51
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
52
|
Ha E, Chun J, Kim M, Ryu S. Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1. Viruses 2019; 11:v11111002. [PMID: 31683584 PMCID: PMC6893597 DOI: 10.3390/v11111002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic bacteria. Here we isolated a virulent C. perfringens phage, CPS1, and analysis of its whole genome and morphology revealed a small genome (19 kbps) and a short noncontractile tail, suggesting that CPS1 can be classified as a member of Picovirinae, a subfamily of Podoviridae. To determine the host receptor of CPS1, the EZ-Tn5 random transposon mutant library of C. perfringens ATCC 13124 was constructed and screened for resistance to CPS1 infection. Analysis of the CPS1-resistant mutants revealed that the CPF_0486 was disrupted by Tn5. The CPF_0486 was annotated as galE, a gene encoding UDP-glucose 4-epimerase (GalE). However, biochemical analyses demonstrated that the encoded protein possessed dual activities of GalE and UDP-N-acetylglucosamine 4-epimerase (Gne). We found that the CPF_0486::Tn5 mutant produced a reduced amount of capsular polysaccharides (CPS) compared with the wild type. We also discovered that glucosamine and galactosamine could competitively inhibit host adsorption of CPS1. These results suggest that CPS acts as a receptor for this phage.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jihwan Chun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
53
|
Talukdar PK, Sarker MR. The serine proteases CspA and CspC are essential for germination of spores of Clostridium perfringens SM101 through activating SleC and cortex hydrolysis. Food Microbiol 2019; 86:103325. [PMID: 31703860 DOI: 10.1016/j.fm.2019.103325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Clostridium perfringens SM101 genome encodes three serine proteases (CspA, CspB, and CspC), and genetic evidence indicates that CspB is required for processing of pro-SleC into active SleC, an enzyme essential for degradation of the peptidoglycan cortex during spore germination. In this study, the expression of cspA and cspC, as well as the germination and colony formation by spores of cspAC and cspC mutants of strain SM101, were assessed. We demonstrated that 1) the cspA and cspC genes were expressed as a bicistronic operon only during sporulation in the mother cell compartment of SM101; 2) both cspAC and cspC mutant spores were unable to germinate significantly with either KCl, l-glutamine, brain heart infusion (BHI) broth, or a 1:1 chelate of Ca2+ and dipicolinic acid (DPA); 3) consistent with germination results, both cspAC and cspC mutant spores were defective in normal DPA release; 4) the colony formation by cspAC and cspC mutant spores was ~106-fold lower than that of wild-type spores, although decoated mutant spores yielded wild-type level colony formation on plates containing lysozyme; 5) no processing of inactive pro-SleC into active SleC was observed in cspAC and cspC mutant spores during germination; and finally, 6) the defects in germination, DPA release, colony formation and SleC processing in cspAC and cspC mutant spores were complemented by the wild-type cspA-cspC operon. Collectively, these results indicate that both CspA and CspC are essential for C. perfringens spore germination through activating SleC and inducing cortex hydrolysis.
Collapse
Affiliation(s)
- Prabhat K Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
54
|
Tamai E, Katayama S, Sekiya H, Nariya H, Kamitori S. Structures of major pilins in Clostridium perfringens demonstrate dynamic conformational change. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:718-732. [PMID: 31373571 DOI: 10.1107/s2059798319009689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Pili in Gram-positive bacteria are flexible rod proteins associated with the bacterial cell surface, and they play important roles in the initial adhesion to host tissues and colonization. The pilus shaft is formed by the covalent polymerization of major pilins, catalyzed by sortases, a family of cysteine transpeptidases. Here, X-ray structures of the major pilins from Clostridium perfringens strains 13 and SM101 and of sortase from strain SM101 are presented with biochemical analysis to detect the formation of pili in vivo. The major pilin from strain 13 adopts an elongated structure to form noncovalently linked polymeric chains in the crystal, yielding a practical model of the pilus fiber structure. The major pilin from strain SM101 adopts a novel bent structure and associates to form a left-handed twist like an antiparallel double helix in the crystal, which is likely to promote bacterial cell-cell interactions. A modeling study showed that pilin with a bent structure interacts favorably with sortase. The major pilin from strain SM101 was considered to be in an equilibrium state between an elongated and a bent structure through dynamic conformational change, which may be involved in pili-mediated colonization and sortase-mediated polymerization of pili.
Collapse
Affiliation(s)
- Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Seiichi Katayama
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hiroshi Sekiya
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Hirofumi Nariya
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama-cho, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
55
|
Nagahama M, Takehara M, Rood JI. Histotoxic Clostridial Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0024-2018. [PMID: 31350831 PMCID: PMC10957196 DOI: 10.1128/microbiolspec.gpp3-0024-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of clostridial myonecrosis or gas gangrene involves an interruption to the blood supply to the infected tissues, often via a traumatic wound, anaerobic growth of the infecting clostridial cells, the production of extracellular toxins, and toxin-mediated cell and tissue damage. This review focuses on host-pathogen interactions in Clostridium perfringens-mediated and Clostridium septicum-mediated myonecrosis. The major toxins involved are C. perfringens α-toxin, which has phospholipase C and sphingomyelinase activity, and C. septicum α-toxin, a β-pore-forming toxin that belongs to the aerolysin family. Although these toxins are cytotoxic, their effects on host cells are quite complex, with a range of intracellular cell signaling pathways induced by their action on host cell membranes.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
56
|
Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Front Cell Infect Microbiol 2019; 9:239. [PMID: 31334133 PMCID: PMC6624636 DOI: 10.3389/fcimb.2019.00239] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/18/2019] [Indexed: 01/14/2023] Open
Abstract
Akkermansia muciniphila is potential probiotic in that its type strain ATCC BAA-835 has beneficial effects upon obesity and diabetes. However, whether A. muciniphila can improve inflammatory bowel diseases (IBD), which is a form of chronic intestinal dysbiosis, is unknown. Hence, we used an isolated murine A. muciniphila strain (designated 139) and A. muciniphila type strain ATCC, to investigate their anti-inflammatory properties in cell models and in Dextran Sulfate Sodium (DSS)-induced chronic colitis of mice. In vitro, the two A. muciniphila strains exerted similar anti-inflammatory properties as they both reduced IL-8 production by TNF-α-stimulated HT-29 cells. However, neither of the strains showed capacity to increase the differentiation of regulatory T (Treg)-cells from CD4+ T cell populations significantly. In vivo, both A. muciniphila strains exerted anti-inflammatory effects on chronic colitis as they improved clinical parameters including spleen weight, colon inflammation index, and colon histological score. They also down-regulated the expression of the pro-inflammatory cytokines including TNF-α and IFN-γ in the colon of mice. However, the anti-inflammatory effects of strain ATCC were stronger than strain 139 in that ATCC significantly reduced spleen weight, colon inflammation index, and fecal lipocalin-2 content in mice with chronic colitis, while strain 139 was not. Dysbiosis of the gut microbiota was observed in mice with chronic colitis. Both A. muciniphila strains facilitated the normalization of the gut microbiota. The specific capacity of strain ATCC to modulate the differentiation of Tregs as well as increase production of short chain fatty acids, demonstrated strain-specific characteristics for these two A. muciniphila strains. This study suggests the potential beneficial effect of A. muciniphila on IBD and the importance of the future study of the function of A. muciniphila at the strain-level.
