51
|
Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, Skok JA, Reinberg D. Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Mol Cell 2019; 70:1149-1162.e5. [PMID: 29932905 DOI: 10.1016/j.molcel.2018.05.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Varun Narendra
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Chul-Hwan Lee
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nicolas Descostes
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Gary LeRoy
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ramya Raviram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lili Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Karch
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pedro P Rocha
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
52
|
Wojcik JB, Marchione DM, Sidoli S, Djedid A, Lisby A, Majewski J, Garcia BA. Epigenomic Reordering Induced by Polycomb Loss Drives Oncogenesis but Leads to Therapeutic Vulnerabilities in Malignant Peripheral Nerve Sheath Tumors. Cancer Res 2019; 79:3205-3219. [PMID: 30898839 DOI: 10.1158/0008-5472.can-18-3704] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with recurrent loss-of-function alterations in polycomb-repressive complex 2 (PRC2), a histone-modifying complex involved in transcriptional silencing. To understand the role of PRC2 loss in pathogenesis and identify therapeutic targets, we conducted parallel global epigenomic and proteomic analysis of archival formalin-fixed, paraffin-embedded (FFPE) human MPNST with and without PRC2 loss (MPNSTLOSS vs. MPNSTRET). Loss of PRC2 resulted in increased histone posttranslational modifications (PTM) associated with active transcription, most notably H3K27Ac and H3K36me2, whereas repressive H3K27 di- and trimethylation (H3K27me2/3) marks were globally lost without a compensatory gain in other repressive PTMs. Instead, DNA methylation globally increased in MPNSTLOSS. Epigenomic changes were associated with upregulation of proteins in growth pathways and reduction in IFN signaling and antigen presentation, suggesting a role for epigenomic changes in tumor progression and immune evasion, respectively. These changes also resulted in therapeutic vulnerabilities. Knockdown of NSD2, the methyltransferase responsible for H3K36me2, restored MHC expression and induced interferon pathway expression in a manner similar to PRC2 restoration. MPNSTLOSS were also highly sensitive to DNA methyltransferase and histone deacetylase (HDAC) inhibitors. Overall, these data suggest that global loss of PRC2-mediated repression renders MPNST differentially dependent on DNA methylation to maintain transcriptional integrity and makes them susceptible to therapeutics that promote aberrant transcription initiation. SIGNIFICANCE: Global profiling of histone PTMs and protein expression in archival human MPNST illustrates how PRC2 loss promotes oncogenesis but renders tumors vulnerable to pharmacologic modulation of transcription.See related commentary by Natarajan and Venneti, p. 3172.
Collapse
Affiliation(s)
- John B Wojcik
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anissa Djedid
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Amanda Lisby
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacek Majewski
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
53
|
Dorafshan E, Kahn TG, Glotov A, Savitsky M, Walther M, Reuter G, Schwartz YB. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep 2019; 20:embr.201846762. [PMID: 30833342 DOI: 10.15252/embr.201846762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.
Collapse
Affiliation(s)
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Matthias Walther
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gunter Reuter
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
54
|
Jiang F, Liu Q, Liu X, Wang XH, Kang L. Genomic data reveal high conservation but divergent evolutionary pattern of Polycomb/Trithorax group genes in arthropods. INSECT SCIENCE 2019; 26:20-34. [PMID: 29127737 DOI: 10.1111/1744-7917.12558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Epigenetic gene control is maintained by chromatin-associated Polycomb group (PcG) and Trithorax group (TrxG) genes, which act antagonistically via the interplay between PcG and TrxG regulation to generate silenced or permissive transcriptional states. In this study, we searched for PcG/TrxG genes in 180 arthropod genomes, covering all the sequenced arthropod genomes at the time of conducting this study, to perform a global investigation of PcG/TrxG genes in a phylogenetic frame. Results of ancestral state reconstruction analysis revealed that the ancestor of arthropod species has an almost complete repertoire of PcG/TrxG genes, and most of these genes were seldom lost above order level. The domain diversity analysis indicated that the PcG/TrxG genes show variable extent of domain structure changes; some of these changes could be associated with lineage-specific events. The likelihood ratio tests for selection pressure detected a number of PcG/TrxG genes which underwent episodic positive selection on the branch leading to the insects with holometabolous development. These results suggest that, despite their high conservation across arthropod species, different members of PcG/TrxG genes showed considerable differences in domain structure and sequence divergence in arthropod evolution. Our cross species comparisons using large-scale genomic data provide insights into divergent evolutionary pattern on highly conserved genes in arthropods.
