51
|
Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci 2016; 73:1659-70. [PMID: 26846696 PMCID: PMC4805692 DOI: 10.1007/s00018-016-2146-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
Activation of telomerase is a critical step in the development of about 85 % of human cancers. Levels of Tert, which encodes the reverse transcriptase subunit of telomerase, are limiting in normal somatic cells. Tert is subjected to transcriptional, post-transcriptional and epigenetic regulation, but the precise mechanism of how telomerase is re-activated in cancer cells is poorly understood. Reactivation of the Tert promoter involves multiple changes which evolve during cancer progression including mutations and chromosomal re-arrangements. Newly described non-coding mutations in the Tert promoter region of many cancer cells (19 %) in two key positions, C250T and C228T, have added another layer of complexity to telomerase reactivation. These mutations create novel consensus sequences for transcription factors which can enhance Tert expression. In this review, we will discuss gene structure and function of Tert and provide insights into the mechanisms of Tert reactivation in cancers, highlighting the contribution of recently identified Tert promoter mutations.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Bilal Unal
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
52
|
Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:283-312. [PMID: 26907526 DOI: 10.1146/annurev-pathol-012615-044446] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.
Collapse
Affiliation(s)
- June-Koo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea;
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul 06351, South Korea;
| | - Mijung Kwon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115;
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
53
|
Chu TW, MacNeil DE, Autexier C. Multiple Mechanisms Contribute to the Cell Growth Defects Imparted by Human Telomerase Insertion in Fingers Domain Mutations Associated with Premature Aging Diseases. J Biol Chem 2016; 291:8374-86. [PMID: 26887940 DOI: 10.1074/jbc.m116.714782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Normal human stem cells rely on low levels of active telomerase to sustain their high replicative requirements. Deficiency in telomere maintenance mechanisms leads to the development of premature aging diseases, such as dyskeratosis congenita and aplastic anemia. Mutations in the unique "insertion in fingers domain" (IFD) in the human telomerase reverse transcriptase catalytic subunit (hTERT) have previously been identified and shown to be associated with dyskeratosis congenita and aplastic anemia. However, little is known about the molecular mechanisms impacted by these IFD mutations. We performed comparative functional analyses of disease-associated IFD variants at the molecular and cellular levels. We report that hTERT-P721R- and hTERT-R811C-expressing cells exhibited growth defects likely due to impaired TPP1-mediated recruitment of these variant enzymes to telomeres. We showed that activity and processivity of hTERT-T726M failed to be stimulated by TPP1-POT1 overexpression and that dGTP usage by this variant was less efficient compared with the wild-type enzyme. hTERT-P785L-expressing cells did not show growth defects, and this variant likely confers cell survival through increased DNA synthesis and robust activity stimulation by TPP1-POT1. Altogether, our data suggest that multiple mechanisms contribute to cell growth defects conferred by the IFD variants.
Collapse
Affiliation(s)
- Tsz Wai Chu
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Medicine, McGill University, Montréal H4A 3J1, Canada, and
| | - Deanna Elise MacNeil
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Anatomy and Cell Biology, McGill University, Montréal H3A 0C7, Canada
| | - Chantal Autexier
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Medicine, McGill University, Montréal H4A 3J1, Canada, and Department of Anatomy and Cell Biology, McGill University, Montréal H3A 0C7, Canada
| |
Collapse
|
54
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
Affiliation(s)
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Giovanna Damia
- Department of Oncology, Instituti di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, United States
| | | | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Asfar S Azmi
- Department of Biology, University of Rochester, Rochester, United States
| | - Dipita Bhakta
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Department of Research & Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | | | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Gunjan Guha
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Satya Prakash
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
55
|
Leibowitz ML, Zhang CZ, Pellman D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annu Rev Genet 2015; 49:183-211. [DOI: 10.1146/annurev-genet-120213-092228] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mitchell L. Leibowitz
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | - Cheng-Zhong Zhang
- Department of Pediatric Oncology,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
| | - David Pellman
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
56
|
Mersaoui SY, Gravel S, Karpov V, Wellinger RJ. DNA damage checkpoint adaptation genes are required for division of cells harbouring eroded telomeres. MICROBIAL CELL 2015; 2:394-405. [PMID: 28357265 PMCID: PMC5354583 DOI: 10.15698/mic2015.10.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In budding yeast, telomerase and the Cdc13p protein are two key players acting to ensure telomere stability. In the absence of telomerase, cells eventually enter a growth arrest which only few can overcome via a conserved process; such cells are called survivors. Survivors rely on homologous recombination-dependent mechanisms for telomeric repeat addition. Previously, we showed that such survivor cells also manage to bypass the loss of the essential Cdc13p protein to give rise to Cdc13-independent (or cap-independent) strains. Here we show that Cdc13-independent cells grow with persistently recognized DNA damage, which does not however result in a checkpoint activation; thus no defect in cell cycle progression is detectable. The absence of checkpoint signalling rather is due to the accumulation of mutations in checkpoint genes such as RAD24 or MEC1. Importantly, our results also show that cells that have lost the ability to adapt to persistent DNA damage, also are very much impaired in generating cap-independent cells. Altogether, these results show that while the capping process can be flexible, it takes a very specific genetic setup to allow a change from canonical capping to alternative capping. We hypothesize that in the alternative capping mode, genome integrity mechanisms are abrogated, which could cause increased mutation frequencies. These results from yeast have clear parallels in transformed human cancer cells and offer deeper insights into processes operating in pre-cancerous human cells that harbour eroded telomeres.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| | - Serge Gravel
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| | - Victor Karpov
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| | - Raymund J Wellinger
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| |
Collapse
|
57
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci A, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams G, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi AI, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D'Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar PK, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Sing Leung P, Nangia-Makker P, Cheng QS, Robey RB, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Abd Hamid R, Langie SAS, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell WK, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-96. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer. This risk may be overlooked by current regulatory practices and needs to be vigorously investigated. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H Goodson
- California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA, Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK, Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA, Getting to Know Cancer, Guelph N1G 1E4, Canada, School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA, Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK, Department of Nutrition, University of Oslo, Oslo, Norway, Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway, Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA, Spanish National Cancer Research Centre, CNI
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Barry J Barclay
- Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W Felsher
- Department of Medicine, Oncology and Pathology, Stanford University, Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606-8507, Japan
| | - Hosni K Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R Whitfield
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia, Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie, De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E Lleonart
- Institut De Recerca Hospital Vall D'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Michael J Gonzalez
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Nancy B Kuemmerle
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy , Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria, Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta, GA 30322, USA, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida Abd Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada, Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy, Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy, National Institute of Biostructures and Biosystems, Viale Medaglie d' Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France, Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
58
|
Langie SAS, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown DG, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan EP, Ostrosky-Wegman P, Salem HK, Scovassi AI, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-88. [PMID: 26106144 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
59
|
Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1. J Transl Med 2015; 13:227. [PMID: 26174772 PMCID: PMC4501087 DOI: 10.1186/s12967-015-0596-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 12/02/2022] Open
Abstract
Background There is a paucity of effective therapies for recurrent/aggressive meningiomas. Establishment of improved in vitro and in vivo meningioma models will facilitate development and testing of novel therapeutic approaches. Methods A primary meningioma cell line was generated from a patient with an olfactory groove meningioma. The cell line was extensively characterized by performing analysis of growth kinetics, immunocytochemistry, telomerase activity, karyotype, and comparative genomic hybridization. Xenograft models using immunocompromised SCID mice were also developed. Results Histopathology of the patient tumor was consistent with a WHO grade I typical meningioma composed of meningothelial cells, whorls, and occasional psammoma bodies. The original tumor and the early passage primary cells shared the standard immunohistochemical profile consistent with low-grade, good prognosis meningioma. Low passage KCI-MENG1 cells were composed of two cell types with spindle and round morphologies, showed linear growth curve, had very low telomerase activity, and were composed of two distinct unrelated clones on cytogenetic analysis. In contrast, high passage cells were homogeneously round, rapidly growing, had high telomerase activity, and were composed of a single clone with a near triploid karyotype containing 64–66 chromosomes with numerous aberrations. Following subcutaneous and orthotopic transplantation of low passage cells into SCID mice, firm tumors positive for vimentin and progesterone receptor (PR) formed, while subcutaneous implant of high passage cells yielded vimentin-positive, PR-negative tumors, concordant with a high-grade meningioma. Conclusions Although derived from a benign meningioma specimen, the newly-established spontaneously immortal KCI-MENG1 meningioma cell line can be utilized to generate xenograft tumor models with either low- or high-grade features, dependent on the cell passage number (likely due to the relative abundance of the round, near-triploid cells). These human meningioma mouse xenograft models will provide biologically relevant platforms from which to investigate differences in low- vs. high-grade meningioma tumor biology and disease progression as well as to develop novel therapies to improve treatment options for poor prognosis or recurrent meningiomas. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0596-8) contains supplementary material, which is available to authorized users.