Collapse
Affiliation(s)
- Rui Zhai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhe Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liying Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ, United States
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
57
|
|
58
|
Kuehne SA, Rood JI, Lyras D. Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0040-2018. [PMID: 31172914 PMCID: PMC11315012 DOI: 10.1128/microbiolspec.gpp3-0040-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
The past 10 years have been revolutionary for clostridial genetics. The rise of next-generation sequencing led to the availability of annotated whole-genome sequences of the important pathogenic clostridia: Clostridium perfringens, Clostridioides (Clostridium) difficile, and Clostridium botulinum, but also Paeniclostridium (Clostridium) sordellii and Clostridium tetani. These sequences were a prerequisite for the development of functional, sophisticated genetic tools for the pathogenic clostridia. A breakthrough came in the early 2000s with the development of TargeTron-based technologies specific for the clostridia, such as ClosTron, an insertional gene inactivation tool. The following years saw a plethora of new technologies being developed, mostly for C. difficile, but also for other members of the genus, including C. perfringens. A range of tools is now available, allowing researchers to precisely delete genes, change single nucleotides in the genome, complement deletions, integrate novel DNA into genomes, or overexpress genes. There are tools for forward genetics, including an inducible transposon mutagenesis system for C. difficile. As the latest addition to the tool kit, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies have also been adopted for the construction of single and multiple gene deletions in C. difficile. This article summarizes the key genetic technologies available to manipulate, study, and understand the pathogenic clostridia.
Collapse
Affiliation(s)
- S A Kuehne
- School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - J I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800
| |
Collapse
|
59
|
Moore RJ, Lacey JA. Genomics of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0033-2018. [PMID: 31215504 PMCID: PMC11257213 DOI: 10.1128/microbiolspec.gpp3-0033-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequences are now available for all the clinically important clostridia and many of the lesser or opportunistically pathogenic clostridia. The complex clade structures of C. difficile, C. perfringens, and the species that produce botulinum toxins have been delineated by whole-genome sequence analysis. The true clostridia of cluster I show relatively low levels of gross genomic rearrangements within species, in contrast to the species of cluster XI, notably C. difficile, which have been found to have very plastic genomes with significant levels of chromosomal rearrangement. Throughout the clostridial phylotypes, a large proportion of the strain diversity is driven by the acquisition and loss of mobile elements, including phages, plasmids, insertion sequences, and transposons. Genomic analysis has been used to investigate the diversity and spread of C. difficile within hospital settings, the zoonotic transfer of isolates, and the emergence, origins, and geographic spread of epidemic ribotypes. In C. perfringens the clades defined by chromosomal sequence analysis show no indications of clustering based on host species or geographical location. Whole-genome sequence analysis helps to define the different survival and pathogenesis strategies that the clostridia use. Some, such as C. botulinum, produce toxins which rapidly act to kill the host, whereas others, such as C. perfringens and C. difficile, produce less lethal toxins which can damage tissue but do not rapidly kill the host. The genomes provide a resource that can be mined to identify potential vaccine antigens and targets for other forms of therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Moore
- Host-Microbe Interactions Laboratory, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
60
|
Mahamat Abdelrahim A, Radomski N, Delannoy S, Djellal S, Le Négrate M, Hadjab K, Fach P, Hennekinne JA, Mistou MY, Firmesse O. Large-Scale Genomic Analyses and Toxinotyping of Clostridium perfringens Implicated in Foodborne Outbreaks in France. Front Microbiol 2019; 10:777. [PMID: 31057505 PMCID: PMC6481350 DOI: 10.3389/fmicb.2019.00777] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens is both an ubiquitous environmental bacterium and the fourth most common causative agent of foodborne outbreaks (FBOs) in France and Europe. These outbreaks are known to be caused by C. perfringens enterotoxin (CPE) encoded by the cpe gene. However, additional information on the toxin/virulence gene content of C. perfringens has become available in the last few years. Therefore, to understand the enteropathogenicity of this bacterium, we need to describe the toxin and virulence genes content of strains involved in FBOs. In this study, we used a new real-time PCR typing technique based on a comprehensive set of 17 genes encoding virulence factors. The analysis was performed on a collection of 141 strains involved in 42 FBOs in the Paris region. It was combined with whole genome sequence (WGS) phylogenomic reconstruction, based on the coregenome single nucleotide polymorphisms (SNPs) of 58 isolates, representatives of the identified virulence gene profiles. Two or three different virulence gene profiles were detected in 10 FBOs, demonstrating that C. perfringens FBOs may be associated with heterogeneous strains. cpe-positive strains were isolated in 23 outbreaks, confirming the prominent role of CPE in pathogenicity. However, while C. perfringens was the sole pathogen isolated from the incriminated food, the cpe gene was not detected in strains related to 13 outbreaks. This result indicates either that the standard method was not able to isolate cpe+ strains or that the cpe gene may not be the only determinant of the enterotoxigenic potential of C. perfringens strains. Using phylogenomic reconstruction, we identified two clades distinguishing chromosomal cpe-positive from cpe-negative and plasmid-borne cpe. Important epidemiological information was also garnered from this phylogenomic reconstruction that revealed unexpected links between different outbreaks associated with closely related strains (seven SNP differences) and having common virulence gene profiles. This study provides new insight into the characterization of foodborne C. perfringens and highlights the potential of WGS for the investigation of FBOs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olivier Firmesse
- Université PARIS-EST, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
61
|
Abstract
In humans and livestock, Clostridium perfringens is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of C. perfringens. This article primarily focuses on the C. perfringens type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce C. perfringens enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The cpe gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when C. perfringens sporulates in the intestines. Beyond type F strains, C. perfringens type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. C. perfringens is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.