Collapse
Affiliation(s)
- Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xian-Hui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019; 15:e1007932. [PMID: 30699116 PMCID: PMC6370247 DOI: 10.1371/journal.pgen.1007932] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Proper determination of cell fates depends on epigenetic information that is used to preserve memory of decisions made earlier in development. Post-translational modification of histone residues is thought to be a central means by which epigenetic information is propagated. In particular, modifications of histone H3 lysine 27 (H3K27) are strongly correlated with both gene activation and gene repression. H3K27 acetylation is found at sites of active transcription, whereas H3K27 methylation is found at loci silenced by Polycomb group proteins. The histones bearing these modifications are encoded by the replication-dependent H3 genes as well as the replication-independent H3.3 genes. Owing to differential rates of nucleosome turnover, H3K27 acetylation is enriched on replication-independent H3.3 histones at active gene loci, and H3K27 methylation is enriched on replication-dependent H3 histones across silenced gene loci. Previously, we found that modification of replication-dependent H3K27 is required for Polycomb target gene silencing, but it is not required for gene activation. However, the contribution of replication-independent H3.3K27 to these functions is unknown. Here, we used CRISPR/Cas9 to mutate the endogenous replication-independent H3.3K27 to a non-modifiable residue. Surprisingly, we find that H3.3K27 is also required for Polycomb target gene silencing despite the association of H3.3 with active transcription. However, the requirement for H3.3K27 comes at a later stage of development than that found for replication-dependent H3K27, suggesting a greater reliance on replication-independent H3.3K27 in post-mitotic cells. Notably, we find no evidence of global transcriptional defects in H3.3K27 mutants, despite the strong correlation between H3.3K27 acetylation and active transcription. During development, naïve precursor cells acquire distinct identities through differential regulation of gene expression. The process of cell fate specification is progressive and depends on memory of prior developmental decisions. Maintaining cell identities over time is not dependent on changes in genome sequence. Instead, epigenetic mechanisms propagate information on cell identity by maintaining select sets of genes in either the on or off state. Chemical modifications of histone proteins, which package and organize the genome within cells, are thought to play a central role in epigenetic gene regulation. However, identifying which histone modifications are required for gene regulation, and defining the mechanisms through which they function in the maintenance of cell identity, remains a longstanding research challenge. Here, we focus on the role of histone H3 lysine 27 (H3K27). Modifications of H3K27 are associated with both gene activation and gene silencing (i.e. H3K27 acetylation and methylation, respectively). The histones bearing these modifications are encoded by different histone genes. One set of histone genes is only expressed during cell division, whereas the other set of histone genes is expressed in both dividing and non-dividing cells. Because most cells permanently stop dividing by the end of development, these “replication-independent” histone genes are potentially important for long-term maintenance of cell identity. In this study, we demonstrate that replication-independent H3K27 is required for gene silencing by the Polycomb group of epigenetic regulators. However, despite a strong correlation between replication-independent histones and active genes, we find that replication-independent H3K27 is not required for gene activation. As mutations in replication-independent H3K27 have recently been identified in human cancers, this work may help to inform the mechanisms by which histone mutations contribute to human disease.
Collapse
Affiliation(s)
- Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher M. Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A. Gregory Matera
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel J. McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
56
|
Luhur A, Klueg KM, Zelhof AC. Generating and working with Drosophila cell cultures: Current challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e339. [PMID: 30561900 DOI: 10.1002/wdev.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Kristin M Klueg
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Andrew C Zelhof
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
57
|
Lebedeva LA, Yakovlev KV, Kozlov EN, Schedl P, Deshpande G, Shidlovskii YV. Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 2018; 53:579-595. [PMID: 30280955 PMCID: PMC8729227 DOI: 10.1080/10409238.2018.1506733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
Abstract
In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.
Collapse
Affiliation(s)
| | - Konstantin V. Yakovlev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Eugene N. Kozlov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Yulii V. Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
58
|
van de Lagemaat LN, Flenley M, Lynch MD, Garrick D, Tomlinson SR, Kranc KR, Vernimmen D. CpG binding protein (CFP1) occupies open chromatin regions of active genes, including enhancers and non-CpG islands. Epigenetics Chromatin 2018; 11:59. [PMID: 30292235 PMCID: PMC6173865 DOI: 10.1186/s13072-018-0230-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mechanism by which protein complexes interact to regulate the deposition of post-translational modifications of histones remains poorly understood. This is particularly important at regulatory regions, such as CpG islands (CGIs), which are known to recruit Trithorax (TrxG) and Polycomb group proteins. The CxxC zinc finger protein 1 (CFP1, also known as CGBP) is a subunit of the TrxG SET1 protein complex, a major catalyst of trimethylation of H3K4 (H3K4me3). RESULTS Here, we used ChIP followed by high-throughput sequencing (ChIP-seq) to analyse genomic occupancy of CFP1 in two human haematopoietic cell types. We demonstrate that CFP1 occupies CGIs associated with active transcription start sites (TSSs), and is mutually exclusive with H3K27 trimethylation (H3K27me3), a marker of polycomb repressive complex 2. Strikingly, rather than being restricted to active CGI TSSs, CFP1 also occupies a substantial fraction of active non-CGI TSSs and enhancers of transcribed genes. However, relative to other TrxG subunits, CFP1 was specialised to TSSs. Finally, we found enrichment of CpG-containing DNA motifs in CFP1 peaks at CGI promoters. CONCLUSIONS We found that CFP1 is not solely recruited to CpG islands as it was originally defined, but also other regions including non-CpG island promoters and enhancers.
Collapse
Affiliation(s)
- Louie N. van de Lagemaat
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Maria Flenley
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS UK
| | - Magnus D. Lynch
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS UK
- Centre for Stem Cells and Regenerative Medicine, 28th Floor Guy’s Tower, Great Maze Pond, London, SE1 9RT UK
- st John’s institute of dermatology, Great Maze Pond, London, SE1 9RT UK
| | - David Garrick
- INSERM, UMRS-1126, Institut Universitaire d’Hématologie, Université Paris Diderot, 75010 Paris, France
| | - Simon R. Tomlinson
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Kamil R. Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
59
|
Epigenetic and non-epigenetic functions of the RYBP protein in development and disease. Mech Ageing Dev 2018; 174:111-120. [DOI: 10.1016/j.mad.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
|
60
|
Zhu FY, Chen MX, Ye NH, Qiao WM, Gao B, Law WK, Tian Y, Zhang D, Zhang D, Liu TY, Hu QJ, Cao YY, Su ZZ, Zhang J, Liu YG. Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. PLANT METHODS 2018; 14:69. [PMID: 30123314 PMCID: PMC6088413 DOI: 10.1186/s13007-018-0337-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The next-generation sequencing (NGS) technology has greatly facilitated genomic and transcriptomic studies, contributing significantly in expanding the current knowledge on genome and transcriptome. However, the continually evolving variety of sequencing platforms, protocols and analytical pipelines has led the research community to focus on cross-platform evaluation and standardization. As a NGS pioneer in China, the Beijing Genomics Institute (BGI) has announced its own NGS platform designated as BGISEQ-500, since 2016. The capability of this platform in large-scale DNA sequencing and small RNA analysis has been already evaluated. However, the comparative performance of BGISEQ-500 platform in transcriptome analysis remains yet to be elucidated. The Illumina series, a leading sequencing platform in China's sequencing market, would be a preferable reference to evaluate new platforms. METHODS To this end, we describe a cross-platform comparative study between BGISEQ-500 and Illumina HiSeq4000 for analysis of Arabidopsis thaliana WT (Col 0) transcriptome. The key parameters in RNA sequencing and transcriptomic data processing were assessed in biological replicate experiments, using aforesaid platforms. RESULTS The results from the two platforms BGISEQ-500 and Illumina HiSeq4000 shared high concordance in both inter- (correlation, 0.88-0.93) and intra-platform (correlation, 0.95-0.98) comparison for gene quantification, identification of differentially expressed genes and alternative splicing events. However, the two platforms yielded highly variable interpretation results for single nucleotide polymorphism and insertion-deletion analysis. CONCLUSION The present case study provides a comprehensive reference dataset to validate the capability of BGISEQ-500 enabling it to be established as a competitive and reliable platform in plant transcriptome analysis.