Collapse
|
60
|
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:425-48. [PMID: 25621662 DOI: 10.1146/annurev-pathol-012414-040424] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland;
| | | |
Collapse
|
61
|
Bellon M, Nicot C. Multiple Pathways Control the Reactivation of Telomerase in HTLV-I-Associated Leukemia. ACTA ACUST UNITED AC 2015; 2. [PMID: 26430700 DOI: 10.15436/2377-0902.15.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While telomerase (hTERT) activity is absent from normal somatic cells, reactivation of hTERT expression is a hallmark of cancer cells. Telomerase activity is required for avoiding replicative senescence and supports immortalization of cellular proliferation. Only a minority of cancer cells rely on a telomerase-independent process known as alternative lengthening of telomeres, ALT, to sustain cancer cell proliferation. Multiple genetic, epigenetic, and viral mechanisms have been found to de-regulate telomerase gene expression, thereby increasing the risk of cellular transformation. Here, we review the different strategies used by the Human T-cell leukemia virus type 1, HTLV-I, to activate hTERT expression and stimulate its enzymatic activity in virally infected CD4 T cells. The implications of hTERT reactivation in HTLV-I pathogenesis and disease treatment are discussed.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
62
|
Modulators of cellular senescence: mechanisms, promises, and challenges from in vitro studies with dietary bioactive compounds. Nutr Res 2014; 34:1017-35. [DOI: 10.1016/j.nutres.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
|
63
|
Telomere attrition and candidate gene mutations preceding monosomy 7 in aplastic anemia. Blood 2014; 125:706-9. [PMID: 25406353 DOI: 10.1182/blood-2014-10-607572] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathophysiology of severe aplastic anemia (SAA) is immune-mediated destruction of hematopoietic stem and progenitor cells (HSPCs). Most patients respond to immunosuppressive therapies, but a minority transform to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), frequently associated with monosomy 7 (-7). Thirteen SAA patients were analyzed for acquired mutations in myeloid cells at the time of evolution to -7, and all had a dominant HSPC clone bearing specific acquired mutations. However, mutations in genes associated with MDS/AML were present in only 4 cases. Patients who evolved to MDS and AML showed marked progressive telomere attrition before the emergence of -7. Single telomere length analysis confirmed accumulation of short telomere fragments of individual chromosomes. Our results indicate that accelerated telomere attrition in the setting of a decreased HSPC pool is characteristic of early myeloid oncogenesis, specifically chromosome 7 loss, in MDS/AML after SAA, and provides a possible mechanism for development of aneuploidy.
Collapse
|
64
|
Berardinelli F, Siteni S, Tanzarella C, Stevens MF, Sgura A, Antoccia A. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells. DNA Repair (Amst) 2014; 25:104-15. [PMID: 25467559 DOI: 10.1016/j.dnarep.2014.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications.
Collapse
Affiliation(s)
- F Berardinelli
- Department of Science, Università "Roma Tre", Rome, Italy; INFN Roma Tre, Rome, Italy.
| | - S Siteni
- Department of Science, Università "Roma Tre", Rome, Italy; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - C Tanzarella
- Department of Science, Università "Roma Tre", Rome, Italy
| | - M F Stevens
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - A Sgura
- Department of Science, Università "Roma Tre", Rome, Italy; INFN Roma Tre, Rome, Italy
| | - A Antoccia
- Department of Science, Università "Roma Tre", Rome, Italy; INFN Roma Tre, Rome, Italy
| |
Collapse
|
65
|
Janus-faces of NME-oncoprotein interactions. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:175-87. [PMID: 25366701 DOI: 10.1007/s00210-014-1062-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
Abstract
Since the identification of Nm23 (NME1, NME/NM23 nucleoside diphosphate kinase 1) as the first non-metastatic protein, a great deal of research on members of the NME family of proteins has focused on roles in processes implicated in carcinogenesis and particularly their regulation of cellular motility and the process of metastatic spread. To date, there are ten identified members of this family of genes, and these can be dichotomized into groups both taxonomically and by the presence or absence of their nucleoside diphosphate kinase activity with NMEs 1-4 encoding nucleoside diphosphate kinases (NDPKs) and NMEs 5-9 plus RP2 displaying little if any NDPK activity. NMEs are relatively small proteins that can form hetero-oligomers (typically hexamers), and given the apparent genetic redundancy of some NMEs and the number of different isoforms, it is perhaps not surprising that there remains a great deal of uncertainty regarding their function and even more regarding cellular mechanisms of action. Since residues that contribute to NDPK activity span much of the protein, it seems likely that the consequences of NME expression must be mediated through their NDPK activity, through interactions with other structures in cells including protein-protein interactions or through combinations of these. Our goal in this review is to focus on some of the protein-protein interactions that have been identified and to highlight some of the challenges that face this area of research.