Collapse
|
62
|
Identification of an Important Orphan Histidine Kinase for the Initiation of Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strain SM101. mBio 2019; 10:mBio.02674-18. [PMID: 30670619 PMCID: PMC6343041 DOI: 10.1128/mbio.02674-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium perfringens type F enteric diseases, which include a very common form of food poisoning and many cases of antibiotic-associated diarrhea, develop when type F strains sporulate and produce C. perfringens enterotoxin (CPE) in the intestines. Spores are also important for transmission of type F disease. Despite the importance of sporulation for type F disease and the evidence that C. perfringens sporulation begins with phosphorylation of the Spo0A transcriptional regulator, the kinase phosphorylating Spo0A to initiate sporulation and CPE production had not been ascertained. In response, the current report now provides identification of an orphan histidine kinase named CPR0195 that can directly phosphorylate Spo0A. Results using a CPR0195 null mutant indicate that this kinase is very important for initiating C. perfringens sporulation and CPE production. Therefore, the CPR0195 kinase represents a potential target to block type F disease by interfering with intestinal C. perfringens sporulation and CPE production. Clostridium perfringens type F strains cause a common human foodborne illness and many cases of nonfoodborne human gastrointestinal diseases. Sporulation plays two critical roles during type F enteric disease. First, it produces broadly resistant spores that facilitate type F strain survival in the food and nosocomial environments. Second, production of C. perfringens enterotoxin (CPE), the toxin responsible for causing the enteric symptoms of type F diseases, is restricted to cells in the process of sporulation. While later steps in the regulation of C. perfringens sporulation have been discerned, the process leading to phosphorylation of Spo0A, the master early regulator of sporulation and consequent CPE production, has remained unknown. Using an insertional mutagenesis approach, the current study identified the orphan histidine kinase CPR0195 as an important factor regulating C. perfringens sporulation and CPE production. Specifically, a CPR0195 null mutant of type F strain SM101 made 103-fold fewer spores than its wild-type parent and produced no detectable CPE. In contrast, a null mutant of another putative C. perfringens orphan histidine kinase (CPR1055) did not significantly affect sporulation or CPE production. Studies using a spoIIA operon promoter-driven reporter plasmid indicated that CPR0195 functions early during sporulation, i.e., prior to production of sporulation-associated sigma factors. Furthermore, in vitro studies showed that the CPR0195 kinase domain can autophosphorylate and phosphorylate Spo0A. These results support the idea of CPR0195 as an important kinase that initiates C. perfringens sporulation by directly phosphorylating Spo0A. This kinase could represent a novel therapeutic target to block C. perfringens sporulation and CPE production during type F disease.
Collapse
|
63
|
Wakabayashi Y, Nariya H, Yasugi M, Kuwahara T, Sarker MR, Miyake M. An enhanced green fluorescence protein (EGFP)-based reporter assay for quantitative detection of sporulation in Clostridium perfringens SM101. Int J Food Microbiol 2018; 291:144-150. [PMID: 30500691 DOI: 10.1016/j.ijfoodmicro.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/17/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022]
Abstract
Clostridium perfringens type F is a spore-forming anaerobe that causes bacterial food-borne illness in humans. The disease develops when ingested vegetative cells reach the intestinal tract and begin to form spores that produce the diarrheagenic C. perfringens enterotoxin (CPE). Given that CPE production is regulated by the master regulator of sporulation (transcription factor Spo0A), the identification of sporulation-inducing factors in the intestine is relevant to better understanding of the disease. To examine these factors, we established assays to quantify C. perfringens sporulation stage under microscopy by using two fluorescent reporters, namely, Evoglow-Bs2 and CpEGFP. When the reporter genes were placed under control of the cpe promoter, both protein products were expressed specifically during sporulation. However, the intensity of the anaerobic reporter Evoglow-Bs2 was weak and rapidly photobleached during microscopic observation. Alternatively, CpEGFP, a canonical green fluorescence protein with optimized codon usage for Clostridium species, was readily detectable in the mother-cell compartment of most bacteria at early stages of sporulation. Additionally, CpEGFP expression predicted final spore yield and was quantifiable in 96-well plates using fluorescence plate reader. These results indicate that CpEGFP can be used to analyze the sporulation of C. perfringens and has a potential application in the large-scale screening of sporulation-regulating biomolecules.
Collapse
Affiliation(s)
- Yuki Wakabayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hirofumi Nariya
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mayo Yasugi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Masami Miyake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
64
|
Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med 2018; 127:190-197. [PMID: 29715549 DOI: 10.1016/j.freeradbiomed.2018.04.577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood.
Collapse
Affiliation(s)
- Jiwoon Na
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisu Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeyoung Bang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiao Lu
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinhong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dolph L Hatfield
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byeong Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
65
|
Banawas S, Sarker MR. l-lysine (pH 6.0) induces germination of spores of Clostridium perfringens type F isolates carrying chromosomal or plasmid-borne enterotoxin gene. Microb Pathog 2018; 123:227-232. [DOI: 10.1016/j.micpath.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/11/2023]
|
66
|
Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 2018; 7:141. [PMID: 30082713 PMCID: PMC6079034 DOI: 10.1038/s41426-018-0144-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Clostridium perfringens, a rapid-growing pathogen known to secrete an arsenal of >20 virulent toxins, has been associated with intestinal diseases in both animals and humans throughout the past century. Recent advances in genomic analysis and experimental systems make it timely to re-visit this clinically and veterinary important pathogen. This Review will summarise our understanding of the genomics and virulence-linked factors, including antimicrobial potentials and secreted toxins of this gut pathogen, and then its up-to-date clinical epidemiology and biological role in the pathogenesis of several important human and animal-associated intestinal diseases, including pre-term necrotising enterocolitis. Finally, we highlight some of the important unresolved questions in relation to C. perfringens-mediated infections, and implications for future research directions.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
67
|
Lins P. Production of Clostridium perfringensspores and their recovery from artificially spiked spices and herbs. J Food Saf 2018. [DOI: 10.1111/jfs.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philipp Lins
- AGES - Austrian Agency for Health and Food Safety; Institute for Food Safety Innsbruck, Focus on Plant-based Foods; Innsbruck Austria
| |
Collapse
|
68
|
Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of Clostridium perfringens. BMC Genomics 2018; 19:379. [PMID: 29788909 PMCID: PMC5964661 DOI: 10.1186/s12864-018-4771-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022] Open
Abstract
Background Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. Results Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. Conclusions The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.