Collapse
Affiliation(s)
- Fu-Yuan Zhu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | | | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai-Ki Law
- BGI-Shenzhen, Shenzhen, People’s Republic of China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong China
| | - Dong Zhang
- BGI-Shenzhen, Shenzhen, People’s Republic of China
| | - Di Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tie-Yuan Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yun-Ying Cao
- College of Life Sciences, Nantong University, Nantong, Jiangsu China
| | - Ze-Zhuo Su
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong, SAR
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong China
| |
Collapse
|
61
|
Cameron SR, Nandi S, Kahn TG, Barrasa JI, Stenberg P, Schwartz YB. PTE, a novel module to target Polycomb Repressive Complex 1 to the human cyclin D2 ( CCND2) oncogene. J Biol Chem 2018; 293:14342-14358. [PMID: 30068546 DOI: 10.1074/jbc.ra118.005010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/06/2022] Open
Abstract
Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.
Collapse
Affiliation(s)
| | - Soumyadeep Nandi
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and
| | | | | | - Per Stenberg
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and.,the Division of Chemical, Biological, Radioactive and Nuclear (CBRN) Security and Defence, FOI-Swedish Defence Research Agency, 906 21 Umeå Sweden
| | | |
Collapse
|
62
|
Dardalhon-Cuménal D, Deraze J, Dupont CA, Ribeiro V, Coléno-Costes A, Pouch J, Le Crom S, Thomassin H, Debat V, Randsholt NB, Peronnet F. Cyclin G and the Polycomb Repressive complexes PRC1 and PR-DUB cooperate for developmental stability. PLoS Genet 2018; 14:e1007498. [PMID: 29995890 PMCID: PMC6065198 DOI: 10.1371/journal.pgen.1007498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 07/27/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
In Drosophila, ubiquitous expression of a short Cyclin G isoform generates extreme developmental noise estimated by fluctuating asymmetry (FA), providing a model to tackle developmental stability. This transcriptional cyclin interacts with chromatin regulators of the Enhancer of Trithorax and Polycomb (ETP) and Polycomb families. This led us to investigate the importance of these interactions in developmental stability. Deregulation of Cyclin G highlights an organ intrinsic control of developmental noise, linked to the ETP-interacting domain, and enhanced by mutations in genes encoding members of the Polycomb Repressive complexes PRC1 and PR-DUB. Deep-sequencing of wing imaginal discs deregulating CycG reveals that high developmental noise correlates with up-regulation of genes involved in translation and down-regulation of genes involved in energy production. Most Cyclin G direct transcriptional targets are also direct targets of PRC1 and RNAPolII in the developing wing. Altogether, our results suggest that Cyclin G, PRC1 and PR-DUB cooperate for developmental stability.
Collapse
Affiliation(s)
- Delphine Dardalhon-Cuménal
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Jérôme Deraze
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Camille A. Dupont
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Valérie Ribeiro
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Anne Coléno-Costes
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Juliette Pouch
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale
supérieure, CNRS, INSERM, PSL Université Paris Paris, France
| | - Stéphane Le Crom
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale
supérieure, CNRS, INSERM, PSL Université Paris Paris, France
- Sorbonne Université, Univ Antilles, Univ Nice Sophia Antipolis, CNRS,
Evolution Paris Seine—Institut de Biologie Paris Seine (EPS - IBPS), Paris,
France
| | - Hélène Thomassin
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Vincent Debat
- Institut de Systematique, Evolution, Biodiversité ISYEB UMR 7205, MNHN,
CNRS, Sorbonne Université, EPHE, Muséum national d'Histoire naturelle, Sorbonne
Universités, Paris, France
| | - Neel B. Randsholt
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| | - Frédérique Peronnet
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Biologie Paris-Seine (IBPS), Laboratory of Developmental Biology
(LBD), Paris, France
| |
Collapse
|
63
|
Conway E, Jerman E, Healy E, Ito S, Holoch D, Oliviero G, Deevy O, Glancy E, Fitzpatrick DJ, Mucha M, Watson A, Rice AM, Chammas P, Huang C, Pratt-Kelly I, Koseki Y, Nakayama M, Ishikura T, Streubel G, Wynne K, Hokamp K, McLysaght A, Ciferri C, Di Croce L, Cagney G, Margueron R, Koseki H, Bracken AP. A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Mol Cell 2018; 70:408-421.e8. [PMID: 29628311 DOI: 10.1016/j.molcel.2018.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/11/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.