Collapse
|
66
|
García‐Beccaria M, Martínez P, Flores JM, Blasco MA. In vivo role of checkpoint kinase 2 in signaling telomere dysfunction. Aging Cell 2014; 13:810-6. [PMID: 24920220 PMCID: PMC4331747 DOI: 10.1111/acel.12237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2014] [Indexed: 01/01/2023] Open
Abstract
Checkpoint kinase 2 (CHK2) is a downstream effector of the DNA damage response (DDR). Dysfunctional telomeres, either owing to critical shortening or disruption of the shelterin complex, activate a DDR, which eventually results in cell cycle arrest, senescence and/or apoptosis. Successive generations of telomerase-deficient (Terc) mice show accelerated aging and shorter lifespan due to tissue atrophy and impaired organ regeneration associated to progressive telomere shortening. In contrast, mice deficient for the shelterin component TRF1 in stratified epithelia show a rapid and massive induction of DDR, leading to perinatal lethality and severe skin defects. In both mouse models, p53 deficiency can rescue survival. Here, we set to address the role of CHK2 in signaling telomere dysfunction in both mouse models. To this end, we generated mice doubly deficient for Chk2 and either Terc (Chk2−/−Terc−/−) or Trf1 (Trf1Δ/ΔK5Cre Chk2−/−). We show that Chk2 deletion improves Terc-associated phenotypes, including lifespan and age-associated pathologies. Similarly, Chk2 deficiency partially rescues perinatal mortality and attenuates degenerative pathologies of Trf1Δ/ΔK5Cre mice. In both cases, we show that the effects are mediated by a significant attenuation of p53/p21 signaling pathway. Our results represent the first demonstration of a role for CHK2 in the in vivo signaling of dysfunctional telomeres.
Collapse
Affiliation(s)
- María García‐Beccaria
- Molecular Oncology Program Telomeres and Telomerase Group Spanish National Cancer Research Centre (CNIO) Madrid E‐28029Spain
| | - Paula Martínez
- Molecular Oncology Program Telomeres and Telomerase Group Spanish National Cancer Research Centre (CNIO) Madrid E‐28029Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department Faculty of Veterinary Science Complutense University of Madrid Madrid E‐28040Spain
| | - Maria A. Blasco
- Molecular Oncology Program Telomeres and Telomerase Group Spanish National Cancer Research Centre (CNIO) Madrid E‐28029Spain
| |
Collapse
|
67
|
Varetti G, Pellman D, Gordon DJ. Aurea mediocritas: the importance of a balanced genome. Cold Spring Harb Perspect Biol 2014; 6:a015842. [PMID: 25237130 DOI: 10.1101/cshperspect.a015842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aneuploidy, defined as an abnormal number of chromosomes, is a hallmark of cancer. Paradoxically, aneuploidy generally has a negative impact on cell growth and fitness in nontransformed cells. In this work, we review recent progress in identifying how aneuploidy leads to genomic and chromosomal instability, how cells can adapt to the deleterious effects of aneuploidy, and how aneuploidy contributes to tumorigenesis in different genetic contexts. Finally, we also discuss how aneuploidy might be a target for anticancer therapies.
Collapse
Affiliation(s)
- Gianluca Varetti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789
| | - David J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
68
|
Multifunctional role of ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere maintenance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787404. [PMID: 25247188 PMCID: PMC4163350 DOI: 10.1155/2014/787404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development.
Collapse
|
69
|
Aref S, El-Ghonemy MS, Abouzeid TE, El-Sabbagh AM, El-Baiomy MA. Telomerase reverse transcriptase (TERT) A1062T mutation as a prognostic factor in Egyptian patients with acute myeloid leukemia (AML). Med Oncol 2014; 31:158. [PMID: 25108601 DOI: 10.1007/s12032-014-0158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/30/2014] [Indexed: 01/16/2023]
Abstract
This study aimed to evaluate the incidence and clinical and prognostic impact of TERT A1062T mutation in AML patients treated at Mansoura Oncology Center. Screening for TERT A1062T mutation in exon 15 of the TERT gene was performed on diagnostic DNA samples from 153 AML patients and 197 healthy subjects as a control group by using sequence-specific primers. TERT A1062T mutation was detected in 18 cases out of 153 patients (11.8 %) and in one out of 197 control group subjects (0.51 %). The achievement of complete remission was significantly higher in AML group with wild type as compared to that in the mutant one (53.3 vs 16.7 %, respectively). In addition, the relapse rate was significantly higher in the mutant patients as compared to those with wild type (62.5 vs 28.2 %, respectively). The AML patients with TERT (A1062T) mutation had shorter overall survival than patients with wild type (P = 0.001). In a multivariable analysis, TERT (A1062T) mutational status is independently worse predictor factor (P = 0.007) when controlling for cytogenetic status (P = <0.001), performance status (P = <0.001) and bone marrow blast cells (P = 0.001). In conclusion, TERT A1062T mutation is an independent negative prognostic factor in AML patients. Therefore, molecular testing for TERT A1062T mutation in patients with AML is recommended in order to delineate their prognostic status.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt,
| | | | | | | | | |
Collapse
|
70
|
Hu J, Tepsuporn S, Meyers RM, Gostissa M, Alt FW. Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci U S A 2014; 111:10269-74. [PMID: 24982162 PMCID: PMC4104897 DOI: 10.1073/pnas.1410112111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mature IgM(+) B-cell lymphomas that arise in certain ataxia telangiectasia-mutated (ATM)-deficient compound mutant mice harbor translocations that fuse V(D)J recombination-initiated IgH double-strand breaks (DSBs) on chromosome 12 to sequences downstream of c-myc on chromosome 15, generating dicentric chromosomes and c-myc amplification via a breakage-fusion-bridge mechanism. As V(D)J recombination DSBs occur in developing progenitor B cells in the bone marrow, we sought to elucidate a mechanism by which such DSBs contribute to oncogenic translocations/amplifications in mature B cells. For this purpose, we applied high-throughput genome-wide translocation sequencing to study the fate of introduced c-myc DSBs in splenic IgM(+) B cells stimulated for activation-induced cytidine deaminase (AID)-dependent IgH class switch recombination (CSR). We found frequent translocations of c-myc DSBs to AID-initiated DSBs in IgH switch regions in wild-type and ATM-deficient B cells. However, c-myc also translocated frequently to newly generated DSBs within a 35-Mb region downstream of IgH in ATM-deficient, but not wild-type, CSR-activated B cells. Moreover, we found such DSBs and translocations in activated B cells that did not express AID or undergo CSR. Our findings indicate that ATM deficiency leads to formation of chromosome 12 dicentrics via recombination-activating gene-initiated IgH DSBs in progenitor B cells and that these dicentrics can be propagated developmentally into mature B cells where they generate new DSBs downstream of IgH via breakage-fusion-bridge cycles. We propose that dicentrics formed by joining V(D)J recombination-associated IgH DSBs to DSBs downstream of c-myc in ATM-deficient B lineage cells similarly contribute to c-myc amplification and mature B-cell lymphomas.
Collapse
Affiliation(s)
- Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
71
|
Dinami R, Ercolani C, Petti E, Piazza S, Ciani Y, Sestito R, Sacconi A, Biagioni F, le Sage C, Agami R, Benetti R, Mottolese M, Schneider C, Blandino G, Schoeftner S. miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 2014; 74:4145-56. [PMID: 24876105 DOI: 10.1158/0008-5472.can-13-2038] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomeres consist of DNA tandem repeats that recruit the multiprotein complex shelterin to build a chromatin structure that protects chromosome ends. Although cancer formation is linked to alterations in telomere homeostasis, there is little understanding of how shelterin function is limited in cancer cells. Using a small-scale screening approach, we identified miR-155 as a key regulator in breast cancer cell expression of the shelterin component TERF1 (TRF1). miR-155 targeted a conserved sequence motif in the 3'UTR of TRF1, resulting in its translational repression. miR-155 was upregulated commonly in breast cancer specimens, as associated with reduced TRF1 protein expression, metastasis-free survival, and relapse-free survival in estrogen receptor-positive cases. Modulating miR-155 expression in cells altered TRF1 levels and TRF1 abundance at telomeres. Compromising TRF1 expression by elevating miR-155 increased telomere fragility and altered the structure of metaphase chromosomes. In contrast, reducing miR-155 levels improved telomere function and genomic stability. These results implied that miR-155 upregulation antagonizes telomere integrity in breast cancer cells, increasing genomic instability linked to poor clinical outcome in estrogen receptor-positive disease. Our work argued that miRNA-dependent regulation of shelterin function has a clinically significant impact on telomere function, suggesting the existence of "telo-miRNAs" that have an impact on cancer and aging.