Collapse
|
69
|
Ha E, Son B, Ryu S. Clostridium perfringens Virulent Bacteriophage CPS2 and Its Thermostable Endolysin LysCPS2. Viruses 2018; 10:v10050251. [PMID: 29751651 PMCID: PMC5977244 DOI: 10.3390/v10050251] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
Abstract
Clostridium perfringens is one of the most common causes of food-borne illness. The increasing prevalence of multidrug-resistant bacteria requires the development of alternatives to typical antimicrobial treatments. Here, we isolated and characterized a C. perfringens-specific virulent bacteriophage CPS2 from chicken feces. The CPS2 phage contains a 17,961 bp double-stranded DNA genome with 25 putative ORFs, and belongs to the Picovirinae, subfamily of Podoviridae. Bioinformatic analysis of the CPS2 genome revealed a putative endolysin, LysCPS2, which is homologous to the endolysin of Clostridium phage phiZP2 and phiCP7R. The enzyme showed strong lytic activity against C. perfringens with optimum conditions at pH 7.5–10, 25–65 °C, and over a broad range of NaCl concentrations. Interestingly, LysCPS2 was found to be highly thermostable, with up to 30% of its lytic activity remaining after 10 min of incubation at 95 °C. The cell wall binding domain in the C-terminal region of LysCPS2 showed a binding spectrum specific to C. perfringens strains. This is the first report to characterize highly thermostable endolysin isolated from virulent C. perfringens bacteriophage. The enzyme can be used as an alternative biocontrol and detection agent against C. perfringens.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
70
|
Yagi H, Nakayama-Imaohji H, Nariya H, Tada A, Yamasaki H, Ugai H, Elahi M, Ono T, Kuwahara T. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues. Microb Pathog 2018; 119:200-207. [PMID: 29654901 DOI: 10.1016/j.micpath.2018.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Clostridium perfringens possesses the ethanolamine (EA) utilization (eut) system encoded within the eut operon, which utilizes the EA as a carbon, nitrogen and energy source. To determine the role of the eut system in C. perfringens growth, an in-frame deletion of the eutABC genes was made in strain HN13 to generate the eutABC-deleted mutant strain HY1701. Comparison of HN13 and HY1701 growth in media supplemented with 1.0% glucose and/or 1.0% EA showed that glucose enhanced the growth of both strains, whereas EA enhanced HN13 growth, but not that of HY1701, indicating that the eut system is necessary for C. perfringens to utilize EA. The two-component regulatory system EutVW is needed to induce eut gene expression in response to EA whereas the global virulence regulator VirRS differentially controlled eut gene expression depending on glucose and EA availability. To assess the role of the eut system in vivo, an equal number of HN13 and HY1701 cells were injected into the right thigh muscles of mice. Mice infected with HY1701 showed fewer symptoms than those injected with HN13. The mortality rate of mice infected with HY1701 tended to be lower than for mice infected with HN13. In addition, in infected tissues from mice injected with a mixture of HN13 and HY1701, HN13 outnumbered HY1701. PCR screening demonstrated that C. perfringens isolated from gas gangrene and sporadic diarrhea cases carried both eut genes and the perfringolysin O gene (pfoA) as well as the phospholipase C gene (plc). However, pfoA was not detected in isolates from food poisoning patients and healthy volunteers. Culture supernatants prepared from HN13 grown in media containing 7.5% sheep red blood cells induced significantly higher eutB expression levels compared to those from plc- and/or pfoA-deletion mutants. Together, these results indicate that the eut system plays a nutritional role for C. perfringens during histolytic infection.
Collapse
Affiliation(s)
- Hirofumi Yagi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hisashi Yamasaki
- Division of Biology, Hyogo College of Medicine, Mukogawa, Nishinomiya, 663-8501, Japan
| | - Hideyo Ugai
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan.
| |
Collapse
|
71
|
Saito R, Talukdar PK, Alanazi SS, Sarker MR. RelA/DTD-mediated regulation of spore formation and toxin production by Clostridium perfringens type A strain SM101. MICROBIOLOGY-SGM 2018; 164:835-847. [PMID: 29624163 DOI: 10.1099/mic.0.000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RelA is a global regulator for stationary phase development in the model bacterium Bacillus subtilis. The relA gene forms a bicistronic operon with the downstream dtd gene. In this study, we evaluated the significance of RelA and DTD proteins in spore formation and toxin production by an important gastrointestinal pathogen Clostridium perfringens. Our β-glucuronidase assay showed that in C. perfringens strain SM101, relA forms a bicistronic operon with its downstream dtd gene, and the relA promoter is expressed during both vegetative and sporulation conditions. By constructing double relA dtd and single dtd mutants in C. perfringens SM101, we found that: (1) RelA is required for maintaining the efficient growth capacity of SM101 cells during vegetative conditions; (2) both RelA and DTD are required for spore formation and enterotoxin (CPE) production by SM101; (3) RelA/DTD activate CodY, which is known to activate spore formation and CPE production in SM101 by activating a key sporulation-specific σ factor F; (4) as expected, RelA/DTD activate sporulation-specific σ factors (σE, σF, σG and σK) by positively regulating Spo0A production; and finally (5) RelA, but not DTD, negatively regulates phospholipase C (PLC) production by repressing plc gene expression. Collectively, our results demonstrate that RelA modulates cellular physiology such as growth, spore formation and toxin production by C. perfringens type A strain SM101, although DTD also plays a role in these pleiotropic functions in coordination with RelA during sporulation. These findings have implications for the understanding of the mechanisms involved in the infectious cycle of C. perfringens.
Collapse
Affiliation(s)
- Ryoichi Saito
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology and Immunology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Prabhat K Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA.,Present address: School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Saud S Alanazi
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
72
|
Low LY, Harrison PF, Gould J, Powell DR, Choo JM, Forster SC, Chapman R, Gearing LJ, Cheung JK, Hertzog P, Rood JI. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection. mBio 2018; 9:e00473-18. [PMID: 29588405 PMCID: PMC5874911 DOI: 10.1128/mbio.00473-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions.IMPORTANCEClostridium perfringens is the causative agent of traumatic clostridial myonecrosis, or gas gangrene. In this study, we carried out transcriptional analysis of both the host and the bacterial pathogen in a mouse myonecrosis infection. The results showed that in comparison to mock-infected control tissues, muscle tissues from C. perfringens-infected mice had a significantly altered gene expression profile. In particular, the expression of many genes involved in the innate immune system was upregulated. Comparison of the expression profiles of C. perfringens cells isolated from the infected tissues with those from equivalent broth cultures identified many potential virulence genes that were significantly upregulated in vivo These studies have provided a new understanding of the range of factors involved in host-pathogen interactions in a myonecrosis infection.