Collapse
Affiliation(s)
- Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Emilia Jerman
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Daniel Holoch
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France
| | - Giorgio Oliviero
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Marlena Mucha
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ariane Watson
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Alan M Rice
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Chammas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Christine Huang
- Department of Structural Biology, Genentech, San Francisco, CA 94080, USA
| | - Indigo Pratt-Kelly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Manabu Nakayama
- Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Tomoyuki Ishikura
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Kieran Wynne
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Claudio Ciferri
- Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
64
|
Streubel G, Watson A, Jammula SG, Scelfo A, Fitzpatrick DJ, Oliviero G, McCole R, Conway E, Glancy E, Negri GL, Dillon E, Wynne K, Pasini D, Krogan NJ, Bracken AP, Cagney G. The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells. Mol Cell 2018; 70:371-379.e5. [PMID: 29606589 DOI: 10.1016/j.molcel.2018.02.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/22/2017] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ariane Watson
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sri Ganesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | - Giorgio Oliviero
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Rachel McCole
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gian Luca Negri
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Health Sciences, University of Milan, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
65
|
Lomax A, Woods DP, Dong Y, Bouché F, Rong Y, Mayer KS, Zhong X, Amasino RM. An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:871-882. [PMID: 29314414 DOI: 10.1111/tpj.13815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 05/22/2023]
Abstract
Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. In Arabidopsis thaliana, vernalization leads to the stable repression of the floral repressor FLOWERING LOCUS C via chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter, VERNALIZATION 1 (VRN1). From a screen for mutants with a reduced vernalization requirement in the model grass Brachypodium distachyon, we identified two recessive alleles of ENHANCER OF ZESTE-LIKE 1 (EZL1). EZL1 is orthologous to A. thaliana CURLY LEAF 1, a gene that encodes the catalytic subunit of PRC2. B. distachyon ezl1 mutants flower rapidly without vernalization in long-day (LD) photoperiods; thus, EZL1 is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies in ezl1 revealed mis-regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss of EZL1 results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution to PRC2 activity in B. distachyon. Furthermore, in ezl1 mutants, the flowering genes VRN1 and AGAMOUS (AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNA knock-down of either VRN1 or AG in ezl1-1 mutants partially restores wild-type flowering behavior in non-vernalized plants, suggesting that ectopic expression in ezl1 mutants may contribute to the rapid-flowering phenotype.
Collapse
Affiliation(s)
- Aaron Lomax
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Daniel P Woods
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yinxin Dong
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
| | - Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Rong
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Kevin S Mayer
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Richard M Amasino
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
66
|
Global changes of H3K27me3 domains and Polycomb group protein distribution in the absence of recruiters Spps or Pho. Proc Natl Acad Sci U S A 2018; 115:E1839-E1848. [PMID: 29432187 DOI: 10.1073/pnas.1716299115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes in animals, but how these proteins are recruited to specific regions of the genome is still poorly understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) that include combinations of sites for sequence specific DNA binding "PcG recruiters," including Pho, Cg, and Spps. To understand their roles in PcG recruitment, we compared Pho-, Cg-, and Spps-binding sites against H3K27me3 and key PcG proteins by ChIP-seq in wild-type and mutant third instar larvae. H3K27me3 in canonical Polycomb domains is decreased after the reduction of any recruiter. Reduction of Spps and Pho, but not Cg, causes the redistribution of H3K27me3 to heterochromatin. Regions with dramatically depleted H3K27me3 after Spps knockout are usually accompanied by decreased Pho binding, suggesting their cooperative binding. PcG recruiters, the PRC2 component E(z), and the PRC1 components Psc and Ph cobind thousands of active genes outside of H3K27me3 domains. This study demonstrates the importance of distinct PcG recruiters for the establishment of unique Polycomb domains. Different PcG recruiters can act both cooperatively and independently at specific PcG target genes, highlighting the complexity and diversity of PcG recruitment mechanisms.
Collapse
|
67
|
Chromatin state changes during neural development revealed by in vivo cell-type specific profiling. Nat Commun 2017; 8:2271. [PMID: 29273756 PMCID: PMC5741632 DOI: 10.1038/s41467-017-02385-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
A key question in developmental biology is how cellular differentiation is controlled during development. While transitions between trithorax-group (TrxG) and polycomb-group (PcG) chromatin states are vital for the differentiation of ES cells to multipotent stem cells, little is known regarding the role of chromatin states during development of the brain. Here we show that large-scale chromatin remodelling occurs during Drosophila neural development. We demonstrate that the majority of genes activated during neuronal differentiation are silent in neural stem cells (NSCs) and occupy black chromatin and a TrxG-repressive state. In neurons, almost all key NSC genes are switched off via HP1-mediated repression. PcG-mediated repression does not play a significant role in regulating these genes, but instead regulates lineage-specific transcription factors that control spatial and temporal patterning in the brain. Combined, our data suggest that forms of chromatin other than canonical PcG/TrxG transitions take over key roles during neural development. While transitions between active and repressive chromatin states are essential for differentiation, little is known regarding their role during development of the brain in Drosophila. Here, the authors investigate the large scale chromatin remodelling taking place during fly neural development.
Collapse
|
68
|
Liu PP, Xu YJ, Teng ZQ, Liu CM. Polycomb Repressive Complex 2: Emerging Roles in the Central Nervous System. Neuroscientist 2017; 24:208-220. [DOI: 10.1177/1073858417747839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases. A better understanding of the intricate and complex regulatory networks mediated by PRC2 in CNS will help to develop new therapeutic approaches and to generate specific brain cell types for treating neurological diseases.