Collapse
Affiliation(s)
- Roberto Dinami
- Telomeres in Cancer and Aging Unit, Dipartimento di Scienze della Vita, SDBM School of Molecular Biomedicine (SDBM), Università degli Studi di Trieste, Trieste; Telomeres in Cancer and Aging Unit
| | | | - Eleonora Petti
- Telomeres in Cancer and Aging Unit, Dipartimento di Scienze della Vita, SDBM School of Molecular Biomedicine (SDBM), Università degli Studi di Trieste, Trieste; Telomeres in Cancer and Aging Unit
| | | | - Yari Ciani
- Bioinformatics and Functional Genomics Unit, and
| | | | | | | | - Carlos le Sage
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roberta Benetti
- Epigenetics Unit, Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB); Dipartimento di Scienze Mediche e Biologiche, Universita degli Studi di Udine, Udine, Italy; and
| | | | - Claudio Schneider
- Bioinformatics and Functional Genomics Unit, and Dipartimento di Scienze Mediche e Biologiche, Universita degli Studi di Udine, Udine, Italy; and
| | | | - Stefan Schoeftner
- Telomeres in Cancer and Aging Unit, Telomeres in Cancer and Aging Unit,
| |
Collapse
|
72
|
Groocock LM, Nie M, Prudden J, Moiani D, Wang T, Cheltsov A, Rambo RP, Arvai AS, Hitomi C, Tainer JA, Luger K, Perry JJP, Lazzerini-Denchi E, Boddy MN. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. EMBO Rep 2014; 15:601-8. [PMID: 24714598 DOI: 10.1002/embr.201338369] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The post-translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin-like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO-modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome-targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome-targeting is crucially required for the repair of TRF2-depleted dysfunctional telomeres by 53BP1-mediated non-homologous end joining.
Collapse
Affiliation(s)
- Lynda M Groocock
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Anton T, Bultmann S, Leonhardt H, Markaki Y. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 2014; 5:163-72. [PMID: 24637835 PMCID: PMC4049922 DOI: 10.4161/nucl.28488] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Labeling and tracing of specific sequences in living cells has been a major challenge in studying the spatiotemporal dynamics of native chromatin. Here we repurposed the prokaryotic CRISPR/Cas adaptive immunity system to specifically detect endogenous genomic loci in mouse embryonic stem cells. We constructed a catalytically inactive version of the Cas9 endonuclease, fused it with eGFP (dCas9-eGFP) and co-expressed small guide RNAs (gRNAs) to target pericentric, centric, and telomeric repeats, which are enriched in distinct nuclear structures. With major satellite specific gRNAs we obtained a characteristic chromocenter (CC) pattern, while gRNAs targeting minor satellites and telomeres highlighted smaller foci coinciding with centromere protein B (CENP-B) and telomeric repeat-binding factor 2 (TRF2), respectively. DNA sequence specific labeling by gRNA/dCas9-eGFP complexes was directly shown with 3D-fluorescent in situ hybridization (3D-FISH). Structured illumination microscopy (3D-SIM) of gRNA/dCas9-eGFP expressing cells revealed chromatin ultrastructures and demonstrated the potential of this approach for chromatin conformation studies by super resolution microscopy. This programmable dCas9 labeling system opens new perspectives to study functional nuclear architecture.
Collapse
Affiliation(s)
- Tobias Anton
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| | - Yolanda Markaki
- Department of Biology II; Center for Integrated Protein Science Munich (CIPSM); Ludwig Maximilians University Munich; Planegg-Martinsried, Germany
| |
Collapse
|
74
|
Martinerie L, Manterola M, Chung SSW, Panigrahi SK, Weisbach M, Vasileva A, Geng Y, Sicinski P, Wolgemuth DJ. Mammalian E-type cyclins control chromosome pairing, telomere stability and CDK2 localization in male meiosis. PLoS Genet 2014; 10:e1004165. [PMID: 24586195 PMCID: PMC3937215 DOI: 10.1371/journal.pgen.1004165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/22/2013] [Indexed: 11/24/2022] Open
Abstract
Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis. Understanding the control of meiosis is fundamental to deciphering the origin of male infertility. Although the mechanisms controlling meiosis are poorly understood, key regulators of mitosis, such as cyclins, appear to be critical. In this regard, male mice deficient for cyclin E2 exhibit subfertility and defects in spermatogenesis; however, neither the stages of germ cell differentiation affected nor the responsible mechanisms are known. We investigated how E-type cyclins control male meiosis by examining their expression in spermatogenesis and the consequences that multiple deletions of Ccne1 and Ccne2 alleles produce. Loss of Ccne2 expression increases cyclin E1 levels as a compensatory effect, but there are still meiotic defects and subfertility. Further, loss of one Ccne1 allele in the absence of cyclin E2 results in infertility as does loss of the remaining Ccne1 allele, but with even more severe meiotic abnormalities. We further found that cyclin E1 is involved in sex chromosome synapsis while E2 is involved with homologous pairing and chromosome and telomere integrity. These processes and structures were severely disrupted in absence of both cyclin E1 and E2, uncovering new roles for the E-type cyclins in regulating male meiosis.
Collapse
Affiliation(s)
- Laetitia Martinerie
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Marcia Manterola
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Sanny S W Chung
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Sunil K Panigrahi
- Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Melissa Weisbach
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ana Vasileva
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America ; Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Yan Geng
- Department of Genetics, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Peter Sicinski
- Department of Genetics, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Debra J Wolgemuth
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America ; Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, United States of America ; Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
75
|
Paiva RMA, Calado RT. Telomere dysfunction and hematologic disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:133-57. [PMID: 24993701 DOI: 10.1016/b978-0-12-397898-1.00006-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aplastic anemia is a disease in which the hematopoietic stem cell fails to adequately produce peripheral blood cells, causing pancytopenia. In some cases of acquired aplastic anemia and in inherited type of aplastic anemia, dyskeratosis congenita, telomere biology gene mutations and telomere shortening are etiologic. Telomere erosion hampers the ability of hematopoietic stem and progenitor cells to adequately replicate, clinically resulting in bone marrow failure. Additionally, telomerase mutations and short telomeres are genetic risk factors for the development of some hematologic cancers, including myelodysplastic syndrome, acute myeloid leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Raquel M A Paiva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
76
|
Pal J, Gold JS, Munshi NC, Shammas MA. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target. Transl Res 2013; 162:364-70. [PMID: 24090770 PMCID: PMC3834232 DOI: 10.1016/j.trsl.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to highlight the importance of telomeres, the mechanisms implicated in their maintenance, and their role in the etiology as well as the treatment of human esophageal cancer. We will also discuss the role of telomeres in the maintenance and preservation of genomic integrity, the consequences of telomere dysfunction, and the various factors that may affect telomere health in esophageal tissue predisposing it to oncogenesis. There has been growing evidence that telomeres, which can be affected by various intrinsic and extrinsic factors, contribute to genomic instability, oncogenesis, as well as proliferation of cancer cells. Telomeres are the protective DNA-protein complexes at chromosome ends. Telomeric DNA undergoes progressive shortening with age leading to cellular senescence and/or apoptosis. If senescence/apoptosis is prevented as a consequence of specific genomic changes, continued proliferation leads to very short (ie, dysfunctional) telomeres that can potentially cause genomic instability, thus, increasing the risk for activation of telomere maintenance mechanisms and oncogenesis. Like many other cancers, esophageal cancer cells have short telomeres and elevated telomerase, the enzyme that maintains telomeres in most cancer cells. Homologous recombination, which is implicated in the alternate pathway of telomere elongation, is also elevated in Barrett's-associated esophageal adenocarcinoma. Evidence from our laboratory indicates that both telomerase and homologous recombination contribute to telomere maintenance, DNA repair, and the ongoing survival of esophageal cancer cells. This indicates that telomere maintenance mechanisms may potentially be targeted to make esophageal cancer cells static. The rate at which telomeres in healthy cells shorten is determined by a number of intrinsic and extrinsic factors, including those associated with lifestyle. Avoidance of factors that may directly or indirectly injure esophageal tissue including its telomeric and other genomic DNA can not only reduce the risk of development of esophageal cancer but may also have positive impact on overall health and lifespan.