Collapse
Affiliation(s)
- Lee-Yean Low
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Clayton, Australia
| | - Jodee Gould
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, Australia
| | - Jocelyn M Choo
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Samuel C Forster
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Ross Chapman
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Linden J Gearing
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Jackie K Cheung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Paul Hertzog
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
73
|
Effects of Bile Acids and Nisin on the Production of Enterotoxin by Clostridium perfringens in a Nutrient-Rich Medium. Int J Microbiol 2018; 2018:7276523. [PMID: 29675044 PMCID: PMC5838459 DOI: 10.1155/2018/7276523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 01/26/2023] Open
Abstract
Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens, which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium.
Collapse
|
74
|
Charlebois A, Jacques M, Archambault M. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 2018; 45:593-601. [PMID: 27207477 DOI: 10.1080/03079457.2016.1189512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxaemias in animal species. Recently, C. perfringens was shown to form biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. However, very little is known on the subject and no information is available on gene expression in C. perfringens biofilms. To gain insights into the differences between free-living C. perfringens cells and those in biofilms, we used RNA sequencing. In total, 25.7% of genes showed differential expression in the two growth modes; about 12.8% of genes were up-regulated and about 12.9% were down-regulated in biofilms. We show that 772 genes were significantly differentially expressed between biofilms and planktonic cells from the supernatant of biofilms. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in virulence, energy production, amino acid, nucleotide and carbohydrate metabolism, and in translation and ribosomal structure. Genes up-regulated in biofilm cells were mainly involved in amino acid and carbohydrate metabolism, transcription, inorganic ion metabolism and in defence mechanisms. This study provides new insights into the transcriptomic response of C. perfringens during biofilm formation.
Collapse
Affiliation(s)
- Audrey Charlebois
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| | - Mario Jacques
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| | - Marie Archambault
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| |
Collapse
|
75
|
Abstract
Bacterial endospores possess multiple integument layers, one of which is the cortex peptidoglycan wall. The cortex is essential for the maintenance of spore core dehydration and dormancy and contains structural modifications that differentiate it from vegetative cell peptidoglycan and determine its fate during spore germination. Following the engulfment stage of sporulation, the cortex is synthesized within the intermembrane space surrounding the forespore. Proteins responsible for cortex synthesis are produced in both the forespore and mother cell compartments. While some of these proteins also contribute to vegetative cell wall synthesis, others are sporulation specific. In order for the bacterial endospore to germinate and resume metabolism, the cortex peptidoglycan must first be degraded through the action of germination-specific lytic enzymes. These enzymes are present, yet inactive, in the dormant spore and recognize the muramic-δ-lactam modification present in the cortex. Germination-specific lytic enzymes across Bacillaceae and Clostridiaceae share this specificity determinant, which ensures that the spore cortex is hydrolyzed while the vegetative cell wall remains unharmed. Bacillus species tend to possess two redundant enzymes, SleB and CwlJ, capable of sufficient cortex degradation, while the clostridia have only one, SleC. Additional enzymes are often present that cannot initiate the cortex degradation process, but which can increase the rate of release of small fragments into the medium. Between the two families, the enzymes also differ in the enzymatic activities they possess and the mechanisms acting to restrict their activation until germination has been initiated.
Collapse
|
76
|
Cambridge JM, Blinkova AL, Salvador Rocha EI, Bode Hernández A, Moreno M, Ginés-Candelaria E, Goetz BM, Hunicke-Smith S, Satterwhite E, Tucker HO, Walker JR. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages. PLoS One 2018; 13:e0189673. [PMID: 29293521 PMCID: PMC5749712 DOI: 10.1371/journal.pone.0189673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12–14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism.
Collapse
Affiliation(s)
- Joshua M. Cambridge
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Alexandra L. Blinkova
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Erick I. Salvador Rocha
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Addys Bode Hernández
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Maday Moreno
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Edwin Ginés-Candelaria
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Benjamin M. Goetz
- Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX, United States of America
| | - Scott Hunicke-Smith
- Genomic Sequencing and Analysis Facility, Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Ed Satterwhite
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Haley O. Tucker
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - James R. Walker
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|
77
|
Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors. Front Microbiol 2017; 8:2485. [PMID: 29312194 PMCID: PMC5733095 DOI: 10.3389/fmicb.2017.02485] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Shabhonam Caim
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | | - Purnima Pachori
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Lindsay J. Hall
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
78
|
Lacey JA, Johanesen PA, Lyras D, Moore RJ. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review. Avian Pathol 2017; 45:302-7. [PMID: 26949841 DOI: 10.1080/03079457.2016.1153799] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease.
Collapse
Affiliation(s)
- Jake A Lacey
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia.,b Poultry Cooperative Research Centre , University of New England , Armidale , Australia.,c Australian Animal Health Laboratory , CSIRO , Geelong , Australia
| | - Priscilla A Johanesen
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia
| | - Dena Lyras
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia
| | - Robert J Moore
- a Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Australia.,b Poultry Cooperative Research Centre , University of New England , Armidale , Australia.,c Australian Animal Health Laboratory , CSIRO , Geelong , Australia.,d School of Science , RMIT University , Bundoora , Australia
| |
Collapse
|
79
|
Zheng M, Niu D, Zuo S, Mao P, Meng L, Xu C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1364984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mingli Zheng
- College of Engineering, China Agricultural University, Beijing, China
| | - Dongze Niu
- College of Engineering, China Agricultural University, Beijing, China
| | - Sasa Zuo
- College of Engineering, China Agricultural University, Beijing, China
| | - Peichun Mao
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
80
|
NanR Regulates nanI Sialidase Expression by Clostridium perfringens F4969, a Human Enteropathogenic Strain. Infect Immun 2017; 85:IAI.00241-17. [PMID: 28652312 DOI: 10.1128/iai.00241-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Clostridium perfringens can produce up to three different sialidases, including NanI, its major exosialidase. The current study first showed that human intestinal strains of C. perfringens can grow by utilizing either glucose or sialic acids, such as N-acetylneuraminic acid (Neu5Ac), which are the end products of sialidase activity. For the human enteropathogenic strain F4969, it was then determined that culture supernatant sialidase activity and expression of exosialidase genes, particularly nanI, are influenced by the presence of Neu5Ac or glucose. Low Neu5Ac concentrations increased culture supernatant sialidase activity, largely by stimulating nanI transcription. In contrast, low glucose concentrations did not affect exosialidase activity or nanI transcription. However, either high Neu5Ac or high glucose concentrations repressed F4969 culture supernatant sialidase activity and nanI transcription levels. Furthermore, high glucose levels repressed F4969 culture sialidase activity and nanI expression even in the presence of low Neu5AC concentrations. To begin to evaluate the mechanistic basis for nanI expression, a nanR null mutant was used to demonstrate that NanR, a member of the RpiR family of regulatory proteins, decreases exosialidase activity and nanI transcription in the absence of sialic acid. The ability of C. perfringens to regulate its exosialidase activity, largely by controlling nanI expression, may affect intestinal pathogenesis by affecting the production of NanI, which may affect C. perfringens growth, adhesion, and toxin binding in vivo.