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
69
|
Posukh OV, Maksimov DA, Laktionov PP, Koryakov DE, Belyakin SN. Functional dissection of Drosophila melanogaster SUUR protein influence on H3K27me3 profile. Epigenetics Chromatin 2017; 10:56. [PMID: 29191233 PMCID: PMC5709859 DOI: 10.1186/s13072-017-0163-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotes, heterochromatin replicates late in S phase of the cell cycle and contains specific covalent modifications of histones. SuUR mutation found in Drosophila makes heterochromatin replicate earlier than in wild type and reduces the level of repressive histone modifications. SUUR protein was shown to be associated with moving replication forks, apparently through the interaction with PCNA. The biological process underlying the effects of SUUR on replication and composition of heterochromatin remains unknown. RESULTS Here we performed a functional dissection of SUUR protein effects on H3K27me3 level. Using hidden Markow model-based algorithm we revealed SuUR-sensitive chromosomal regions that demonstrated unusual characteristics: They do not contain Polycomb and require SUUR function to sustain H3K27me3 level. We tested the role of SUUR protein in the mechanisms that could affect H3K27me3 histone levels in these regions. We found that SUUR does not affect the initial H3K27me3 pattern formation in embryogenesis or Polycomb distribution in the chromosomes. We also ruled out the possible effect of SUUR on histone genes expression and its involvement in DSB repair. CONCLUSIONS Obtained results support the idea that SUUR protein contributes to the heterochromatin maintenance during the chromosome replication. A model that explains major SUUR-associated phenotypes is proposed.
Collapse
Affiliation(s)
- Olga V Posukh
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090
| | - Daniil A Maksimov
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090
| | - Petr P Laktionov
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090
| | - Dmitry E Koryakov
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090.,Novosibirsk State University, Pirogov str. 2, Novosibirsk, Russia
| | - Stepan N Belyakin
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Pirogov str. 2, Novosibirsk, Russia.
| |
Collapse
|
70
|
Juan AH, Wang S, Ko KD, Zare H, Tsai PF, Feng X, Vivanco KO, Ascoli AM, Gutierrez-Cruz G, Krebs J, Sidoli S, Knight AL, Pedersen RA, Garcia BA, Casellas R, Zou J, Sartorelli V. Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Rep 2017; 17:1369-1382. [PMID: 27783950 DOI: 10.1016/j.celrep.2016.09.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) methylates lysine 27 of histone H3 (H3K27) through its catalytic subunit Ezh2. PRC2-mediated di- and tri-methylation (H3K27me2/H3K27me3) have been interchangeably associated with gene repression. However, it remains unclear whether these two degrees of H3K27 methylation have different functions. In this study, we have generated isogenic mouse embryonic stem cells (ESCs) with a modified H3K27me2/H3K27me3 ratio. Our findings document dynamic developmental control in the genomic distribution of H3K27me2 and H3K27me3 at regulatory regions in ESCs. They also reveal that modifying the ratio of H3K27me2 and H3K27me3 is sufficient for the acquisition and repression of defined cell lineage transcriptional programs and phenotypes and influences induction of the ESC ground state.
Collapse
Affiliation(s)
- Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stan Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei-Fang Tsai
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Karinna O Vivanco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anthony M Ascoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan Krebs
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Adam L Knight
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger A Pedersen
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core Facility, Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
Carelli FN, Sharma G, Ahringer J. Broad Chromatin Domains: An Important Facet of Genome Regulation. Bioessays 2017; 39. [PMID: 29058338 DOI: 10.1002/bies.201700124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/09/2017] [Indexed: 12/19/2022]
Abstract
Chromatin composition differs across the genome, with distinct compositions characterizing regions associated with different properties and functions. Whereas many histone modifications show local enrichment over genes or regulatory elements, marking can also span large genomic intervals defining broad chromatin domains. Here we highlight structural and functional features of chromatin domains marked by histone modifications, with a particular emphasis on the potential roles of H3K27 methylation domains in the organization and regulation of genome activity in metazoans.
Collapse
Affiliation(s)
- Francesco N Carelli
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Garima Sharma
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
72
|
Zhao W, Huang Y, Zhang J, Liu M, Ji H, Wang C, Cao N, Li C, Xia Y, Jiang Q, Qin J. Polycomb group RING finger proteins 3/5 activate transcription via an interaction with the pluripotency factor Tex10 in embryonic stem cells. J Biol Chem 2017; 292:21527-21537. [PMID: 29054931 DOI: 10.1074/jbc.m117.804054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Polycomb group (PcG) proteins are epigenetic transcriptional repressors that orchestrate numerous developmental processes and have been implicated in the maintenance of embryonic stem (ES) cell state. More recent evidence suggests that a subset of PcG proteins engages in transcriptional activation in some cellular contexts, but how this property is exerted remains largely unknown. Here, we generated ES cells with single or combined disruption of polycomb group RING finger protein 3 (Pcgf3) and Pcgf5 with the CRISPR-Cas9 technique. We report that although these mutant cells maintained their self-renewal and colony-forming capacity, they displayed severe defects in mesoderm differentiation in vitro and in vivo Using RNA-seq to analyze transcriptional profiles of ES cells with single or combined Pcgf3/5 deficiencies, we found that in contrast to the canonical role of the related polycomb repressive complex 1 (PRC1) in gene repression, Pcgf3/5 mainly function as transcriptional activators driving expression of many genes involved in mesoderm differentiation. Proteomic approaches and promoter occupancy analyses helped to establish an extended Pcgf3/5 interactome and identified several novel Pcgf3/5 interactors. These included testis-expressed 10 (Tex10), which may directly contribute to transcriptional activation via the transcriptional co-activator p300. Furthermore, Pcgf3/5 deletion in ES cells substantially reduced the occupancy of Tex10 and p300 at target genes. Finally, we demonstrated that Pcgf3/5 are essential for regulating global levels of the histone modifier H2AK119ub1 in ES cells. Our findings establish Pcgf3/5 as transcriptional activators that interact with Tex10 and p300 in ES cells and point to redundant activity of Pcgf3/5 in pluripotency maintenance.