Collapse
Affiliation(s)
- Jagannath Pal
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jason S. Gold
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Nikhil C. Munshi
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Masood A. Shammas
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
77
|
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3886-907. [PMID: 23985773 PMCID: PMC3799517 DOI: 10.3390/ijerph10093886] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM₁₀ and PM₂.₅) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Athanasios Valavanidis
- Department of Chemistry, University of Athens, University Campus Zografou, Athens 15784, Greece.
| | | | | | | |
Collapse
|
78
|
Zaug AJ, Crary SM, Jesse Fioravanti M, Campbell K, Cech TR. Many disease-associated variants of hTERT retain high telomerase enzymatic activity. Nucleic Acids Res 2013; 41:8969-78. [PMID: 23901009 PMCID: PMC3799428 DOI: 10.1093/nar/gkt653] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutations in the gene for telomerase reverse transcriptase (hTERT) are associated with diseases including dyskeratosis congenita, aplastic anemia, pulmonary fibrosis and cancer. Understanding the molecular basis of these telomerase-associated diseases requires dependable quantitative measurements of telomerase enzyme activity. Furthermore, recent findings that the human POT1-TPP1 chromosome end-binding protein complex stimulates telomerase activity and processivity provide incentive for testing variant telomerases in the presence of these factors. In the present work, we compare multiple disease-associated hTERT variants reconstituted with the RNA subunit hTR in two systems (rabbit reticulocyte lysates and human cell lines) with respect to telomerase enzymatic activity, processivity and activation by telomere proteins. Surprisingly, many of the previously reported disease-associated hTERT alleles give near-normal telomerase enzyme activity. It is possible that a small deficit in telomerase activity is sufficient to cause telomere shortening over many years. Alternatively, mutations may perturb functions such as the recruitment of telomerase to telomeres, which are essential in vivo but not revealed by simple enzyme assays.
Collapse
Affiliation(s)
- Arthur J Zaug
- Department of Chemistry and Biochemistry, University of Colorado BioFrontiers Institute, Boulder, CO 80309-0596, USA, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0596, USA and Department of Chemistry and Biochemistry, DePauw University, Greencastle, IN 46135, USA
| | | | | | | | | |
Collapse
|
79
|
Zhang Y, Shin SJ, Liu D, Ivanova E, Foerster F, Ying H, Zheng H, Xiao Y, Chen Z, Protopopov A, Depinho RA, Paik JH. ZNF365 promotes stability of fragile sites and telomeres. Cancer Discov 2013; 3:798-811. [PMID: 23776040 DOI: 10.1158/2159-8290.cd-12-0536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critically short telomeres activate cellular senescence or apoptosis, as mediated by the tumor suppressor p53, but in the absence of this checkpoint response, telomere dysfunction engenders chromosomal aberrations and cancer. Here, analysis of p53-regulated genes activated in the setting of telomere dysfunction identified Zfp365 (ZNF365 in humans) as a direct p53 target that promotes genome stability. Germline polymorphisms in the ZNF365 locus are associated with increased cancer risk, including those associated with telomere dysfunction. On the mechanistic level, ZNF365 suppresses expression of a subset of common fragile sites, including telomeres. In the absence of ZNF365, defective telomeres engage in aberrant recombination of telomere ends, leading to increased telomere sister chromatid exchange and formation of anaphase DNA bridges, including ultra-fine DNA bridges, and ultimately increased cytokinesis failure and aneuploidy. Thus, the p53-ZNF365 axis contributes to genomic stability in the setting of telomere dysfunction.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Bukata L, Parker SL, D'Angelo MA. Nuclear pore complexes in the maintenance of genome integrity. Curr Opin Cell Biol 2013; 25:378-86. [PMID: 23567027 DOI: 10.1016/j.ceb.2013.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 03/13/2013] [Indexed: 11/26/2022]
Abstract
Maintaining genome integrity is crucial for successful organismal propagation and for cell and tissue homeostasis. Several processes contribute to safeguarding the genomic information of cells. These include accurate replication of genetic information, detection and repair of DNA damage, efficient segregation of chromosomes, protection of chromosome ends, and proper organization of genome architecture. Interestingly, recent evidence shows that nuclear pore complexes, the channels connecting the nucleus with the cytoplasm, play important roles in these processes suggesting that these multiprotein platforms are key regulators of genome integrity.
Collapse
Affiliation(s)
- Lucas Bukata
- Cardiovascular Research Institute, Biochemistry and Biophysics Department, University of California San Francisco, San Francisco, CA 94158, United States
| | | | | |
Collapse
|
81
|
He M, Bian B, Gesuwan K, Gulati N, Zhang L, Nilubol N, Kebebew E. Telomere length is shorter in affected members of families with familial nonmedullary thyroid cancer. Thyroid 2013; 23:301-7. [PMID: 23009101 PMCID: PMC3593684 DOI: 10.1089/thy.2012.0270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The theory that short telomere length and genetic defects in maintaining telomere length are associated with familial nonmedullary thyroid cancer (FNMTC) is controversial. Thus, the aim of this study was to determine whether telomere length and genes involved in maintaining telomere length are altered in FNMTC. METHODS Blood samples were collected from 44 members (13 affected and 31 unaffected) of six families with FNMTC and from 60 controls. Quantitative polymerase chain reaction (Q-PCR) and reverse transcription PCR were performed to analyze relative telomere length (RTL), gene copy number, and mRNA expression of telomerase reverse transcriptase (hTERT), telomere repeat binding factor 1 (TRF1), telomere repeat binding factor 2 (TRF2), repressor activator protein 1 (RAP1), TRF1 interacting nuclear factor 2 (TIN2), tripeptidyl peptidase 1 (TPP1), and protection of telomere 1 (POT1). RESULTS Affected members had shorter RTL, as compared with unaffected members (0.98 vs. 1.23, p<0.01). There was no significant difference in hTERT, TRF1, TRF2, RAP1, TIN2, TPP1, and POT1 gene copy number or mRNA expression between affected and unaffected members. CONCLUSIONS RTL is shorter in affected members with FNMTC but is not associated with altered copy number or expression in hTERT, TRF1, TRF2, RAP1, TIN2, TPP1, and POT1. The small differences in RTL preclude the utility of RTL as a marker for FNMTC in at-risk individuals.
