downregulation of some glycosyltransferase and glycosidase genes in pSS samples compared to controls, such as GALNT1, responsible for mucin-7 glycosylation. CONCLUSION Collectively, our data suggest that the expression of different predicted miRNA-target genes in the mucin type O-glycan biosynthesis pathway is altered in pSS patients with low salivary flow and that the miRNA expression profile could influence the glycosidase expression levels and consequently the rheology in pSS.
Collapse
Affiliation(s)
- Alessia Gallo
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Serena Vella
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Fabio Tuzzolino
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Nicola Cuscino
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Antonella Cecchettini
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Francesco Ferro
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Marta Mosca
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Ilias Alevizos
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Stefano Bombardieri
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Pier Giulio Conaldi
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa
| | - Chiara Baldini
- From the Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione); Research Office, IRCCS-ISMETT, Palermo; Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Pisa, Italy; Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA. .,A. Gallo, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; S. Vella, PhD, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; F. Tuzzolino, PhD, Statistician, Research Office, IRCCS-ISMETT; N. Cuscino, Bioinformatician, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; A. Cecchettini, PhD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; F. Ferro, MD, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; M. Mosca, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; I. Alevizos, PhD, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; S. Bombardieri, MD, PhD, Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa; P.G. Conaldi, MD, PhD, Professor of Pathology, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; C. Baldini, MD, PhD, Associate Professor of Rheumatology, Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa.
| |
Collapse
|
53
|
Zennami K, Choi SM, Liao R, Li Y, Dinalankara W, Marchionni L, Rafiqi FH, Kurozumi A, Hatano K, Lupold SE. PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance. Mol Cancer Res 2019; 17:618-627. [PMID: 30518628 PMCID: PMC6359980 DOI: 10.1158/1541-7786.mcr-18-0837] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Androgen receptor (AR) transcriptional activity contributes to prostate cancer development and castration resistance. The growth and survival pathways driven by AR remain incompletely defined. Here, we found PDCD4 to be a new target of AR signaling and a potent regulator of prostate cancer cell growth, survival, and castration resistance. The 3' untranslated region of PDCD4 is directly targeted by the androgen-induced miRNA, miR-21. Androgen treatment suppressed PDCD4 expression in a dose responsive and miR-21-dependent manner. Correspondingly, AR inhibition dose-responsively induced PDCD4 expression. Using data from prostate cancer tissue samples in The Cancer Genome Atlas (TCGA), we found a significant and inverse correlation between miR-21 and PDCD4 mRNA and protein levels. Higher Gleason grade tumors exhibited significantly higher levels of miR-21 and significantly lower levels of PDCD4 mRNA and protein. PDCD4 knockdown enhanced androgen-dependent cell proliferation and cell-cycle progression, inhibited apoptosis, and was sufficient to drive androgen-independent growth. On the other hand, PDCD4 overexpression inhibited miR-21-mediated growth and androgen independence. The stable knockdown of PDCD4 in androgen-dependent prostate cancer cells enhanced subcutaneous tumor take rate in vivo, accelerated tumor growth, and was sufficient for castration-resistant tumor growth. IMPLICATIONS: This study provides the first evidence that PDCD4 is an androgen-suppressed protein capable of regulating prostate cancer cell proliferation, apoptosis, and castration resistance. These results uncover miR-21 and PDCD4-regulated pathways as potential new targets for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Kenji Zennami
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Su Mi Choi
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ross Liao
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ying Li
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Wikum Dinalankara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Luigi Marchionni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fatema H Rafiqi
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Akira Kurozumi
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Koji Hatano
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shawn E Lupold
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
54
|
Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji‐Asgarzadeh K, Safarzadeh E, Mokhtarzadeh A, Duijf PHG, Baradaran B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2018; 234:10002-10017. [DOI: 10.1002/jcp.27885] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Microbiology & Immunology Faculty of Medicine, Ardabil University of Medical Sciences Ardabil Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Pascal H. G. Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland Brisbane Queensland Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
55
|
Van Roosbroeck K, Bayraktar R, Calin S, Bloehdorn J, Dragomir MP, Okubo K, Bertilaccio MTS, Zupo S, You MJ, Gaidano G, Rossi D, Chen SS, Chiorazzi N, Thompson PA, Ferrajoli A, Bertoni F, Stilgenbauer S, Keating MJ, Calin GA. The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica 2018; 104:1004-1015. [PMID: 30409799 PMCID: PMC6518906 DOI: 10.3324/haematol.2018.203828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Richter syndrome is the name given to the transformation of the most frequent type of leukemia, chronic lymphocytic leukemia, into an aggressive lymphoma. Patients with Richter syndrome have limited response to therapies and dismal survival. The underlying mechanisms of transformation are insufficiently understood and there is a major lack of knowledge regarding the roles of microRNA that have already proven to be causative for most cases of chronic lymphocytic leukemia. Here, by using four types of genomic platforms and independent sets of patients from three institutions, we identified microRNA involved in the transformation of chronic lymphocytic leukemia to Richter syndrome. The expression signature is composed of miR-21, miR-150, miR-146b and miR-181b, with confirmed targets significantly enriched in pathways involved in cancer, immunity and inflammation. In addition, we demonstrated that genomic alterations may account for microRNA deregulation in a subset of cases of Richter syndrome. Furthermore, network analysis showed that Richter transformation leads to a complete rearrangement, resulting in a highly connected microRNA network. Functionally, ectopic overexpression of miR-21 increased proliferation of malignant B cells in multiple assays, while miR-150 and miR-26a were downregulated in a chronic lymphocytic leukemia xenogeneic mouse transplantation model. Together, our results suggest that Richter transformation is associated with significant expression and genomic loci alterations of microRNA involved in both malignancy and immunity.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address - Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mihnea Paul Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keishi Okubo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simonetta Zupo
- Molecular Diagnostic Laboratory, Pathology Department, IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Shih-Shih Chen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
56
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
57
|
Yu H, Chen Y, Jiang P. Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer. Biochem Biophys Res Commun 2018; 506:455-462. [PMID: 30352682 DOI: 10.1016/j.bbrc.2018.10.087] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 01/19/2023]
Abstract
The current study tested the expression and potential functions of circular RNA HIPK3 (circHIPK3) in human lung cancer. Our results show that circHIPK3 expression is upregulated in established (A549 line) and primary human lung cancer cells, when compared to its low level in the lung epithelial cells. siRNA-mediated silencing of circHIPK3 potently inhibited survival and proliferation of lung cancer cells, but inducing significant apoptosis activation. Contrarily, forced overexpression of circHIPK3 by a lentiviral construct promoted lung cancer cell survival and proliferation. CircHIPK3 acted as a microRNA-124 (miR-124) sponger and regulated the expression of miR-124 mRNA targets, including SphK1, CDK4 and STAT3, in lung cancer cells. Transfection of miR-124 inhibitor significantly inhibited circHIPK3 siRNA-induced lung cancer cell death and apoptosis. At last, we show that circHIPK3 levels are upregulated in human lung cancer tissues, correlated with miR-124 downregulation. The miR-124 targets (SphK1, STAT3 and CDK4) are upregulated in lung cancer tissues. Together, we propose that circHIPK3 promotes lung cancer cell progression possibly by sponging miR-124. These observations indicate a possible novel therapeutic strategy involving circHIPK3-miR-124 pathway against lung cancer.
Collapse
Affiliation(s)
- Hanqing Yu
- Emergency Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Yu Chen
- Emergency Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Ping Jiang
- Emergency Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
58
|
Jiang S, Miao D, Wang M, Lv J, Wang Y, Tong J. MiR-30-5p suppresses cell chemoresistance and stemness in colorectal cancer through USP22/Wnt/β-catenin signaling axis. J Cell Mol Med 2018; 23:630-640. [PMID: 30338942 PMCID: PMC6307779 DOI: 10.1111/jcmm.13968] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.