Collapse
Affiliation(s)
- Wukui Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Yikai Huang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Jingzi Zhang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Mengjie Liu
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Haijing Ji
- the College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210014
| | - Congcong Wang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Ning Cao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Chaojun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061
| | - Yin Xia
- the School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, and
| | - Qing Jiang
- the Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 21008, China
| | - Jinzhong Qin
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061,
| |
Collapse
|
73
|
Abstract
Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby control alternative cell fates. PcG proteins act as complexes that can modify histones and these histone modifications play a role in transmitting the “memory” of the repressed state as cells divide. Here we consider mainstream models that link histone modifications to hierarchical recruitment of PcG complexes and compare them to results of a direct test of interdependence between PcG complexes for recruitment to Drosophila genes. The direct test indicates that PcG complexes do not rely on histone modifications to recognize their target genes but use them to stabilize the interactions within large chromatin domains. It also shows that multiple strategies are used to coordinate the targeting of PcG complexes to different genes, which may make the repression of these genes more or less robust.
Collapse
Affiliation(s)
- Eshagh Dorafshan
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Tatyana G Kahn
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yuri B Schwartz
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
74
|
Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell 2017; 171:34-57. [DOI: 10.1016/j.cell.2017.08.002] [Citation(s) in RCA: 611] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
|
75
|
Chen T, van Steensel B. Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells. PLoS Genet 2017; 13:e1006929. [PMID: 28771467 PMCID: PMC5557608 DOI: 10.1371/journal.pgen.1006929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/15/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
Eukaryotic mRNAs undergo a cycle of transcription, nuclear export, and degradation. A major challenge is to obtain a global, quantitative view of these processes. Here we measured the genome-wide nucleocytoplasmic dynamics of mRNA in Drosophila cells by metabolic labeling in combination with cellular fractionation. By mathematical modeling of these data we determined rates of transcription, export and cytoplasmic decay for 5420 genes. We characterized these kinetic rates and investigated links with mRNA features, RNA-binding proteins (RBPs) and chromatin states. We found prominent correlations between mRNA decay rate and transcript size, while nuclear export rates are linked to the size of the 3'UTR. Transcription, export and decay rates are each associated with distinct spectra of RBPs. Specific classes of genes, such as those encoding cytoplasmic ribosomal proteins, exhibit characteristic combinations of rate constants, suggesting modular control. Binding of splicing factors is associated with faster rates of export, and our data suggest coordinated regulation of nuclear export of specific functional classes of genes. Finally, correlations between rate constants suggest global coordination between the three processes. Our approach provides insights into the genome-wide nucleocytoplasmic kinetics of mRNA and should be generally applicable to other cell systems. All mRNAs start from production in the nucleus, undergo exportation through nuclear pores and finally are degraded in the cytoplasm. A comprehensive characterization of the kinetic rates of all mRNAs is an important prerequisite for a global understanding of the regulation of the transcriptome and the cell. By conducting a time-series experiment and building a mathematical model, we trace the dynamics of mRNAs from the nucleus to the cytoplasm and determine the rates at each kinetic step at transcriptome-wide level. This information allows us to associate mRNA kinetic rates with a wealth of biological features and made some intriguing discoveries. We show mRNA decay is positively linked to transcript length while mRNA export is negatively linked to the length of the 3' UTR. We show binding of splicing factors is associated with faster rates of mRNA export. We provide evidence for global coordination between nuclear export an decay of mRNA. We show genes sharing specific functions tend to have similar nucleoplasmic kinetics, in which ribosomal proteins possessing special kinetic features exclusively stand out. Altogether, our integrated approach to quantitatively determine the rates of kinetic steps on a gene-by-gene basis provides a blueprint to obtain the global understanding of RNA regulation.
Collapse
Affiliation(s)
- Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
76
|
Botchkarev VA. Second International Symposium-Epigenetic Regulation of Skin Regeneration and Aging: From Chromatin Biology towards the Understanding of Epigenetic Basis of Skin Diseases. J Invest Dermatol 2017; 137:1604-1608. [PMID: 28583676 DOI: 10.1016/j.jid.2017.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
77
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
78
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
79
|
Zhou Y, Romero-Campero FJ, Gómez-Zambrano Á, Turck F, Calonje M. H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity. Genome Biol 2017; 18:69. [PMID: 28403905 PMCID: PMC5389094 DOI: 10.1186/s13059-017-1197-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polycomb group complexes PRC1 and PRC2 repress gene expression at the chromatin level in eukaryotes. The classic recruitment model of Polycomb group complexes in which PRC2-mediated H3K27 trimethylation recruits PRC1 for H2A monoubiquitination was recently challenged by data showing that PRC1 activity can also recruit PRC2. However, the prevalence of these two mechanisms is unknown, especially in plants as H2AK121ub marks were examined at only a handful of Polycomb group targets. RESULTS By using genome-wide analyses, we show that H2AK121ub marks are surprisingly widespread in Arabidopsis thaliana, often co-localizing with H3K27me3 but also occupying a set of transcriptionally active genes devoid of H3K27me3. Furthermore, by profiling H2AK121ub and H3K27me3 marks in atbmi1a/b/c, clf/swn, and lhp1 mutants we found that PRC2 activity is not required for H2AK121ub marking at most genes. In contrast, loss of AtBMI1 function impacts the incorporation of H3K27me3 marks at most Polycomb group targets. CONCLUSIONS Our findings show the relationship between H2AK121ub and H3K27me3 marks across the A. thaliana genome and unveil that ubiquitination by PRC1 is largely independent of PRC2 activity in plants, while the inverse is true for H3K27 trimethylation.
Collapse
Affiliation(s)
- Yue Zhou
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Cologne, Germany
| | | | - Ángeles Gómez-Zambrano
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Sevilla), Seville, Spain
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Cologne, Germany.
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Sevilla), Seville, Spain.
| |
Collapse
|
80
|
El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, Russell S, White R. Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLoS One 2017; 12:e0172725. [PMID: 28282436 PMCID: PMC5345799 DOI: 10.1371/journal.pone.0172725] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome.