Collapse
Affiliation(s)
- Mei He
- Endocrine Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Deng Z, Wang Z, Lieberman PM. Telomeres and viruses: common themes of genome maintenance. Front Oncol 2012; 2:201. [PMID: 23293769 PMCID: PMC3533235 DOI: 10.3389/fonc.2012.00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/08/2012] [Indexed: 12/14/2022] Open
Abstract
Genome maintenance mechanisms actively suppress genetic instability associated with cancer and aging. Some viruses provoke genetic instability by subverting the host's control of genome maintenance. Viruses have their own specialized strategies for genome maintenance, which can mimic and modify host cell processes. Here, we review some of the common features of genome maintenance utilized by viruses and host chromosomes, with a particular focus on terminal repeat (TR) elements. The TRs of cellular chromosomes, better known as telomeres, have well-established roles in cellular chromosome stability. Cellular telomeres are themselves maintained by viral-like mechanisms, including self-propagation by reverse transcription, recombination, and retrotransposition. Viral TR elements, like cellular telomeres, are essential for viral genome stability and propagation. We review the structure and function of viral repeat elements and discuss how they may share telomere-like structures and genome protection functions. We consider how viral infections modulate telomere regulatory factors for viral repurposing and can alter normal host telomere structure and chromosome stability. Understanding the common strategies of viral and cellular genome maintenance may provide new insights into viral-host interactions and the mechanisms driving genetic instability in cancer.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute Philadelphia, PA, USA
| | | | | |
Collapse
|
83
|
Ujvari B, Pearse AM, Taylor R, Pyecroft S, Flanagan C, Gombert S, Papenfuss AT, Madsen T, Belov K. Telomere dynamics and homeostasis in a transmissible cancer. PLoS One 2012; 7:e44085. [PMID: 22952882 PMCID: PMC3430654 DOI: 10.1371/journal.pone.0044085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/31/2012] [Indexed: 12/25/2022] Open
Abstract
Background Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the “Hayflick limit”. Methodology/Principal Findings In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. Conclusions/Significance DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential.
Collapse
Affiliation(s)
- Beata Ujvari
- Faculty of Veterinary Sciences, University of Sydney, Sydney, Australia
| | - Anne-Maree Pearse
- Devil Facial Tumour Project, Diagnostic Services, Animal Health Laboratory, Department of Primary Industries, Water and Environment, Launceston, Tasmania, Australia
| | - Robyn Taylor
- Devil Facial Tumour Project, Diagnostic Services, Animal Health Laboratory, Department of Primary Industries, Water and Environment, Launceston, Tasmania, Australia
| | - Stephen Pyecroft
- Devil Facial Tumour Project, Diagnostic Services, Animal Health Laboratory, Department of Primary Industries, Water and Environment, Launceston, Tasmania, Australia
| | | | - Sara Gombert
- Faculty of Veterinary Sciences, University of Sydney, Sydney, Australia
| | - Anthony T. Papenfuss
- Bioinformatics division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Madsen
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Katherine Belov
- Faculty of Veterinary Sciences, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
84
|
Blink M, van den Heuvel-Eibrink MM, Aalbers AM, Balgobind BV, Hollink IHIM, Meijerink JPP, van der Velden VHJ, Beverloo BH, de Haas V, Hasle H, Reinhardt D, Klusmann JH, Pieters R, Calado RT, Zwaan CM. High frequency of copy number alterations in myeloid leukaemia of Down syndrome. Br J Haematol 2012; 158:800-3. [PMID: 22775985 DOI: 10.1111/j.1365-2141.2012.09224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
85
|
Davoli T, de Lange T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 2012; 21:765-76. [PMID: 22698402 PMCID: PMC3376354 DOI: 10.1016/j.ccr.2012.03.044] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/20/2011] [Accepted: 03/23/2012] [Indexed: 11/20/2022]
Abstract
Human cancers with a subtetraploid karyotype are thought to originate from tetraploid precursors, but the cause of tetraploidization is unknown. We previously documented endoreduplication in mouse cells with persistent telomere dysfunction or genome-wide DNA damage. We now report that endoreduplication and mitotic failure occur during telomere crisis in human fibroblasts and mammary epithelial cells and document the role of p53 and Rb in repressing tetraploidization. Using an inducible system to generate transient telomere damage, we show that telomere-driven tetraploidization enhances the tumorigenic transformation of mouse cells. Similar to human solid cancers, the resulting tumors evolved subtetraploid karyotypes. These data establish that telomere-driven tetraploidization is induced by critically short telomeres and has the potential to promote tumorigenesis in early cancerous lesions.
Collapse
Affiliation(s)
| | - Titia de Lange
- Correspondence: Titia de Lange, Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065-6399, USA, phone: 212-327-8146 / fax: 212-327-7147,
| |
Collapse
|
86
|
Deng Z, Wang Z, Xiang C, Molczan A, Baubet V, Conejo-Garcia J, Xu X, Lieberman PM, Dahmane N. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci 2012; 125:4383-94. [PMID: 22641694 DOI: 10.1242/jcs.108118] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeres play crucial roles in the maintenance of genome integrity and control of cellular senescence. Most eukaryotic telomeres can be transcribed to generate a telomeric repeat-containing RNA (TERRA) that persists as a heterogeneous nuclear RNA and can be developmentally regulated. However, the precise function and regulation of TERRA in normal and cancer cell development remains poorly understood. Here, we show that TERRA accumulates in highly proliferating normal and cancer cells, and forms large nuclear foci, which are distinct from previously characterized markers of DNA damage or replication stress. Using a mouse model for medulloblastoma driven by chronic Sonic hedgehog (SHH) signaling, TERRA RNA was detected in tumor, but not adjacent normal cells using both RNA fluorescence in situ hybridization (FISH) and northern blotting. RNA FISH revealed the formation of TERRA foci (TERFs) in the nuclear regions of rapidly proliferating tumor cells. In the normal developing cerebellum, TERRA aggregates could also be detected in highly proliferating zones of progenitor neurons. SHH could enhance TERRA expression in purified granule progenitor cells in vitro, suggesting that proliferation signals contribute to TERRA expression in responsive tissue. TERRA foci did not colocalize with γH2AX foci, promyelocytic leukemia (PML) or Cajal bodies in mouse tumor tissue. We also provide evidence that TERRA is elevated in a variety of human cancers. These findings suggest that elevated TERRA levels reflect a novel early form of telomere regulation during replication stress and cancer cell evolution, and the TERRA RNA aggregates may form a novel nuclear body in highly proliferating mammalian cells.