Collapse
Affiliation(s)
- Shixiong Jiang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dazhuang Miao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Muhong Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiachen Lv
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihui Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinxue Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
59
|
miR-125a and miR-34a expression predicts Richter syndrome in chronic lymphocytic leukemia patients. Blood 2018; 132:2179-2182. [PMID: 30242085 DOI: 10.1182/blood-2018-04-845115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia. It is characterized by the accumulation of CD19+/CD5+ lymphocytes and can have variable outcomes. Richter syndrome (RS) is a lethal complication in CLL patients that results in aggressive B-cell lymphomas, and there are no tests to predict its occurrence. Because alterations in microRNA expression can predict the development and progression of several cancers, we investigated whether dysregulation of specific microRNAs can predict RS in CLL patients. Thus, we compared microRNA expression levels in samples from 49 CLL patients who later developed RS with samples from 59 CLL patients who did not. We found that high expression of miR-125a-5p or low expression of miR -34a-5p can predict ∼50% of RS with a false positive rate of ∼9%. We found that CLL patients predicted to develop RS show either an increase of miR-125a-5p expression (∼20-fold) or a decrease of miR-34a-5p expression (∼21-fold) compared with CLL patients that are not predicted to develop RS. Thus, miR-125a-5p and miR-34a-5p can be valuable predictor markers of RS and have the potential to provide physicians with information that can indicate the best therapeutic strategy for CLL patients.
Collapse
|
60
|
Ma YS, Yu F, Zhong XM, Lu GX, Cong XL, Xue SB, Xie WT, Hou LK, Pang LJ, Wu W, Zhang W, Cong LL, Liu T, Long HD, Sun R, Sun HY, Lv ZW, Wu CY, Fu D. miR-30 Family Reduction Maintains Self-Renewal and Promotes Tumorigenesis in NSCLC-Initiating Cells by Targeting Oncogene TM4SF1. Mol Ther 2018; 26:2751-2765. [PMID: 30301667 DOI: 10.1016/j.ymthe.2018.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence indicates that tumor-initiating cells (TICs) are responsible for the occurrence, development, recurrence, and development of the drug resistance of cancer. MicroRNA (miRNA) plays a significant functional role by directly regulating targets of TIC-triggered non-small-cell lung cancer (NSCLC), but little is known about the function of the miR-30 family in TICs. In this study, we found the miR-30 family to be downregulated during the spheroid formation of NSCLC cells, and patients with lower miR-30a/c expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, transmembrane 4 super family member 1 (TM4SF1) was confirmed to be a direct target of miR-30a/c. Concomitant low expression of miR-30a/c and high expression of TM4SF1 correlated with a shorter median OS and PFS in NSCLC patients. miR-30a/c significantly inhibited stem-like characteristics in vitro and in vivo via suppression of its target gene TM4SF1, and then it inhibited the activity of the mTOR/AKT-signaling pathway. Thus, our data provide the first evidence that TM4SF1 is a direct target of miR-30a/c and miR-30a/c inhibits the stemness and proliferation of NSCLC cells by targeting TM4SF1, suggesting that miR-30a/c and TM4SF1 may be useful as tumor biomarkers for the diagnosis and treatment of NSCLC patients.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Ming Zhong
- Department of Tumor Radiotherapy, Jiangxi Province Tumor Hospital, Nanchang 330029, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xian-Ling Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Shao-Bo Xue
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen-Ting Xie
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li-Juan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Le-Le Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Tie Liu
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Hui-Deng Long
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Ran Sun
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Hong-Yan Sun
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
61
|
Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 2018; 18:130. [PMID: 30202241 PMCID: PMC6127951 DOI: 10.1186/s12935-018-0631-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers diagnosed and among the commonest causes of cancer-related mortality globally. Despite the various available treatment options, millions of people still suffer from this illness and most of these treatment options have several limitations. Therefore, a less expensive, non-invasive or a treatment that requires the use of dietary products remains a focal point in this review. Main body Aberrant microRNA expression has been revealed to have a functional role in the initiation and progression of CRC. These has shown significant promise in the diagnosis and prognosis of CRC, owing to their unique expression profile associated with cancer types and malignancies. Moreover, microRNA therapeutics show a great promise in preclinical studies, and these encourage further development of their clinical use in CRC patients. Additionally, emerging studies show the chemo-preventive potential of dietary components in microRNA modulation using several CRC models. This review examines the dietary interplay between microRNAs and CRC incidence. Improving the understanding of the interactions between microRNAs and dietary components in the carcinogenesis of CRC will assist the study of CRC progression and finally, in developing personalized approaches for cancer prevention and therapy. Conclusion Although miRNA research is still at its infancy, it could serve as a promising predictive biomarkers and therapeutic targets for CRC. Given the ever-expanding number of miRNAs, understanding their functional aspects represents a promising option for further research.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- 1Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Babajide A Ojo
- 2Department of Nutritional Science, Oklahoma State University, 301, Human Sciences, Stillwater, OK 74075 USA
| | - Olusola Bolaji Adewale
- 3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Temitope Esho
- 4Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann Str. 52, 50931 Cologne, Germany
| | - Ashley Pretorius
- Biotechnology Innovation Division, Aminotek PTY LTD, Suite 2C, Oude Westhof Village Square Bellville, 7530 South Africa
| |
Collapse
|
62
|
Cao J, Qiu J, Wang X, Lu Z, Wang D, Feng H, Li X, Liu Q, Pan H, Han X, Wei J, Liu S, Wang L. Identification of microRNA-124 in regulation of Hepatocellular carcinoma through BIRC3 and the NF-κB pathway. J Cancer 2018; 9:3006-3015. [PMID: 30210622 PMCID: PMC6134807 DOI: 10.7150/jca.25956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) being proved to be involved in the carcinogenesis of numerous tumors. MicroRNA-124 (miR-124), identified as a tumor suppressor, has been demonstrated to exert pivotal roles in multiple processes of tumorigenesis. The present study demonstrated that miR-124 was low-expressed in human hepatocellular carcinoma (HCC) tissues and cell lines. In addition, overexpression of miR-124 through infected with miR-124 lentivirus inhibited the proliferation and migration of HCC in vitro and tumorigenesis in vivo, whereas inhibition of miR-124 expression can reverse the process. Moreover, Baculoviral IAP Repeat Containing 3 (BIRC3) was identified as a target gene of miR-124. The BIRC3 mRNA expression was increased in HCC tissues and negatively correlated with miR-124 expression. Knockdown of BIRC3 recovered the miR-124-induced inhibiting effect on HCC progression. Furthermore, we found that up-regulation of miR-124 significantly inhibited p-P65, p-IκBα and c-Myc proteins expression. However, the effect of miR-124 up-regulation on HCC development was partly reversed by BIRC3 restoration. In conclusion, our data proved that miR-124 inhibits the proliferation and migration of HCC at least partly through targeting BIRC3 and regulating NF-κB signaling pathway, and it may be a therapeutic target for HCC prognosis.
Collapse
Affiliation(s)
- Jia Cao
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Qiu
- Qingdao Municipal Hospital, Department of stomatology, Qingdao, 266071, China
| | - Xi Wang
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - ZhenHui Lu
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Danni Wang
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - HuiMin Feng
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - XiaoHan Li
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - QiaoQiao Liu
- Qingdao Municipal Hospital, Department of stomatology, Qingdao, 266071, China
| | - HuaZheng Pan
- The Affiliated Hospital of Qingdao University, Medical Animal Lab, Qingdao, 266003, China
| | - XueBo Han
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China
| | - Jun Wei
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - ShiHai Liu
- The Affiliated Hospital of Qingdao University, Medical Animal Lab, Qingdao, 266003, China
| | - LiBin Wang
- Ningxia Medical University, Clinical Medicine College, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.,The General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| |
Collapse
|
63
|
MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis 2018; 9:814. [PMID: 30050105 PMCID: PMC6062564 DOI: 10.1038/s41419-018-0837-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.