Collapse
|
81
|
Alnoman M, Udompijitkul P, Banawas S, Sarker MR. Bicarbonate and amino acids are co-germinants for spores of Clostridium perfringens type A isolates carrying plasmid-borne enterotoxin gene. Food Microbiol 2017; 69:64-71. [PMID: 28941910 DOI: 10.1016/j.fm.2017.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/14/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
Clostridium perfringens type A isolates carrying a chromosomal enterotoxin (cpe) gene (C-cpe) are generally linked to food poisoning, while isolates carrying cpe on a plasmid (P-cpe) are associated with non-food-borne gastrointestinal diseases. Both C-cpe and P-cpe isolates can form metabolically dormant spores, which through germination process return to actively growing cells to cause diseases. In our previous study, we showed that only 3 out of 20 amino acids (aa) in phosphate buffer (pH 7.0) triggered germination of spores of P-cpe isolates (P-cpe spores). We now found that 14 out of 20 individual aa tested induced germination of P-cpe spores in the presence of bicarbonate buffer (pH 7.0). However, no significant spore germination was observed with bicarbonate (pH 7.0) alone, indicating that aa and bicarbonate are co-germinants for P-cpe spores. P-cpe strain F4969 gerKC spores did not germinate, and gerAA spores germinated extremely poorly as compared to wild-type and gerKA spores with aa-bicarbonate (pH 7.0) co-germinants. The germination defects in gerKC and gerAA spores were partially restored by complementing gerKC or gerAA spores with wild-type gerKC or gerAA, respectively. Collectively, this study identified aa-bicarbonate as a novel nutrient germinant for P-cpe spores and provided evidence that GerKC and GerAA play major roles in aa-bicarbonate induced germination.
Collapse
Affiliation(s)
- Maryam Alnoman
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Department of Biology, College of Science Yanbu, Taibah University, Al-Madinah, Saudi Arabia
| | - Pathima Udompijitkul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Saeed Banawas
- Medical Laboratories Department, College of Applied Medical Science, Majmaah University, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
82
|
Thomas P, Semmler T, Eichhorn I, Lübke-Becker A, Werckenthin C, Abdel-Glil MY, Wieler LH, Neubauer H, Seyboldt C. First report of two complete Clostridium chauvoei genome sequences and detailed in silico genome analysis. INFECTION GENETICS AND EVOLUTION 2017; 54:287-298. [PMID: 28720440 DOI: 10.1016/j.meegid.2017.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022]
Abstract
Clostridium (C.) chauvoei is a Gram-positive, spore forming, anaerobic bacterium. It causes black leg in ruminants, a typically fatal histotoxic myonecrosis. High quality circular genome sequences were generated for the C. chauvoei type strain DSM 7528T (ATCC 10092T) and a field strain 12S0467 isolated in Germany. The origin of replication (oriC) was comparable to that of Bacillus subtilis in structure with two regions containing DnaA boxes. Similar prophages were identified in the genomes of both C. chauvoei strains which also harbored hemolysin and bacterial spore formation genes. A CRISPR type I-B system with limited variations in the repeat number was identified. Sporulation and germination process related genes were homologous to that of the Clostridia cluster I group but novel variations for regulatory genes were identified indicative for strain specific control of regulatory events. Phylogenomics showed a higher relatedness to C. septicum than to other so far sequenced genomes of species belonging to the genus Clostridium. Comparative genome analysis of three C. chauvoei circular genome sequences revealed the presence of few inversions and translocations in locally collinear blocks (LCBs). The species genome also shows a large number of genes involved in proteolysis, genes for glycosyl hydrolases and metal iron transportation genes which are presumably involved in virulence and survival in the host. Three conserved flagellar genes (fliC) were identified in each of the circular genomes. In conclusion this is the first comparative analysis of circular genomes for the species C. chauvoei, enabling insights into genome composition and virulence factor variation.
Collapse
Affiliation(s)
- Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| | | | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, Building 35, 14163, Berlin, Germany.
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, Building 35, 14163, Berlin, Germany.
| | - Christiane Werckenthin
- LAVES, Lebensmittel- und Veterinärinstitut Oldenburg, Martin-Niemöller-Straße 2, 26133 Oldenburg, Germany.
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| |
Collapse
|
83
|
Abstract
The ability of Clostridium perfringens to form spores plays a key role during the transmission of this Gram-positive bacterium to cause disease. Of particular note, the spores produced by food poisoning strains are often exceptionally resistant to food environment stresses such as heat, cold, and preservatives, which likely facilitates their survival in temperature-abused foods. The exceptional resistance properties of spores made by most type A food poisoning strains and some type C foodborne disease strains involve their production of a variant small acid-soluble protein-4 that binds more tightly to spore DNA than to the small acid-soluble protein-4 made by most other C. perfringens strains. Sporulation and germination by C. perfringens and Bacillus spp. share both similarities and differences. Finally, sporulation is essential for production of C. perfringens enterotoxin, which is responsible for the symptoms of C. perfringens type A food poisoning, the second most common bacterial foodborne disease in the United States. During this foodborne disease, C. perfringens is ingested with food and then, by using sporulation-specific alternate sigma factors, this bacterium sporulates and produces the enterotoxin in the intestines.