Collapse
Affiliation(s)
- Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ. mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol Cell 2012; 47:5-15. [PMID: 22633954 DOI: 10.1016/j.molcel.2012.04.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 03/07/2012] [Accepted: 04/12/2012] [Indexed: 01/31/2023]
Abstract
Inflammation is associated with DNA damage, cellular senescence, and aging. Cessation of the inflammatory cytokine response is mediated in part through cytokine mRNA degradation facilitated by RNA-binding proteins, including AUF1. We report a major function of AUF1-it activates telomerase expression, suppresses cellular senescence, and maintains normal aging. AUF1-deficient mice undergo striking telomere erosion, markedly increased DNA damage responses at telomere ends, pronounced cellular senescence, and rapid premature aging that increases with successive generations, which can be rescued in AUF1 knockout mice and their cultured cells by resupplying AUF1 expression. AUF1 binds and strongly activates the transcription promoter for telomerase catalytic subunit Tert. In addition to directing inflammatory cytokine mRNA decay, AUF1 destabilizes cell-cycle checkpoint mRNAs, preventing cellular senescence. Thus, a single gene, AUF1, links maintenance of telomere length and normal aging to attenuation of inflammatory cytokine expression and inhibition of cellular senescence.
Collapse
Affiliation(s)
- Adam R Pont
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
88
|
The DNA damage checkpoint allows recombination between divergent DNA sequences in budding yeast. DNA Repair (Amst) 2011; 10:1086-94. [PMID: 21978436 DOI: 10.1016/j.dnarep.2011.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9-dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences.
Collapse
|
89
|
Hofmann JN, Baccarelli A, Schwartz K, Davis FG, Ruterbusch JJ, Hoxha M, McCarthy BJ, Savage SA, Wacholder S, Rothman N, Graubard BI, Colt JS, Chow WH, Purdue MP. Risk of renal cell carcinoma in relation to blood telomere length in a population-based case-control study. Br J Cancer 2011; 105:1772-5. [PMID: 22033273 PMCID: PMC3242602 DOI: 10.1038/bjc.2011.444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: There are few known risk factors for renal cell carcinoma (RCC). Two small hospital-based case–control studies suggested an association between short blood telomere length (TL) and increased RCC risk. Methods: We conducted a large population-based case–control study in two metropolitan regions of the United States comparing relative TL in DNA derived from peripheral blood samples from 891 RCC cases and 894 controls. Odds ratios and 95% confidence intervals were estimated using unconditional logistic regression in both unadjusted and adjusted models. Results: Median TL was 0.85 for both cases and controls (P=0.40), and no differences in RCC risk by quartiles of TL were observed. Results of analyses stratified by age, sex, race, tumour stage, and time from RCC diagnosis to blood collection were similarly null. In multivariate analyses among controls, increasing age and history of hypertension were associated with shorter TL (P<0.001 and P=0.07, respectively), and African Americans had longer TL than Caucasians (P<0.001). Conclusion: These data do not support the hypothesis that blood TL is associated with RCC. This population-based case–control study is, to our knowledge, the largest investigation to date of TL and RCC.
Collapse
Affiliation(s)
- J N Hofmann
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, 6120 Executive Boulevard, Bethesda, MD 20892-7240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Reshetnikov RV, Sponer J, Rassokhina OI, Kopylov AM, Tsvetkov PO, Makarov AA, Golovin AV. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Res 2011; 39:9789-802. [PMID: 21893589 PMCID: PMC3239185 DOI: 10.1093/nar/gkr639] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.
Collapse
Affiliation(s)
- Roman V Reshetnikov
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
91
|
Nagelkerke A, van Kuijk SJA, Sweep FCGJ, Nagtegaal ID, Hoogerbrugge N, Martens JWM, Timmermans MA, van Laarhoven HWM, Bussink J, Span PN. Constitutive expression of γ-H2AX has prognostic relevance in triple negative breast cancer. Radiother Oncol 2011; 101:39-45. [PMID: 21840613 DOI: 10.1016/j.radonc.2011.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/09/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Constitutive γ-H2AX expression might indicate disruption of the DNA damage repair pathway, genomic instability, or shortened telomeric ends. Here, we quantified expression of endogenous γ-H2AX and its downstream factor 53BP1 in a large number of breast cancer cell lines (n=54) and a node-negative breast cancer cohort that had not received adjuvant systemic treatment (n=122). MATERIALS AND METHODS Formalin fixed paraffin embedded breast cancer cell lines and tumors were immunohistochemically analyzed for γ-H2AX and 53BP1 expression, and related to cell line, patient and tumor characteristics and to disease progression. RESULTS In breast cancer cell lines, γ-H2AX positivity was associated with the triple negative/basal like subgroup (p=0.005), and with BRCA1 (p=0.011) or p53 (p=0.053) mutations. Specifically in triple negative breast cancer patients a high number of γ-H2AX foci indicated a significantly worse prognosis (p=0.006 for triple negative vs. p=0.417 for estrogen receptor (ER), progesterone receptor (PR) or HER2 positive patients). A similar association with disease progression was found for 53BP1. In a multivariate analysis with tumor size, grade, and triple negativity, only the interaction between triple negativity and γ-H2AX remained significant (p=0.002, Hazard Ratio=6.77, 95% CI=2.07-22.2). CONCLUSIONS Constitutive γ-H2AX and 53BP1 staining reveals a subset of patients with triple negative breast tumors that have a significantly poorer prognosis.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Lopez CR, Ribes-Zamora A, Indiviglio SM, Williams CL, Haricharan S, Bertuch AA. Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genet 2011; 7:e1002233. [PMID: 21852961 PMCID: PMC3154960 DOI: 10.1371/journal.pgen.1002233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/23/2011] [Indexed: 02/08/2023] Open
Abstract
The Ku heterodimer associates with the Saccharomyces cerevisiae telomere, where it impacts several aspects of telomere structure and function. Although Ku avidly binds DNA ends via a preformed channel, its ability to associate with telomeres via this mechanism could be challenged by factors known to bind directly to the chromosome terminus. This has led to uncertainty as to whether Ku itself binds directly to telomeric ends and whether end association is crucial for Ku's telomeric functions. To address these questions, we constructed DNA end binding-defective Ku heterodimers by altering amino acid residues in Ku70 and Ku80 that were predicted to contact DNA. These mutants continued to associate with their known telomere-related partners, such as Sir4, a factor required for telomeric silencing, and TLC1, the RNA component of telomerase. Despite these interactions, we found that the Ku mutants had markedly reduced association with telomeric chromatin and null-like deficiencies for telomere end protection, length regulation, and silencing functions. In contrast to Ku null strains, the DNA end binding defective Ku mutants resulted in increased, rather than markedly decreased, imprecise end-joining proficiency at an induced double-strand break. This result further supports that it was the specific loss of Ku's telomere end binding that resulted in telomeric defects rather than global loss of Ku's functions. The extensive telomere defects observed in these mutants lead us to propose that Ku is an integral component of the terminal telomeric cap, where it promotes a specific architecture that is central to telomere function and maintenance.
Collapse
Affiliation(s)
- Christopher R Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
93
|
Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011; 27:585-610. [PMID: 21801013 DOI: 10.1146/annurev-cellbio-092910-154234] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although nearly all mammalian species are diploid, whole-genome duplications occur in select mammalian tissues as part of normal development. Such programmed polyploidization involves changes in the regulatory pathways that normally maintain the diploid state of the mammalian genome. Unscheduled whole-genome duplications, which lead primarily to tetraploid cells, also take place in a substantial fraction of human tumors and have been proposed to constitute an important step in the development of cancer aneuploidy. The origins of these polyploidization events and their consequences for tumor progression are explored in this review.