Collapse
|
64
|
Abstract
Gene regulatory network that determines the cellular functions exhibits stochastic fluctuations, or "noise," in different layers. Noise has begun to be appreciated for many previously unrecognized functions in important cellular activities. In fact, molecular noise is unavoidable in both microbial and eukaryotic cells, the feedback system is established evolutionally to reduce noise or optimize the noise for cellular homeostasis. The small noncoding RNAs, particularly, microNRAs, post-transcriptionally and negatively regulate gene expressions. MicroRNAs function as a novel layer to buffer noise level, and stabilize mRNA and protein level to maintain normal cellular function. Furthermore, the changing of microRNA expression levels may increase the stochastic fluctuation leading to abnormal cellular function, even diseases.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California in San Francisco, 600 16th Street Mission Bay/Genentech Hall, Room N212, San Francisco, CA, 94143, USA.
| |
Collapse
|
65
|
Dragomir M, Mafra ACP, Dias SMG, Vasilescu C, Calin GA. Using microRNA Networks to Understand Cancer. Int J Mol Sci 2018; 19:ijms19071871. [PMID: 29949872 PMCID: PMC6073868 DOI: 10.3390/ijms19071871] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
Human cancers are characterized by deregulated expression of multiple microRNAs (miRNAs), involved in essential pathways that confer the malignant cells their tumorigenic potential. Each miRNA can regulate hundreds of messenger RNAs (mRNAs), while various miRNAs can control the same mRNA. Additionally, many miRNAs regulate and are regulated by other species of non-coding RNAs, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). For this reason, it is extremely difficult to predict, study, and analyze the precise role of a single miRNA involved in human cancer, considering the complexity of its connections. Focusing on a single miRNA molecule represents a limited approach. Additional information could come from network analysis, which has become a common tool in the biological field to better understand molecular interactions. In this review, we focus on the main types of networks (monopartite, association networks and bipartite) used for analyzing biological data related to miRNA function. We briefly present the important steps to take when generating networks, illustrating the theory with published examples and with future perspectives of how this approach can help to better select miRNAs that can be therapeutically targeted in cancer.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
- Department of Surgery, Fundeni Hospital, University of Medicine and Pharmacy Carol Davila, Sos. Fundeni nr. 258, Sector 2, 022328 Bucharest, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Gh. Marinescu 23, 400012 Cluj-Napoca, Romania.
| | - Ana Carolina P Mafra
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Campinas, SP 13083-970, Brazil.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, P.O. Box 6109, University of Campinas-UNICAMP, Campinas, SP 13083-970, Brazil.
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Campinas, SP 13083-970, Brazil.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, P.O. Box 6109, University of Campinas-UNICAMP, Campinas, SP 13083-970, Brazil.
| | - Catalin Vasilescu
- Department of Surgery, Fundeni Hospital, University of Medicine and Pharmacy Carol Davila, Sos. Fundeni nr. 258, Sector 2, 022328 Bucharest, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
- Center for RNA Inference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX 77030, USA.
| |
Collapse
|
66
|
Jin S, Liu MD, Wu H, Pang P, Wang S, Li ZN, Sun CF, Liu FY. Overexpression of hsa-miR-125a-5p enhances proliferation, migration and invasion of head and neck squamous cell carcinoma cell lines by upregulating C-C chemokine receptor type 7. Oncol Lett 2018; 15:9703-9710. [PMID: 29928346 PMCID: PMC6004657 DOI: 10.3892/ol.2018.8564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is usually diagnosed accompanied by lymph node metastasis. C-C chemokine receptor type 7 (CCR7) is associated with the invasion and metastasis of tumors in HNSCC through various signaling pathways. The role of hsa-miR-125a-5p in HNSCC remains unclear. The present study was performed to investigate the association between hsa-miR-125a-5p and CCR7 in HNSCC. Reverse transcription-quantitative polymerase chain reaction was applied to analyze the expression of hsa-miR-125a-5p in clinical samples. Cell Counting Kit-8, Transwell and wound healing assays were used to detect cell proliferation, invasion, and metastasis, respectively, following overexpression of hsa-miR-125a-5p. Changes in protein expression of CCR7 were observed using western blotting. In the survival analysis, Student's t-tests and log rank tests were performed to analyze the association between the expression of hsa-miR-125a-5p, and HNSCC according to the Cancer Genome Atlas database. The expression of hsa-miR-125a-5p was identified to be significantly lower in cancer tissue compared with the corresponding adjacent normal tissues in clinical samples (P=0.038). The results of western blotting indicated that there was a positive regulatory association between hsa-miR-125a-5p and CCR7. Furthermore, overexpression of hsa-miR-125a-5p significantly enhanced the ability of cell proliferation, migration and invasion in HNSCC, with upregulation of CCR7. The results of survival analysis revealed that patients in the low expression group of hsa-miR-125a-5p tended to have longer survival times compared with the high expression group (P=0.045). Altogether, the data raised the possibility that hsa-miR-125a-5p has a significant role in promoting cancer in HNSCC, which may provide a basis for the treatment of HNSCC in molecular targeted therapy. Further studies are required to ascertain the role of hsa-miR-125a-5p in other HNSCC cell lines and in vivo.
Collapse
Affiliation(s)
- Shan Jin
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Min-Da Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Hong Wu
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Pai Pang
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Song Wang
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Zhen-Ning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Chang-Fu Sun
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Fa-Yu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
67
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
68
|
Baldassari F, Zerbinati C, Galasso M, Corrà F, Minotti L, Agnoletto C, Previati M, Croce CM, Volinia S. Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors. Front Genet 2018; 9:174. [PMID: 29868122 PMCID: PMC5968201 DOI: 10.3389/fgene.2018.00174] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Breast cancer (BC) represents the most common cancer in women worldwide. Due to its heterogeneous nature, breast cancer management might benefit from differential treatments toward personalized medicine. Additionally, drug resistance is a common phenomenon. We systematically investigated the effect of 14 different drugs administered on BC cell lines in combination with microRNAs (miRNA, miR). Methods: Thirty-eight miRNAs, all associated with BC by clinical and molecular parameters including progression, prognosis and subtypes, were tested for their effects on the viability of 12 different BC cell lines. Four miRNAs with the strongest impact on viability were further assayed in combination with 14 BC drugs. Mann–Whitney U-test with Bonferroni correction was used for statistical analysis. Results: In a miRNA only pre-screen we observed effects on BC cell lines' viability for 34 out of 38 candidate miRNAs. We then identified 14 miRNA/drug combinations for which the combination IC50 was lower than that of both miRNA and drug as single agents. miR-181a, paired with GSK1070916, Doxorubicin, XL765 and AMG511, was the only miRNA active on the triple negative (TNBC) MDA-MB-468 cell line. miR-126 was the only miRNA (in combination with CDK4/6 or PIK3CA inhibitors) with significant effects on cell lines from different subtypes: MCF7 (Luminal) and MDA-MB-453 (HER2+). Because of its activity on different BC subtypes, we investigated the genome wide effects of miR-126 using transcriptomics and confirmed that expression of miR-126 in BC cell lines affected cell cycle and mitosis. Conclusion: Our results show that a combination treatment with miRNAs, in particular miR-181a, miR-326, miR-9 and miR-126, enhance the activity of specific BC drugs in vitro, even on the most aggressive BC subtypes, HER2+ and TNBC. Finally, as expected from its drug interactions, based on a whole transcriptome study we could confirm a role for miR-126 in cell cycle regulation.