Collapse
|
84
|
Park M, Rafii F. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens. Anaerobe 2017; 45:78-85. [PMID: 28185856 DOI: 10.1016/j.anaerobe.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
85
|
Li C, Lillehoj HS, Gadde UD, Ritter D, Oh S. Characterization ofClostridium perfringensStrains Isolated from Healthy and Necrotic Enteritis-Afflicted Broiler Chickens. Avian Dis 2017; 61:178-185. [DOI: 10.1637/11507-093016-reg.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service–U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service–U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Ujvala Deepthi Gadde
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service–U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Don Ritter
- Mountaire Farms, 29005 John J. Williams Highway, Millsboro, DE 19966
| | - SungTaek Oh
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service–U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705
| |
Collapse
|
86
|
Charlebois A, Jacques M, Boulianne M, Archambault M. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol 2017; 62:32-38. [DOI: 10.1016/j.fm.2016.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 09/14/2016] [Indexed: 11/25/2022]
|
87
|
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101. Infect Immun 2017; 85:IAI.00855-16. [PMID: 28052992 DOI: 10.1128/iai.00855-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023] Open
Abstract
Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation.
Collapse
|
88
|
Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C, Duranti S, van Sinderen D, Ventura M. Ancient bacteria of the Ötzi's microbiome: a genomic tale from the Copper Age. MICROBIOME 2017; 5:5. [PMID: 28095919 PMCID: PMC5240250 DOI: 10.1186/s40168-016-0221-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/13/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Ancient microbiota information represents an important resource to evaluate bacterial evolution and to explore the biological spread of infectious diseases in history. The soft tissue of frozen mummified humans, such as the Tyrolean Iceman, has been shown to contain bacterial DNA that is suitable for population profiling of the prehistoric bacteria that colonized such ancient human hosts. RESULTS Here, we performed a microbial cataloging of the distal gut microbiota of the Tyrolean Iceman, which highlights a predominant abundance of Clostridium and Pseudomonas species. Furthermore, in silico analyses allowed the reconstruction of the genome sequences of five ancient bacterial genomes, including apparent pathogenic ancestor strains of Clostridium perfringens and Pseudomonas veronii species present in the gut of the Tyrolean Iceman. CONCLUSIONS Genomic analyses of the reconstructed C. perfringens chromosome clearly support the occurrence of a pathogenic profile consisting of virulence genes already existing in the ancient strain, thereby reinforcing the notion of a very early speciation of this taxon towards a pathogenic phenotype. In contrast, the evolutionary development of P. veronii appears to be characterized by the acquisition of antibiotic resistance genes in more recent times as well as an evolution towards an ecological niche outside of the (human) gastrointestinal tract.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy.
| |
Collapse
|
89
|
Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant. Int J Microbiol 2017; 2016:4829716. [PMID: 28058047 PMCID: PMC5183799 DOI: 10.1155/2016/4829716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022] Open
Abstract
Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose.
Collapse
|
90
|
Li J, Uzal FA, McClane BA. Clostridium perfringens Sialidases: Potential Contributors to Intestinal Pathogenesis and Therapeutic Targets. Toxins (Basel) 2016; 8:E341. [PMID: 27869757 PMCID: PMC5127137 DOI: 10.3390/toxins8110341] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium perfringens is a major cause of histotoxic and intestinal infections of humans and other animals. This Gram-positive anaerobic bacterium can produce up to three sialidases named NanH, NanI, and NanJ. The role of sialidases in histotoxic infections, such as gas gangrene (clostridial myonecrosis), remains equivocal. However, recent in vitro studies suggest that NanI may contribute to intestinal virulence by upregulating production of some toxins associated with intestinal infection, increasing the binding and activity of some of those toxins, and enhancing adherence of C. perfringens to intestinal cells. Possible contributions of NanI to intestinal colonization are further supported by observations that the C. perfringens strains causing acute food poisoning in humans often lack the nanI gene, while other C. perfringens strains causing chronic intestinal infections in humans usually carry a nanI gene. Certain sialidase inhibitors have been shown to block NanI activity and reduce C. perfringens adherence to cultured enterocyte-like cells, opening the possibility that sialidase inhibitors could be useful therapeutics against C. perfringens intestinal infections. These initial in vitro observations should be tested for their in vivo significance using animal models of intestinal infections.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Room 420, Bridgeside Point II Building, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408, USA.
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Room 420, Bridgeside Point II Building, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
91
|
Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 2016; 1:mSphere00187-16. [PMID: 27840850 PMCID: PMC5103046 DOI: 10.1128/msphere.00187-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease. The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens. IMPORTANCECandida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease.
Collapse
|
92
|
Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe 2016; 41:5-9. [DOI: 10.1016/j.anaerobe.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
|
93
|
Awad MM, Cheung JK, Tan JE, McEwan AG, Lyras D, Rood JI. Functional analysis of an feoB mutant in Clostridium perfringens strain 13. Anaerobe 2016; 41:10-17. [DOI: 10.1016/j.anaerobe.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022]
|
94
|
The Details of Glycolipid Glycan Hydrolysis by the Structural Analysis of a Family 123 Glycoside Hydrolase from Clostridium perfringens. J Mol Biol 2016; 428:3253-3265. [DOI: 10.1016/j.jmb.2016.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 01/02/2023]
|
95
|
Characterization of a high-affinity sialic acid-specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem J 2016; 473:2109-18. [DOI: 10.1042/bcj20160340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
Abstract
CBMs (carbohydrate-binding modules) are a class of polypeptides usually associated with carbohydrate-active enzymatic sites. We have characterized a new member of the CBM40 family, coded from a section of the gene NanI from Clostridium perfringens. Glycan arrays revealed its preference towards α(2,3)-linked sialosides, which was confirmed and quantified by calorimetric studies. The CBM40 binds to α(2,3)-sialyl-lactose with a Kd of ∼30 μM, the highest affinity value for this class of proteins. Inspired by lectins' structure and their arrangement as multimeric proteins, we have engineered a dimeric form of the CBM, and using SPR (surface plasmon resonance) we have observed 6–11-fold binding increases due to the avidity affect. The structures of the CBM, resolved by X-ray crystallography, in complex with α(2,3)- or α(2,6)-sialyl-lactose explain its binding specificity and unusually strong binding.