Collapse
Affiliation(s)
- Teresa Davoli
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
94
|
Burgio G, Cipressa F, Ingrassia AMR, Cenci G, Corona DFV. The histone deacetylase Rpd3 regulates the heterochromatin structure of Drosophila telomeres. J Cell Sci 2011; 124:2041-8. [DOI: 10.1242/jcs.078261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomeres are specialized structures at the end of eukaryotic chromosomes that are required to preserve genome integrity, chromosome stability and nuclear architecture. Telomere maintenance and function are established epigenetically in several eukaryotes. However, the exact chromatin enzymatic modifications regulating telomere homeostasis are poorly understood. In Drosophila melanogaster, telomere length and stability are maintained through the retrotransposition of specialized telomeric sequences and by the specific loading of protecting capping proteins, respectively. Here, we show that the loss of the essential and evolutionarily conserved histone deacetylase Rpd3, the homolog of mammalian HDAC1, causes aberrant telomeric fusions on polytene chromosome ends. Remarkably, these telomere fusion defects are associated with a marked decrease of histone H4 acetylation, as well as an accumulation of heterochromatic epigenetic marks at telomeres, including histone H3K9 trimethylation and the heterochromatic protein HP2. Our work suggests that Drosophila telomere structure is epigenetically regulated by the histone deacetylase Rpd3.
Collapse
Affiliation(s)
- Giosalba Burgio
- Istituto Telethon Dulbecco, c/o STEMBIO, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
- Università degli Studi di Palermo–Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari – Sezione di Biologia Cellulare, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Francesca Cipressa
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Antonia Maria Rita Ingrassia
- Istituto Telethon Dulbecco, c/o STEMBIO, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
- Università degli Studi di Palermo–Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari – Sezione di Biologia Cellulare, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Davide F. V. Corona
- Istituto Telethon Dulbecco, c/o STEMBIO, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
- Università degli Studi di Palermo–Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari – Sezione di Biologia Cellulare, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| |
Collapse
|
95
|
Subtelomeric regions in mammalian cells are deficient in DNA double-strand break repair. DNA Repair (Amst) 2011; 10:536-44. [PMID: 21466975 DOI: 10.1016/j.dnarep.2011.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.
Collapse
|
96
|
Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr 2011; 2:4. [PMID: 21314979 PMCID: PMC3048478 DOI: 10.1186/2041-9414-2-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background Fanconi anemia (FA) is a rare autosomal recessive syndrome characterized by developmental abnormalities, progressive bone marrow failure, and predisposition to cancer. The key FA protein FANCD2 crosstalks with members of DNA damage and repair pathways that also play a role at telomeres. Therefore, we investigated whether FANCD2 has a similar involvement at telomeres. Results We reveal that FANCD2 may perform a novel function separate to the FANCD2/BRCA pathway. This function includes FANCD2 interaction with one of the telomere components, the PARP family member tankyrase-1. Moreover, FANCD2 inhibits tankyrase-1 activity in vitro. In turn, FANCD2 deficiency increases the polyADP-ribosylation of telomere binding factor TRF1. Conclusions FANCD2 binding and inhibiting tankyrase-1PARsylation at telomeres may provide an additional step within the FA pathway for the regulation of genomic integrity.
Collapse
|
97
|
So PL, Tang JY, Epstein EH. Novel investigational drugs for basal cell carcinoma. Expert Opin Investig Drugs 2011; 19:1099-112. [PMID: 20662553 DOI: 10.1517/13543784.2010.504714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD In the United States, the annual incidence of basal cell carcinoma (BCC) is close to 1 million. Ultraviolet radiation exposure is the main risk factor; however, the availability of ever more potent sunscreens and education have not prevented the rise in BCC incidence. Therefore, concerted effects to identify novel preventive and therapeutic strategies are necessary. AREAS COVERED IN THIS REVIEW This article summarizes our current understanding of the etiology and molecular mechanisms of BCC tumorigenesis and discusses the preclinical and clinical studies to identify agents with anti-BCC efficacy. WHAT THE READER WILL GAIN The discovery that hyperactive Hh pathway signaling causes several cancers, including BCC, has spawned the development of many pharmacologic inhibitors of Hh signaling. Early clinical testing of the most advanced, GDC-0449, demonstrated impressive efficacy in patients with advanced BCC. Other promising anti-BCC chemopreventive strategies include drugs that are already FDA-approved for treating other diseases. TAKE HOME MESSAGE Preclinical and clinical trials with pre-existing FDA-approved drugs suggest novel uses for BCC chemoprevention and treatment. Also, new chemical entities that inhibit the Hh pathway show promise, and in combination with other drugs may provide a nonsurgical cure for this most common cancer.
Collapse
Affiliation(s)
- Po-Lin So
- Children's Hospital Oakland Research Institute, Cancer Division, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW There has been growing evidence that lifestyle factors may affect the health and lifespan of an individual by affecting telomere length. The purpose of this review was to highlight the importance of telomeres in human health and aging and to summarize possible lifestyle factors that may affect health and longevity by altering the rate of telomere shortening. RECENT FINDINGS Recent studies indicate that telomere length, which can be affected by various lifestyle factors, can affect the pace of aging and onset of age-associated diseases. SUMMARY Telomere length shortens with age. Progressive shortening of telomeres leads to senescence, apoptosis, or oncogenic transformation of somatic cells, affecting the health and lifespan of an individual. Shorter telomeres have been associated with increased incidence of diseases and poor survival. The rate of telomere shortening can be either increased or decreased by specific lifestyle factors. Better choice of diet and activities has great potential to reduce the rate of telomere shortening or at least prevent excessive telomere attrition, leading to delayed onset of age-associated diseases and increased lifespan. This review highlights the role of telomeres in aging and describes the lifestyle factors which may affect telomeres, human health, and aging.
Collapse
Affiliation(s)
- Masood A Shammas
- Harvard (Dana Farber) Cancer Institute, Boston, Massachusetts, USA.
| |
Collapse
|
99
|
The pathogenesis of Barrett's metaplasia and the progression to esophageal adenocarcinoma. Recent Results Cancer Res 2010; 182:39-63. [PMID: 20676870 DOI: 10.1007/978-3-540-70579-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most important risk factor for the development of Barrett's esophagus is the reflux of both gastric and duodenal contents into the esophagus. The reason why Barrett's metaplasia develops only in a minority of patients suffering from gastroesophageal reflux disease remains unknown.The exact mechanism behind the transition of normal squamous epithelium into specialized columnar epithelium is also unclear. It is likely that stem cells are involved in this metaplastic change, as they are the only permanent residents of the epithelium. Several tumorigenic steps that lead to the underlying genetic instability, which is indispensable in the progression from columnar metaplasia to esophageal adenocarcinoma have been described. This review outlines the process of pathogenesis of Barrett's metaplasia and its progression to esophageal adenocarcinoma.
Collapse
|
100
|
Nuclear imaging in three dimensions: A unique tool in cancer research. Ann Anat 2010; 192:292-301. [DOI: 10.1016/j.aanat.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/18/2010] [Indexed: 11/19/2022]
|