Collapse
Affiliation(s)
- Federica Baldassari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Zerbinati
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Galasso
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Corrà
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stefano Volinia
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
69
|
Wang M, Yu Y, Liu F, Ren L, Zhang Q, Zou G. Single polydiacetylene microtube waveguide platform for discriminating microRNA-215 expression levels in clinical gastric cancerous, paracancerous and normal tissues. Talanta 2018; 188:27-34. [PMID: 30029375 DOI: 10.1016/j.talanta.2018.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/18/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have emerged as novel biomarkers for human early-phase cancer diagnosis and disease prevention recently. Herein, we reported a novel miRNA-215 targeting biosensor, which was based on single polydiacetylene (PDA) microtube waveguide system integrated with sandwich-type hybridization design and condensing enrichment effect. The target miRNA could be captured by oligonucleotides conjugated on the surface of PDA microtube and Au nanorod (AuNR) respectively, resulting in the out-coupled fluorescence of PDA microtube quenching. In this strategy, the formation of a sandwich structure, as a result of co-hybridization of the target miRNA, enabled simplified preparation process, enhanced reaction efficiency, and increased recyclability and stability of the platform. Based on condensing enrichment effect, the co-hybridization reaction could be enriched on the surface of microtube and the proposed platform could easily achieve highly sensitive detection of miRNA-215 in one step. Remarkably, this platform could be directly applied to discriminate the miRNA-215 expression levels in clinical gastric cancerous, paracancerous and normal tissues samples. This assay offers a simple and convenient method for miRNA quantification in clinical samples, even with the potential for invasive, portable equipment for early clinical diagnosis of diseases.
Collapse
Affiliation(s)
- Mengqiao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yue Yu
- Division of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui 230001, PR China
| | - Funing Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Le Ren
- Division of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui 230001, PR China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Gang Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
70
|
Dragomir M, Chen B, Fu X, Calin GA. Key questions about the checkpoint blockade-are microRNAs an answer? Cancer Biol Med 2018; 15:103-115. [PMID: 29951335 PMCID: PMC5994554 DOI: 10.20892/j.issn.2095-3941.2018.0006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022] Open
Abstract
The introduction of immune-checkpoint blockade in the cancer therapy led to a paradigm change of the management of late stage cancers. There are already multiple FDA approved checkpoint inhibitors and many other agents are undergoing phase 2 and early phase 3 clinical trials. The therapeutic indication of immune checkpoint inhibitors expanded in the last years, but still remains unclear who can benefit. MicroRNAs are small RNAs with no coding potential. By complementary pairing to the 3' untranslated region of messenger RNA, microRNAs exert posttranscriptional control of protein expression. A network of microRNAs directly and indirectly controls the expression of checkpoint receptors and several microRNAs can target multiple checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade. In this review, we will describe the microRNAs that control the expression of immune checkpoints and we will present four specific issues of the immune checkpoint therapy in cancer: (1) imprecise therapeutic indication, (2) difficult response evaluation, (3) numerous immunologic adverse-events, and (4) the absence of response to immune therapy. Finally, we propose microRNAs as possible solutions for these pitfalls. We consider that in the near future microRNAs could become important therapeutic partners of the immune checkpoint therapy.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 4192910, Romania
| | - Baoqing Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiao Fu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
71
|
Li C, Dinu V. miR2Pathway: A novel analytical method to discover MicroRNA-mediated dysregulated pathways involved in hepatocellular carcinoma. J Biomed Inform 2018; 81:31-40. [PMID: 29578099 DOI: 10.1016/j.jbi.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC.
Collapse
Affiliation(s)
- Chaoxing Li
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Valentin Dinu
- Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85255, USA.
| |
Collapse
|
72
|
Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X, Du L. Epigenetic Regulation and Its Therapeutic Potential in Pulmonary Hypertension. Front Pharmacol 2018; 9:241. [PMID: 29615911 PMCID: PMC5870037 DOI: 10.3389/fphar.2018.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
Recent advances in epigenetics have made a tremendous impact on our knowledge of biological phenomena and the environmental stressors on complex diseases. Understanding the mechanism of epigenetic reprogramming during the occurrence of pulmonary hypertension (PH) is important for advanced studies and clinical therapy. In this article, we review the discovery of novel epigenetic mechanisms associated with PH including DNA methylation, histone modification, and noncoding RNA interference. In addition, we highlight the role of epigenetic mechanisms in adult PAH resulting from undesirable perinatal environments-Extrauterine growth restriction (EUGR) and Intrauterine growth retardation (IUGR). Lastly, we give a comprehensive summary for the remaining challenges and discuss future methods of epigenetic targeted therapy for pulmonary hypertension.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Lingling Yan
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Ziming Zhang
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Eric Prado
- Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Linchen Fu
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Xuefeng Xu
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Lizhong Du
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
73
|
Obulkasim A, Katsman-Kuipers JE, Verboon L, Sanders M, Touw I, Jongen-Lavrencic M, Pieters R, Klusmann JH, Michel Zwaan C, van den Heuvel-Eibrink MM, Fornerod M. Classification of pediatric acute myeloid leukemia based on miRNA expression profiles. Oncotarget 2018; 8:33078-33085. [PMID: 28380436 PMCID: PMC5464851 DOI: 10.18632/oncotarget.16525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with respect to biology as well as outcome. In this study, we investigated whether known biological subgroups of pediatric AML are reflected by a common microRNA (miRNA) expression pattern. We assayed 665 miRNAs on 165 pediatric AML samples. First, unsupervised clustering was performed to identify patient clusters with common miRNA expression profiles. Our analysis unraveled 14 clusters, seven of which had a known (cyto-)genetic denominator. Finally, a robust classifier was constructed to discriminate six molecular aberration groups: 11q23-rearrangements, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17) (q21;q22), NPM1 and CEBPA mutations. The classifier achieved accuracies of 89%, 95%, 95%, 98%, 91% and 96%, respectively. Although lower sensitivities were obtained for the NPM1 and CEBPA (32% and 66%), relatively high sensitivities (84%−94%) were attained for the rest. Specificity was high in all groups (87%−100%). Due to a robust double-loop cross validation procedure employed, the classifier only employed 47 miRNAs to achieve the aforementioned accuracies. To validate the 47 miRNA signatures, we applied them to a publicly available adult AML dataset. Albeit partial overlap of the array platforms and molecular differences between pediatric and adult AML, the signatures performed reasonably well. This corroborates our claim that the identified miRNA signatures are not dominated by sample size bias in the pediatric AML dataset. In conclusion, cytogenetic subtypes of pediatric AML have distinct miRNA expression patterns. Reproducibility of the miRNA signatures in adult dataset suggests that the respective aberrations have a similar biology both in pediatric and adult AML.