Collapse
|
96
|
Low LY, Harrison PF, Lin YH, Boyce JD, Rood JI, Cheung JK. RNA-seq analysis of virR and revR mutants of Clostridium perfringens. BMC Genomics 2016; 17:391. [PMID: 27216822 PMCID: PMC4877802 DOI: 10.1186/s12864-016-2706-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022] Open
Abstract
Background Clostridium perfringens causes toxin-mediated diseases, including gas gangrene (clostridial myonecrosis) and food poisoning in humans. The production of the toxins implicated in gas gangrene, α-toxin and perfringolysin O, is regulated by the VirSR two-component regulatory system. In addition, RevR, an orphan response regulator, has been shown to affect virulence in the mouse myonecrosis model. RevR positively regulates the expression of genes that encode hydrolytic enzymes, including hyaluronidases and sialidases. Results To further characterize the VirSR and RevR regulatory networks, comparative transcriptomic analysis was carried out with strand-specific RNA-seq on C. perfringens strain JIR325 and its isogenic virR and revR regulatory mutants. Using the edgeR analysis package, 206 genes in the virR mutant and 67 genes in the revR mutant were found to be differentially expressed. Comparative analysis revealed that VirR acts as a global negative regulator, whilst RevR acts as a global positive regulator. Therefore, about 95 % of the differentially expressed genes were up-regulated in the virR mutant, whereas 81 % of the differentially expressed genes were down-regulated in the revR mutant. Importantly, we identified 23 genes that were regulated by both VirR and RevR, 18 of these genes, which included the sporulation-specific spoIVA, sigG and sigF genes, were regulated positively and negatively by RevR and VirR, respectively. Furthermore, analysis of the mapped RNA-seq reads visualized as depth of coverage plots showed that there were 93 previously unannotated transcripts in intergenic regions. These transcripts potentially encode small RNA molecules. Conclusion In conclusion, using strand-specific RNA-seq analysis, this study has identified differentially expressed chromosomal and pCP13 native plasmid-encoded genes, antisense transcripts, and transcripts within intergenic regions that are controlled by the VirSR or RevR regulatory systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2706-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee-Yean Low
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Clayton, 3800, Australia
| | - Ya-Hsun Lin
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - John D Boyce
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Jackie K Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
97
|
Woudstra C, Le Maréchal C, Souillard R, Bayon-Auboyer MH, Mermoud I, Desoutter D, Fach P. New Insights into the Genetic Diversity of Clostridium botulinum Group III through Extensive Genome Exploration. Front Microbiol 2016; 7:757. [PMID: 27242769 PMCID: PMC4871853 DOI: 10.3389/fmicb.2016.00757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/05/2016] [Indexed: 02/01/2023] Open
Abstract
Animal botulism is caused by group III Clostridium botulinum strains producing type C and D toxins, or their chimeric forms C/D and D/C. Animal botulism is considered an emerging disease in Europe, notably in poultry production. Before our study, 14 genomes from different countries were available in the public database, but none were from France. In order to investigate the genetic relationship of French strains with different geographical areas and find new potential typing targets, 17 strains of C. botulinum group III were sequenced (16 from France and one from New Caledonia). Fourteen were type C/D strains isolated from chickens, ducks, guinea fowl and turkeys and three were type D/C strains isolated from cattle. The New Caledonian strain was a type D/C strain. Whole genome sequence analysis showed the French strains to be closely related to European strains from C. botulinum group III lineages Ia and Ib. The investigation of CRISPR sequences as genetic targets for differentiating strains in group III proved to be irrelevant for type C/D due to a deficient CRISPR/Cas mechanism, but not for type D/C. Conversely, the extrachromosomal elements of type C/D strains could be used to generate a genetic ID card. The highest level of discrimination was achieved with SNP core phylogeny, which allowed differentiation up to strain level and provide the most relevant information for genetic epidemiology studies and discrimination.
Collapse
Affiliation(s)
- Cédric Woudstra
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety - Université Paris-Est Maisons-Alfort, France
| | - Caroline Le Maréchal
- Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan-Plouzané Laboratory, UEB, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; l'UBL Université Bretagne LoireRennes, France
| | - Rozenn Souillard
- l'UBL Université Bretagne LoireRennes, France; Avian and Rabbit Epidemiology and Welfare Unit, Ploufragan-Plouzané Laboratory, UEB, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France
| | | | - Isabelle Mermoud
- Veterinary Diagnostic Laboratory, Laboratoires Officiels Vétérinaires, Agroalimentaires et Phytosanitaires, La Direction des Affaires Vétérinaires Païta, New Caledonia
| | - Denise Desoutter
- Veterinary Diagnostic Laboratory, Laboratoires Officiels Vétérinaires, Agroalimentaires et Phytosanitaires, La Direction des Affaires Vétérinaires Païta, New Caledonia
| | - Patrick Fach
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety - Université Paris-Est Maisons-Alfort, France
| |
Collapse
|
98
|
Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness. Appl Environ Microbiol 2016; 82:2929-2942. [PMID: 26969700 DOI: 10.1128/aem.00252-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. IMPORTANCE Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens.
Collapse
|
99
|
Ezatkhah M, Alimolaei M, Shahdadnejad N. The Prevalence of netB Gene in Isolated Clostridium perfringens From Organic Broiler Farms Suspected to Necrotic Enteritis. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2016. [DOI: 10.17795/ijep35667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
100
|
André G, Haudecoeur E, Courtois E, Monot M, Dupuy B, Rodionov DA, Martin-Verstraete I. Cpe1786/IscR of Clostridium perfringens represses expression of genes involved in Fe-S cluster biogenesis. Res Microbiol 2016; 168:345-355. [PMID: 27020244 DOI: 10.1016/j.resmic.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
Cpe1786 of Clostridium perfringens is an Rrf2-type regulator containing the three-cysteine residues coordinating a Fe-S in IscR, the repressor controlling Fe-S homeostasis in enterobacteria. The cpe1786 gene formed an operon with iscSU involved in Fe-S biogenesis and tmrU. This operon was transcribed from a σA-dependent promoter. We showed that in the heterologous host Bacillus subtilis, Cpe1786, renamed IscRCp, negatively controlled its own transcription. We constructed an iscR mutant in C. perfringens. We then compared the expression profile of strain 13 and of the iscR mutant. IscRCp controlled expression of genes involved in Fe-S biogenesis, in amino acid or sugar metabolisms, in fermentation pathways and in host compound utilization. We then demonstrated, using a ChIP-PCR experiment, that IscRCp interacted with its promoter region in vivo in C. perfringens and with the promoter of cpe2093 encoding an amino acid ABC transporter. We utilized a comparative genomic approach to infer a candidate IscR binding motif and reconstruct IscR regulons in clostridia. We showed that point mutations in the conserved motif of 29 bp identified upstream of iscR decreased the cysteine-dependent repression of iscR mediated by IscRCp.
Collapse
Affiliation(s)
- Gaelle André
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Elise Haudecoeur
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Emmanuelle Courtois
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Marc Monot
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|