Collapse
Affiliation(s)
- Sherif El-Sharnouby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Benjamin Umans
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Rosalyn Flower
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Siew Woh Choo
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
- * E-mail:
| |
Collapse
|
81
|
Lewis ZA. Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2. Trends Genet 2017; 33:220-231. [DOI: 10.1016/j.tig.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/03/2023]
|
82
|
Xie W, Nagarajan S, Baumgart SJ, Kosinsky RL, Najafova Z, Kari V, Hennion M, Indenbirken D, Bonn S, Grundhoff A, Wegwitz F, Mansouri A, Johnsen SA. RNF40 regulates gene expression in an epigenetic context-dependent manner. Genome Biol 2017; 18:32. [PMID: 28209164 PMCID: PMC5314486 DOI: 10.1186/s13059-017-1159-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. Results Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-“suppressed” genes is associated with enhancer activation via FOXL2. Conclusion Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1159-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanhua Xie
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Simon J Baumgart
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Magali Hennion
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Griesebachstraße 5, 37077, Göttingen, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Stefan Bonn
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Griesebachstraße 5, 37077, Göttingen, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg, 37077, Göttingen, Germany.,Department of Clinical Neurophysiology, University of Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
83
|
Bonifer C, Cockerill PN. Chromatin priming of genes in development: Concepts, mechanisms and consequences. Exp Hematol 2017; 49:1-8. [PMID: 28185904 DOI: 10.1016/j.exphem.2017.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
Abstract
During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review, we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We show that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, and at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
84
|
Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol 2017; 48:12-31. [PMID: 28087428 DOI: 10.1016/j.exphem.2016.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
Hematopoiesis, the process by which blood cells are continuously produced, is one of the best studied differentiation pathways. Hematological diseases are associated with reiterated mutations in genes encoding important gene expression regulators, including chromatin regulators. Among them, the Polycomb group (PcG) of proteins is an essential system of gene silencing involved in the maintenance of cell identities during differentiation. PcG proteins assemble into two major types of Polycomb repressive complexes (PRCs) endowed with distinct histone-tail-modifying activities. PRC1 complexes are histone H2A E3 ubiquitin ligases and PRC2 trimethylates histone H3. Established conceptions about their activities, mostly derived from work in embryonic stem cells, are being modified by new findings in differentiated cells. Here, we focus on PRC1 complexes, reviewing recent evidence on their intricate architecture, the diverse mechanisms of their recruitment to targets, and the different ways in which they engage in transcriptional control. We also discuss hematopoietic PRC1 gain- and loss-of-function mouse strains, including those that model leukemic and lymphoma diseases, in the belief that these genetic analyses provide the ultimate test for molecular mechanisms driving normal hematopoiesis and hematological malignancies.
Collapse
|
85
|
Bayarsaihan D. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:539-563. [PMID: 28018144 PMCID: PMC5168831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Institute for System Genomics and Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
86
|
Stable Caenorhabditis elegans chromatin domains separate broadly expressed and developmentally regulated genes. Proc Natl Acad Sci U S A 2016; 113:E7020-E7029. [PMID: 27791097 DOI: 10.1073/pnas.1608162113] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are organized into domains of differing structure and activity. There is evidence that the domain organization of the genome regulates its activity, yet our understanding of domain properties and the factors that influence their formation is poor. Here, we use chromatin state analyses in early embryos and third-larval stage (L3) animals to investigate genome domain organization and its regulation in Caenorhabditis elegans At both stages we find that the genome is organized into extended chromatin domains of high or low gene activity defined by different subsets of states, and enriched for H3K36me3 or H3K27me3, respectively. The border regions between domains contain large intergenic regions and a high density of transcription factor binding, suggesting a role for transcription regulation in separating chromatin domains. Despite the differences in cell types, overall domain organization is remarkably similar in early embryos and L3 larvae, with conservation of 85% of domain border positions. Most genes in high-activity domains are expressed in the germ line and broadly across cell types, whereas low-activity domains are enriched for genes that are developmentally regulated. We find that domains are regulated by the germ-line H3K36 methyltransferase MES-4 and that border regions show striking remodeling of H3K27me1, supporting roles for H3K36 and H3K27 methylation in regulating domain structure. Our analyses of C. elegans chromatin domain structure show that genes are organized by type into domains that have differing modes of regulation.
Collapse
|
87
|
Wassef M, Margueron R. The Multiple Facets of PRC2 Alterations in Cancers. J Mol Biol 2016; 429:1978-1993. [PMID: 27742591 DOI: 10.1016/j.jmb.2016.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
Genome sequencing of large cohorts of tumors has revealed that mutations in genes encoding chromatin regulators are frequent in cancer. However, the precise contribution of these mutations to tumor development often remains elusive. Here, we review the current knowledge concerning the alterations of the Polycomb machinery in cancer, with a particular focus on the Polycomb repressive complex 2 (PRC2), a key chromatin modifier involved in the maintenance of transcriptional silencing. A broad variety of alterations can impair PRC2 activity; yet, overall, only one type of alteration is found in a given class of tumor. We discuss the potential impact of the various types of PRC2 alterations on gene expression. We propose that the distinct set of genes regulated by PRC2, depending on tumor etiology, constrain the type of alteration of PRC2 that can fuel tumor development. Beyond this specificity, we propose that PRC2 and, more generally, chromatin regulators act as gatekeepers of transcriptional integrity, a role that often confers a tumor-suppressive function.