Collapse
Affiliation(s)
- Askar Obulkasim
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | | | - Lonneke Verboon
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | - Mathijs Sanders
- Department of Hematology, ErasmusMC, Rotterdam, The Netherlands
| | - Ivo Touw
- Department of Hematology, ErasmusMC, Rotterdam, The Netherlands
| | | | - Rob Pieters
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands.,Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, German
| | - C Michel Zwaan
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands.,Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten Fornerod
- Pediatric Oncology-Hematology, Erasmus MC, Sophia Children's Hospital, The Netherlands
| |
Collapse
|
74
|
Izzotti A, Longobardi M, La Maestra S, Micale RT, Pulliero A, Camoirano A, Geretto M, D'Agostini F, Balansky R, Miller MS, Steele VE, De Flora S. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke. Theranostics 2018; 8:2147-2160. [PMID: 29721069 PMCID: PMC5928877 DOI: 10.7150/thno.22726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Anna Camoirano
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia-1756, Bulgaria
| | - Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
75
|
Dragomir M, Chen B, Calin GA. Exosomal lncRNAs as new players in cell-to-cell communication. Transl Cancer Res 2018; 7:S243-S252. [PMID: 30148073 DOI: 10.21037/tcr.2017.10.46] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neoplastic cells use various intercellular communication mechanisms in order to adapt to the local microenvironment, manipulate the immune system, and facilitate metastasis. Exosomes release is a new mechanism of cell-to-cell communication. These nanovesicles enclose various types of molecules including lipids, proteins, DNA, messenger RNA (mRNA) and non-coding RNAs [microRNA and long non-coding RNA (lncRNA)]. lncRNAs are over 200 nt long transcripts, that exhibit no coding potential, but are crucial regulators of physiological processes and are deregulated in cancer. In this review, we will discuss the role of exosomal lncRNAs in cancer, which is an incipient research field that could bring new insights to the vast domain of intercellular communication. Exosomal lncRNAs seem to be promising biomarkers for any type of cancer. The exact role of exosomal lncRNAs is not fully revealed. Several studies show that cancer derived exosomal lncRNAs are functional and can transmit to neighboring cells different phenotypic patterns, like drug resistance and increased angiogenesis. We further discuss the mechanistic function of exosomal lncRNAs, and hypothesize that the crowded exosomal content can be a suitable place of RNA species crosstalk. Finally, we assume that lncRNAs could be a loading vehicle for miRNAs, mRNAs and other complex molecules into the exosome but future studies are required to confirm these hypotheses.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Baoqing Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
76
|
Hu T, Chong Y, Qin H, Kitamura E, Chang CS, Silva J, Ren M, Cowell JK. The miR-17/92 cluster is involved in the molecular etiology of the SCLL syndrome driven by the BCR-FGFR1 chimeric kinase. Oncogene 2018; 37:1926-1938. [PMID: 29367757 PMCID: PMC5889328 DOI: 10.1038/s41388-017-0091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/13/2017] [Accepted: 11/28/2017] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) have pathogenic roles in the development of a variety of leukemias. Here we identify miRNAs that have important roles in the development of B lymphomas resulting from the expression of the chimeric BCR-FGFR1 kinase. The miR-17/92 cluster was particularly implicated and forced expression resulted in increased cell proliferation, while inhibiting its function using miRNA sponges reduced cell growth and induced apoptosis. Cells treated with the potent BGJ389 FGFR1 inhibitor led to miR-17/92 downregulation, suggesting regulation by FGFR1. Transient luciferase reporter assays and qRT-PCR detection of endogenous miR-17/92 expression in stable transduced cell lines demonstrated that BCR-FGFR1 can regulate miR-17/92 expression. This positive association of miR-17/92 with BCR-FGFR1 was also confirmed in primary mouse SCLL tissues and primary human CLL samples. miR-17/92 promotes cell proliferation and survival by targeting CDKN1A and PTEN in B-lymphoma cell lines and primary tumors. An inverse correlation in expression levels was seen between miR-17/92 and both CDKN1A and PTEN in two cohorts of CLL patients. Finally, in vivo engraftment studies demonstrated that manipulation of miR-17/92 was sufficient to affect BCR-FGFR1-driven leukemogenesis. Overall, our results define miR-17/92 as a downstream effector of FGFR1 in BCR-FGFR1-driven B-cell lymphoblastic leukemia.
Collapse
Affiliation(s)
- Tianxiang Hu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Yating Chong
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Haiyan Qin
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Jeane Silva
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Mingqiang Ren
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - John K Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
77
|
Guo Z, Li J, Sun J, Sun L, Zhou Y, Yu Z. miR-346 Promotes HCC Progression by Suppressing Breast Cancer Metastasis Suppressor 1 Expression. Oncol Res 2018; 26:1073-1081. [PMID: 29295726 PMCID: PMC7844707 DOI: 10.3727/096504017x15145088802439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. MicroRNA (miRNA), a class of noncoding single-stranded RNA molecules, is involved in regulating cancer cell proliferation, metastasis, migration, invasion, and apoptosis. We showed that the expression of miR-346 was significantly increased in HCC tissues and cell lines, compared with noncancerous controls, and was associated with poor prognosis. Overexpression of miR-346 promoted proliferation and inhibited apoptosis of SMMC-7721 cells, while knockdown of miR-346 significantly suppressed proliferation and induced apoptosis of HepG2 cells. Then we identified breast cancer metastasis suppressor 1 (BRMS1) as a direct target of miR-346 based on luciferase reporter assays. There was a negative correlation between miR-346 and BRMS1 expression at both the protein and mRNA levels. Furthermore, inhibition of BRMS1 expression reversed the tumor-suppression effects of miR-346 downregulation in HepG2 cells. These results indicate that miR-346 promotes HCC progression by regulating BRMS1 expression.
Collapse
Affiliation(s)
- Zhixian Guo
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jingjing Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jihong Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Lu Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
78
|
Abstract
Our understanding of cancer pathways has been changed by the determination of noncoding transcripts in the human genome in recent years. miRNAs and pseudogenes are key players of the noncoding transcripts from the genome, and alteration of their expression levels provides clues for significant biomarkers in pathogenesis of diseases. Especially, miRNAs and pseudogenes have both oncogenic and tumor-suppressive roles in each step of cancer tumorigenesis. In this current study, association between oncogenes and miRNAs-pseudogenes was reviewed and determined in human cancer by the CellMiner web-tool.
Collapse
Affiliation(s)
- Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Turkey
| | - Aykut Özgür
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey.
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Üsküdar, Istanbul, 34668, Turkey.
| |
Collapse
|
79
|
Chen M, Peng Y, Li A, Li Z, Deng Y, Liu W, Liao B, Dai C. A novel information diffusion method based on network consistency for identifying disease related microRNAs. RSC Adv 2018; 8:36675-36690. [PMID: 35558942 PMCID: PMC9088870 DOI: 10.1039/c8ra07519k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
The abnormal expression of miRNAs is directly related to the development of human diseases. Predicting the potential candidate miRNAs associated with diseases can contribute to the detection, diagnosis, treatment and prevention of human complex diseases. The effective inference of the calculation method of the relationship between miRNAs and diseases is an effective supplement to biological experiments. It is of great help in the prevention, treatment and prognosis of complex diseases. This paper proposes a novel information diffusion method based on network consistency (IDNC) for identifying disease related microRNAs. The model first synthesizes the miRNA family information and the miRNA function similarity to reconstruct the miRNA network, and reconstruct the disease network by using the known disease and miRNA-related information and the semantic score between diseases. Then the global similarity of the two networks is obtained by using the Laplacian score of graphs. The global similarity score is a measure of the similarity between diseases and miRNAs. The disease–miRNA relation network was reconstructed by integrating the global similarity relation. The network consistency diffusion seed is then obtained by combining the global similarity network with the reconstructed disease–miRNA association network. Thereafter, the stable diffusion spectrum is generated as the prediction score by using the restarted random walk algorithm. The AUC value obtained by performing the LOOCV in the gold benchmark dataset is 0.8814. The AUC value obtained by performing the LOOCV in the predictive dataset is 0.9512. Compared with other frontier methods, our method has higher accuracy, which is further illustrated by case studies of breast neoplasms and colon neoplasms to prove that IDNC is valuable. The abnormal expression of miRNAs is directly related to the development of human diseases.![]()
Collapse
Affiliation(s)
- Min Chen
- College of Computer Science and Technology
- Hunan Institute of Technology
- 421002 Hengyang
- China
- College of Information Science and Engineering
| | - Yan Peng
- College of International Communication
- Hunan Institute of Technology
- 421002 Hengyang
- China
| | - Ang Li
- College of Computer Science and Technology
- Hunan Institute of Technology
- 421002 Hengyang
- China
| | - Zejun Li
- College of Computer Science and Technology
- Hunan Institute of Technology
- 421002 Hengyang
- China
- College of Information Science and Engineering
| | - Yingwei Deng
- College of Computer Science and Technology
- Hunan Institute of Technology
- 421002 Hengyang
- China
| | - Wenhua Liu
- College of Computer Science and Technology
- Hunan Institute of Technology
- 421002 Hengyang
- China
| | - Bo Liao
- College of Information Science and Engineering
- Hunan University
- Changsha 410082
- China
| | - Chengqiu Dai
- College of Computer Science and Technology
- Hunan Institute of Technology
- 421002 Hengyang
- China
| |
Collapse
|
80
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
81
|
Lin YC, Lin JF, Tsai TF, Chou KY, Chen HE, Hwang TIS. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J Surg 2017; 40:396-406. [DOI: 10.1016/j.asjsur.2016.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/22/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
|
82
|
Vasilescu C, Dragomir M, Tanase M, Giza D, Purnichescu-Purtan R, Chen M, Yeung SCJ, Calin GA. Circulating miRNAs in sepsis-A network under attack: An in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS One 2017; 12:e0183334. [PMID: 28820886 PMCID: PMC5562310 DOI: 10.1371/journal.pone.0183334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Biomarkers based on the molecular mechanism of sepsis are important for timely diagnosis and treatment. A large panel of small non-coding microRNAs was reported to modulate the immune response in sepsis but have not been tested in clinical practice. Large-scale identification of microRNA networks in sepsis might reveal a new biological mechanism that can be also targeted by gene therapy. Therefore, the main objective of this study is to perform a comparison of the miRNA network between septic patients and healthy controls. We used the previously measured levels of expression of 16 different circulating human and viral microRNAs in plasma from 99 septic patients and 53 healthy controls. We used three different computational methods to find correlations between the expressions of microRNAs and to build microRNA networks for the two categories, septic patients and healthy controls. We found that the microRNA network of the septic patients is significantly less connected when compared to miRNA network of the healthy controls (21 edges vs 52 edges, P < 0.0001). We hypothesize that several microRNAs (miR-16, miR-29a, miR-146, miR-155, and miR-182) are being sponged in sepsis explaining the loss of connection in the septic patient miRNA network. This was specific for sepsis, as it did not occur in other conditions characterized by an increased inflammatory response such as in post-surgery patients. Using several target prediction instruments, we predicted potential common sponges for the miRNA network in sepsis from several signaling pathways. Understanding the dynamics of miRNA network in sepsis is useful to explain the molecular pathophysiology of sepsis and for designing therapeutic strategies that target essential components of the immune response pathways.
Collapse
Affiliation(s)
- Catalin Vasilescu
- Department of Surgery, Fundeni Clinical Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- * E-mail:
| | - Mihnea Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Tanase
- University Politehnica of Bucharest, Bucharest, Romania
| | - Dana Giza
- Department of Hematology, Fundeni Clinical Hospital, Bucharest, Romania
| | - Raluca Purnichescu-Purtan
- Department of Mathematical Methods and Models, Faculty of Applied Sciences, Politehnica University of Bucharest, Bucharest, Romania
| | - Meng Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sai-Ching Jim Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
83
|
Abstract
More than six decades ago Watson and Crick published the chemical structure of DNA. This discovery revolutionized our approach to medical science and opened new perspectives for the diagnosis and treatment of many diseases including cancer. Since then, progress in molecular biology, together with the rapid advance of technologies, allowed to clone hundreds of protein-coding genes that were found mutated in all types of cancer. Normal and aberrant gene functions, interactions, and mechanisms of mutations were studied to identify the intricate network of pathways leading to cancer. With the acknowledgment of the genetic nature of cancer, new diagnostic, prognostic, and therapeutic strategies have been attempted and developed, but very few have found their way in the clinical field. In an effort to identify new translational targets, another great discovery has changed our way to look at genes and their functions. MicroRNAs have been the first noncoding genes involved in cancer. This review is a brief chronological history of microRNAs and cancer. Through the work of few of the greatest scientists of our times, this chapter describes the discovery of microRNAs from C. elegans to their debut in cancer and in the medical field, the concurrent development of technologies, and their future translational applications. The purpose was to share the exciting path that lead to one of the most important discoveries in cancer genetics in the past 20 years.
Collapse
Affiliation(s)
- Alessandra Drusco
- Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Wexner Medical Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
84
|
Yang D, Wang JJ, Li JS, Xu QY. miR-103 Functions as a Tumor Suppressor by Directly Targeting Programmed Cell Death 10 in NSCLC. Oncol Res 2017; 26:519-528. [PMID: 28734041 PMCID: PMC7844823 DOI: 10.3727/096504017x15000757094686] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. Absence of miR-103 has recently been identified to be associated with metastatic capacity of primary lung tumors. However, the exact role of miR-103 in NSCLC and the molecular mechanism are unclear. In the present study, we showed that miR-103 expression was reduced in NSCLC tissues and cells. miR-103 expression was negatively correlated with tumor size and stage. The overall survival was longer in patients with higher miR-103 level than in those with lower miR-103 expression. miR-103 inhibited cell proliferation in A549 cells, decreased tumor weight and volume, and prolonged survival of tumor-implanted nude mice. miR-103 increased apoptotic cell death in A549 cells. Furthermore, miR-103 decreased the invasion and migration abilities in A549 cells, as evidenced by Transwell and wound healing results. Downregulation of miR-103 significantly reduced the level of programmed cell death 10 (PDCD10). We found a significant decrease in the relative luciferase activity of the reporter gene in A549 cells cotransfected with the miR-103 mimic and pGL3-PDCD10 WT 3′-UTR, but not pGL3-PDCD10 mut 3′-UTR. We showed that overexpression of PDCD10 significantly inhibited miR-103-induced inhibition of cell proliferation, increased apoptosis, and decreased invasion and migration in A549 cells. Moreover, we found that PDCD10 expression was increased in NSCLC tissues and cells. PDCD10 expression was positively correlated with tumor size and stage. Overexpression of PDCD10 increased cell proliferation and inhibited apoptosis in A549 cells. The data demonstrated that dysregulation of the miR-103/PDCD10 signal may be a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Dong Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jian-Jun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jin-Song Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qian-Yu Xu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
85
|
Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol 2017; 46:84-106. [PMID: 28676460 DOI: 10.1016/j.semcancer.2017.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/04/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 139, Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 3 Hristo Botev Blvd., Plovdiv 4000, Bulgaria; Clinic of Maxillofacial Surgery, University Hospital St. George, 66 Peshtersko Shosse Blvd., Plovdiv 4002, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Sheikh Bahaei St., P.O. Box 19395, 5487 Tehran, Iran
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; MEDFUTURE -Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republici 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
86
|
Coyle KM, Boudreau JE, Marcato P. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9620870. [PMID: 28685150 PMCID: PMC5480027 DOI: 10.1155/2017/9620870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/06/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment is undergoing a significant revolution from "one-size-fits-all" cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes.
Collapse
Affiliation(s)
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
87
|
Liu X, Chen J, Zhang J. AdipoR1-mediated miR-3908 inhibits glioblastoma tumorigenicity through downregulation of STAT2 associated with the AMPK/SIRT1 pathway. Oncol Rep 2017; 37:3387-3396. [PMID: 28440504 DOI: 10.3892/or.2017.5589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/07/2017] [Indexed: 11/06/2022] Open
Abstract
A prospective method of treatment for cancer is to inhibit oncogene signaling pathways with microRNA (miRNA or miR). In the present study, whether the expression of STAT2, AdipoR1/AMPK/SIRT1 pathway of glioma is regulated by miR-3908 was explored. To confirm whether the predicted miR-3908 is matched with STAT2 and AdipoR1, 3'UTR luciferase activity of STAT2 and AdipoR1 was assessed. In the presence of the mimics or inhibitors of miR-3908, cell function of glioma cells, such as proliferation, growth, migration, invasion and apoptosis were analyzed. The expression of AdipoR1 and its downstream AMPK/SIRT1 pathway proteins or STAT2 were examined. Luciferase reporter analysis showed that miR-3908 directly target STAT2 and AdipoR1. miR-3908 suppressed expression of STAT2 or AdipoR1 and downregulated AdipoR1 pathway genes, including AMPK, p-AMPK and SIRT1. miR-3908 inhibited tumorigenicity, migration, growth and invasion in glioma cell lines U251 and U87 as well as increased apoptosis of these cells. The pathways related to tumorigenicity and tumor progression, STAT2 and AdipoR1/AMPK/SIRT1 could be restrained by miR-3908. In conclusion, restoration of miR-3908 expression induced suppression of cancer progression and glioblastoma tumorigenicity. The present study discovered novel tumorigenesis associated with miR-3908, which may represent a new target in treatment for glioblastoma.