Collapse
Affiliation(s)
- M Wassef
- Institut Curie, PSL Research University, - 26, rue d'Ulm, 75005 Paris, France; INSERM U934, CNRS UMR3215, Paris, France, 75005
| | - R Margueron
- Institut Curie, PSL Research University, - 26, rue d'Ulm, 75005 Paris, France; INSERM U934, CNRS UMR3215, Paris, France, 75005.
| |
Collapse
|
88
|
Rose NR, King HW, Blackledge NP, Fursova NA, Ember KJ, Fischer R, Kessler BM, Klose RJ. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife 2016; 5. [PMID: 27705745 PMCID: PMC5065315 DOI: 10.7554/elife.18591] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/01/2016] [Indexed: 12/29/2022] Open
Abstract
Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI:http://dx.doi.org/10.7554/eLife.18591.001
Collapse
Affiliation(s)
- Nathan R Rose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Katherine Ji Ember
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
89
|
Abstract
Nucleosomes function to tightly package DNA into chromosomes, but the nucleosomal landscape becomes disrupted during active processes such as replication, transcription, and repair. The realization that many proteins responsible for chromatin regulation are frequently mutated in cancer has drawn attention to chromatin dynamics; however, the basic mechanisms whereby nucleosomes are disrupted and reassembled is incompletely understood. Here, I present an overview of chromatin dynamics as has been elucidated in model organisms, in which our understanding is most advanced. A basic understanding of chromatin dynamics during normal developmental processes can provide the context for understanding how this machinery can go awry during oncogenesis.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
90
|
Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, Pirrotta V, Schwartz YB. Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements. Nucleic Acids Res 2016; 44:10132-10149. [PMID: 27557709 PMCID: PMC5137424 DOI: 10.1093/nar/gkw701] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.
Collapse
Affiliation(s)
- Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Dorothea Schultheis
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Aman Zare
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden.,Division of CBRN Defense and Security, Swedish Defense Research Agency, FOI, Umeå, 906 21, Sweden
| | - Ingolf Reim
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
91
|
Manivannan SN, Simcox A. Targeted genetics in Drosophila cell lines: Inserting single transgenes in vitro. Fly (Austin) 2016; 10:134-41. [PMID: 27261098 PMCID: PMC4970541 DOI: 10.1080/19336934.2016.1191716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
A long-standing problem with analyzing transgene expression in tissue-culture cells is the variation caused by random integration of different copy numbers of transfected transgenes. In mammalian cells, single transgenes can be inserted by homologous recombination but this process is inefficient in Drosophila cells. To tackle this problem, our group, and the Cherbas group, used recombination-mediated cassette exchange (RMCE) to introduce single-copy transgenes into specific locations in the Drosophila genome. In both cases, ϕC31 was used to catalyze recombination between its target sequences attP in the genome, and attB flanking the donor sequence. We generated cell lines de novo with a single attP-flanked cassette for recombination, whereas, Cherbas et al. introduced a single attP-flanked cassette into existing cell lines. In both approaches, a 2-drug selection scheme was used to select for cells with a single copy of the donor sequence inserted by RMCE and against cells with random integration of multiple copies. Here we describe the general advantages of using RMCE to introduce genes into fly cells, the different attributes of the 2 methods, and how future work could make use of other recombinases and CRISPR/Cas9 genome editing to further enable genetic manipulation of Drosophila cells in vitro.
Collapse
Affiliation(s)
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| |
Collapse
|
92
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
93
|
Brien GL, Valerio DG, Armstrong SA. Exploiting the Epigenome to Control Cancer-Promoting Gene-Expression Programs. Cancer Cell 2016; 29:464-476. [PMID: 27070701 PMCID: PMC4889129 DOI: 10.1016/j.ccell.2016.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
The epigenome is a key determinant of transcriptional output. Perturbations within the epigenome are thought to be a key feature of many, perhaps all cancers, and it is now clear that epigenetic changes are instrumental in cancer development. The inherent reversibility of these changes makes them attractive targets for therapeutic manipulation, and a number of small molecules targeting chromatin-based mechanisms are currently in clinical trials. In this perspective we discuss how understanding the cancer epigenome is providing insights into disease pathogenesis and informing drug development. We also highlight additional opportunities to further unlock the therapeutic potential within the cancer epigenome.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacokinetics
- Cell Transformation, Neoplastic/genetics
- Chromatin/drug effects
- Chromatin/genetics
- Chromosome Aberrations
- Clinical Trials as Topic
- DNA Methylation/drug effects
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/genetics
- Epigenomics
- Gene Expression Regulation, Neoplastic
- Histone Code/drug effects
- Histone Deacetylase Inhibitors/therapeutic use
- Histones/metabolism
- Humans
- Mice
- Models, Genetic
- Molecular Targeted Therapy
- Mutation
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/prevention & control
- Neoplasms/therapy
- Oncogene Proteins/metabolism
- Protein Processing, Post-Translational/drug effects
- Therapies, Investigational
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Gerard L Brien
- The Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daria G Valerio
- The Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Armstrong
- The Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
94
|
Conway E, Healy E, Bracken AP. PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol 2015; 37:42-8. [PMID: 26497635 DOI: 10.1016/j.ceb.2015.10.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a multiprotein chromatin modifying complex that is essential for vertebrate development and differentiation. It is composed of a trimeric core of SUZ12, EED and EZH1/2 and is responsible for catalysing both di-methylation and tri-methylation of Histone H3 at lysine 27 (H3K27me2/3). Both H3K27 methylations contribute to the role of PRC2 in maintaining cellular identity. In all cell types, the H3K27me3 modification is associated with repression of genes encoding regulators of alternative lineages. The less well-characterised H3K27me2 modification is ubiquitous throughout the genome and is thought to act like a protective blanket to maintain the repression of non-H3K27me3 associated genes and cell-type-specific enhancers of alternative lineages. Recent cancer genome sequencing studies highlighted that several genes encoding PRC2 components as well as Histone H3 are mutated in multiple cancer types. Intriguingly, these cancers have changes in the global levels of the H3K27me2 and H3K27me3 modifications as well as genome-wide redistributions. Exciting new studies suggest that these changes confer context dependent blocks in cellular differentiation and increased vulnerability to aberrant cancer signalling pathways.
Collapse
Affiliation(s)
- Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|