Collapse
Affiliation(s)
- Xiangming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jinqian Zhang
- Department of Laboratory Medicine, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
88
|
Wei H, Wen-Ming C, Jun-Bo J. Plasma miR-145 as a novel biomarker for the diagnosis and radiosensitivity prediction of human cervical cancer. J Int Med Res 2017; 45:1054-1060. [PMID: 28534701 PMCID: PMC5536414 DOI: 10.1177/0300060517709614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objectives The objective of this study was to evaluate levels of plasma miR-145 in patients with cervical cancer (CC) and investigate its biomarker potential. Methods Using qRT-PCR, we compared plasma miR-145 levels in 120 patients with CC, 120 patients with cervical intraepithelial neoplasia (CIN), and 120 healthy volunteers. The association between plasma miR-145 expression and clinicopathological factors, including radiation response, was also analyzed. Results Plasma miR-145 levels were lower in CC patient than in CIN patients and healthy controls. Low levels were significantly associated with poor cancer differentiation, lymph node metastasis, HPV, and advanced FIGO stage. CC patients who achieved complete response to radiotherapy had higher plasma miR-145 levels than incomplete responders. ROC analysis confirmed that plasma miR-145 is a candidate biomarker for detecting CC and differentiating complete responders from incomplete responders. Conclusions Plasma miR-145 is reduced in CC and is a novel candidate biomarker for diagnosing CC and predicting radiosensitivity.
Collapse
Affiliation(s)
- Hu Wei
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Chen Wen-Ming
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Jiao Jun-Bo
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| |
Collapse
|
89
|
Wang JY, Fang M, Boye A, Wu C, Wu JJ, Ma Y, Hou S, Kan Y, Yang Y. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma. Oncotarget 2017; 8:84958-84973. [PMID: 29156696 PMCID: PMC5689586 DOI: 10.18632/oncotarget.17709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/02/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy.
Collapse
Affiliation(s)
- Ji Yu Wang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Meng Fang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Alex Boye
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Jia Jun Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Ying Ma
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yue Kan
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
90
|
Ramani R, Megason G, Schallheim J, Karlson C, Vijayakumar V, Vijayakumar S, Hicks C. Integrative Analysis of MicroRNA-Mediated Gene Signatures and Pathways Modulating White Blood Cell Count in Childhood Acute Lymphoblastic Leukemia. Biomark Insights 2017; 12:1177271917702895. [PMID: 28469402 PMCID: PMC5397277 DOI: 10.1177/1177271917702895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/06/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the expression of protein-coding genes and represent potential biomarkers for childhood acute lymphoblastic leukemia (ALL). However, information linking miRNAs with their messenger RNA (mRNA) target genes modulating white blood cell (WBC) count is lacking. Here, we analyzed miRNAs and gene expression data from pediatric patients with ALL to identify a signature of miRNAs involved in ALL and their mRNA target genes, molecular networks, and biological pathways modulating WBC. We discovered a signature of miRNAs differentially expressed in ALL and a signature of mRNA target genes distinguishing patients with high WBC from patients with low WBC. In addition, we identified molecular networks and biological pathways, among them PI3/AKT, JAK/STAT, IL-17, TGF-β, apoptosis, IL-15, STAT3, IGF-1, FGF, mTOR, VEGF, NF-kB, and P53 signaling pathways, enriched for or targeted by miRNAs. The discovered miRNAs and their target genes and pathways represent potential clinically actionable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ritika Ramani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gail Megason
- Children’s Cancer Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason Schallheim
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cynthia Karlson
- Children’s Cancer Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Vani Vijayakumar
- Department of Radiology, University of Mississippi Medical Center, MS, USA
| | | | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, LA, USA
| |
Collapse
|
91
|
Sheervalilou R, Khamaneh AM, Sharifi A, Nazemiyeh M, Taghizadieh A, Ansarin K, Zarghami N. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
92
|
Yang SJ, Yang SY, Wang DD, Chen X, Shen HY, Zhang XH, Zhong SL, Tang JH, Zhao JH. The miR-30 family: Versatile players in breast cancer. Tumour Biol 2017; 39:1010428317692204. [PMID: 28347244 DOI: 10.1177/1010428317692204] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Su-Jin Yang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Su-Yu Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Yu Shen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiao-Hui Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
93
|
Li G, Song Y, Zhang Y, Wang H, Xie J. miR-34b Targets HSF1 to Suppress Cell Survival in Acute Myeloid Leukemia. Oncol Res 2017; 24:109-16. [PMID: 27296951 PMCID: PMC7838633 DOI: 10.3727/096504016x14611963142254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most lethal hematological malignancy, and the occurrence of chemoresistance prevents the achievement of complete remission following the standard therapy. MicroRNAs have been extensively investigated as critical regulators of hematopoiesis and leukemogenesis, and they represent a promising strategy for AML therapy. In this study, we identified miR-34b as a novel regulator in myeloid proliferation and apoptosis of leukemic cells. We found that miR-34b was developmentally upregulated in plasma and myeloid cells of healthy subjects, while it was significantly reduced in blood samples of patients with AML and AML cell lines. Moreover, the miR-34b mimicked transfection-mediated restoration of miR-34b inhibited cell viability and promoted cell apoptosis of HL-60 and OCI-AML3 cell lines. Using a miRNA predicting algorithm miRanda, we selected a potent target heat shock transcription factor 1 (HSF1) since that is a master regulator of the heat shock response and is associated with cancer aggressiveness and dissemination. In contrast to the level of miR-34b, HSF1 was highly expressed in blood samples of patients with AML and AML cell lines. The luciferase reporter assay revealed that miR-34b directly targeted the HSF1 gene. HSF1 silencing exhibited comparable inhibitory effects on AML cell proliferation and survival. The upregulated HSF1 elevated the activation of the Wnt–β-catenin pathway. In conclusion, miR-34b suppressed AML cell proliferation and survival by targeting HSF1, in turn leading to the inactivation of Wnt–β-catenin pathway, which may highlight a new therapeutic approach for AML.
Collapse
Affiliation(s)
- Gangcan Li
- Institute of Hematopathy, Xi'an Central Hospital, Xian, Shaanxi, China
| | | | | | | | | |
Collapse
|
94
|
Nam S. Databases and tools for constructing signal transduction networks in cancer. BMB Rep 2017; 50:12-19. [PMID: 27502015 PMCID: PMC5319659 DOI: 10.5483/bmbrep.2017.50.1.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 12/22/2022] Open
Abstract
Traditionally, biologists have devoted their careers to studying individual biological entities of their own interest, partly due to lack of available data regarding that entity. Large, high-throughput data, too complex for conventional processing methods (i.e., “big data”), has accumulated in cancer biology, which is freely available in public data repositories. Such challenges urge biologists to inspect their biological entities of interest using novel approaches, firstly including repository data retrieval. Essentially, these revolutionary changes demand new interpretations of huge datasets at a systems-level, by so called “systems biology”. One of the representative applications of systems biology is to generate a biological network from high-throughput big data, providing a global map of molecular events associated with specific phenotype changes. In this review, we introduce the repositories of cancer big data and cutting-edge systems biology tools for network generation, and improved identification of therapeutic targets.
Collapse
Affiliation(s)
- Seungyoon Nam
- Department of Life Sciences, Gachon University, Seongnam 13120; Department of Genome Medicine and Science, College of Medicine, Gachon University; Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon 21565, Korea
| |
Collapse
|
95
|
Tanshinone IIA induced cell death via miR30b-p53-PTPN11/SHP2 signaling pathway in human hepatocellular carcinoma cells. Eur J Pharmacol 2017; 796:233-241. [DOI: 10.1016/j.ejphar.2016.11.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023]
|
96
|
Hu B, Wang X, Hu S, Ying X, Wang P, Zhang X, Wang J, Wang H, Wang Y. miR-21-mediated Radioresistance Occurs via Promoting Repair of DNA Double Strand Breaks. J Biol Chem 2017; 292:3531-3540. [PMID: 28096467 DOI: 10.1074/jbc.m116.772392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
miR-21, as an oncogene that overexpresses in most human tumors, is involved in radioresistance; however, the mechanism remains unclear. Here, we demonstrate that miR-21-mediated radioresistance occurs through promoting repair of DNA double strand breaks, which includes facilitating both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). The miR-21-promoted NHEJ occurs through targeting GSK3B (a novel target of miR-21), which affects the CRY2/PP5 pathway and in turn increases DNA-PKcs activity. The miR-21-promoted HRR occurs through targeting both GSK3B and CDC25A (a known target of miR-21), which neutralizes the effects of targeting GSK3B-induced CDC25A increase because GSK3B promotes degradation of both CDC25A and cyclin D1, but CDC25A and cyclin D1 have an opposite effect on HRR. A negative correlation of expression levels between miR-21 and GSK3β exists in a subset of human tumors. Our results not only elucidate miR-21-mediated radioresistance, but also provide potential new targets for improving radiotherapy.
Collapse
Affiliation(s)
- Baocheng Hu
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Shuofeng Hu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ping Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Xiangming Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
97
|
Analysis of the Distribution Profiles of Circulating MicroRNAs by Asymmetrical Flow Field Flow Fractionation. Methods Mol Biol 2017; 1509:161-168. [PMID: 27826926 DOI: 10.1007/978-1-4939-6524-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are stably present in circulatory systems. They are bound to various carriers like proteins, lipoprotein particles, and exosomes. Investigating the process of miRNA distribution among these carriers will help improve our understanding of their functions in the extracellular environment and their potential relationship with diseases. Here, we describe how to obtain the distribution profiles of circulating miRNAs by separation of different miRNA carriers in human serum with asymmetrical flow field flow fractionation (AF4), and detection of the miRNAs in the eluted fractions that enrich particular types of carriers with RT-qPCR.
Collapse
|
98
|
Ahmad G, Amiji MM. Cancer stem cell-targeted therapeutics and delivery strategies. Expert Opin Drug Deliv 2016; 14:997-1008. [DOI: 10.1080/17425247.2017.1263615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gulzar Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
99
|
Trevisani F, Ghidini M, Larcher A, Lampis A, Lote H, Manunta P, Alibrandi MTS, Zagato L, Citterio L, Dell'Antonio G, Carenzi C, Capasso G, Rugge M, Rigotti P, Bertini R, Cascione L, Briganti A, Salonia A, Benigni F, Braconi C, Fassan M, Hahne JC, Montorsi F, Valeri N. MicroRNA 193b-3p as a predictive biomarker of chronic kidney disease in patients undergoing radical nephrectomy for renal cell carcinoma. Br J Cancer 2016; 115:1343-1350. [PMID: 27802451 PMCID: PMC5129818 DOI: 10.1038/bjc.2016.329] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A significant proportion of patients undergoing radical nephrectomy (RN) for clear-cell renal cell carcinoma (RCC) develop chronic kidney disease (CKD) within a few years following surgery. Chronic kidney disease has important health, social and economic impact and no predictive biomarkers are currently available. MicroRNAs (miRs) are small non-coding RNAs implicated in several pathological processes. METHODS Primary objective of our study was to define miRs whose deregulation is predictive of CKD in patients treated with RN. Ribonucleic acid from formalin-fixed paraffin embedded renal parenchyma (cortex and medulla isolated separately) situated >3 cm from the matching RCC was tested for miR expression using nCounter NanoString technology in 71 consecutive patients treated with RN for RCC. Validation was performed by RT-PCR and in situ hybridisation. End point was post-RN CKD measured 12 months post-operatively. Multivariable logistic regression and decision curve analysis were used to test the statistical and clinical impact of predictors of CKD. RESULTS The overexpression of miR-193b-3p was associated with high risk of developing CKD in patients undergoing RN for RCC and emerged as an independent predictor of CKD. The addition of miR-193b-3p to a predictive model based on clinical variables (including sex and estimated glomerular filtration rate) increased the sensitivity of the predictive model from 81 to 88%. In situ hybridisation showed that miR-193b-3p overexpression was associated with tubule-interstitial inflammation and fibrosis in patients with no clinical or biochemical evidence of pre-RN nephropathy. CONCLUSIONS miR-193b-3p might represent a useful biomarker to tailor and implement surveillance strategies for patients at high risk of developing CKD following RN.
Collapse
Affiliation(s)
- Francesco Trevisani
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Ghidini
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Alessandro Larcher
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Hazel Lote
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Paolo Manunta
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Laura Zagato
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Cristina Carenzi
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Paolo Rigotti
- Department of Surgical, Oncological and Gastroenterological Sciences, Kidney and Pancreas Transplantation Unit, University of Padua, Padua, Italy
| | - Roberto Bertini
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alberto Briganti
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Benigni
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Francesco Montorsi
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| |
Collapse
|
100
|
Singh SK, Lupo PJ, Scheurer ME, Saxena A, Kennedy AE, Ibrahimou B, Barbieri MA, Mills KI, McCauley JL, Okcu MF, Dorak MT. A childhood acute lymphoblastic leukemia genome-wide association study identifies novel sex-specific risk variants. Medicine (Baltimore) 2016; 95:e5300. [PMID: 27861356 PMCID: PMC5120913 DOI: 10.1097/md.0000000000005300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) occurs more frequently in males. Reasons behind sex differences in childhood ALL risk are unknown. In the present genome-wide association study (GWAS), we explored the genetic basis of sex differences by comparing genotype frequencies between male and female cases in a case-only study to assess effect-modification by sex.The case-only design included 236 incident cases of childhood ALL consecutively recruited at the Texas Children's Cancer Center in Houston, Texas from 2007 to 2012. All cases were non-Hispanic whites, aged 1 to 10 years, and diagnosed with confirmed B-cell precursor ALL. Genotyping was performed using the Illumina HumanCoreExome BeadChip on the Illumina Infinium platform. Besides the top 100 statistically most significant results, results were also analyzed by the top 100 highest effect size with a nominal statistical significance (P <0.05).The statistically most significant sex-specific association (P = 4 × 10) was with the single nucleotide polymorphism (SNP) rs4813720 (RASSF2), an expression quantitative trait locus (eQTL) for RASSF2 in peripheral blood. rs4813720 is also a strong methylation QTL (meQTL) for a CpG site (cg22485289) within RASSF2 in pregnancy, at birth, childhood, and adolescence. cg22485289 is one of the hypomethylated CpG sites in ALL compared with pre-B cells. Two missense SNPs, rs12722042 and 12722039, in the HLA-DQA1 gene yielded the highest effect sizes (odds ratio [OR] ∼ 14; P <0.01) for sex-specific results. The HLA-DQA1 SNPs belong to DQA1*01 and confirmed the previously reported male-specific association with DQA1*01. This finding supports the proposed infection-related etiology in childhood ALL risk for males. Further analyses revealed that most SNPs (either direct effect or through linkage disequilibrium) were within active enhancers or active promoter regions and had regulatory effects on gene expression levels.Cumulative data suggested that RASSF2 rs4813720, which correlates with increased RASSF2 expression, may counteract the suppressor effect of estrogen-regulated miR-17-92 on RASSF2 resulting in protection in males. Given the amount of sex hormone-related mechanisms suggested by our findings, future studies should examine prenatal or early postnatal programming by sex hormones when hormone levels show a large variation.
Collapse
Affiliation(s)
- Sandeep K. Singh
- Department of Environmental and Occupational Health, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Philip J. Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Anshul Saxena
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | - Amy E. Kennedy
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | | | - Ken I. Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Jacob L. McCauley
- Dr. John T. Macdonald Foundation, Department of Human Genetics, John P. Hussman Institute for Human Genomics, Biorepository Facility, Center for Genome Technology University of Miami, Miller School of Medicine
| | - Mehmet Fatih Okcu
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Mehmet Tevfik Dorak
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| |
Collapse
|