51
|
Xu T, Fu D, Xiong X, Zhu J, Feng Z, Liu X, Wu C. OsbHLH067, OsbHLH068, and OsbHLH069 redundantly regulate inflorescence axillary meristem formation in rice. PLoS Genet 2023; 19:e1010698. [PMID: 37053298 PMCID: PMC10128955 DOI: 10.1371/journal.pgen.1010698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/25/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Rice axillary meristems (AMs) are essential to the formation of tillers and panicle branches in rice, and therefore play a determining role in rice yield. However, the regulation of inflorescence AM development in rice remains elusive. In this study, we identified no spikelet 1-Dominant (nsp1-D), a sparse spikelet mutant, with obvious reduction of panicle branches and spikelets. Inflorescence AM deficiency in nsp1-D could be ascribed to the overexpression of OsbHLH069. OsbHLH069 functions redundantly with OsbHLH067 and OsbHLH068 in panicle AM formation. The Osbhlh067 Osbhlh068 Osbhlh069 triple mutant had smaller panicles and fewer branches and spikelets. OsbHLH067, OsbHLH068, and OsbHLH069 were preferentially expressed in the developing inflorescence AMs and their proteins could physically interact with LAX1. Both nsp1-D and lax1 showed sparse panicles. Transcriptomic data indicated that OsbHLH067/068/069 may be involved in the metabolic pathway during panicle AM formation. Quantitative RT-PCR results demonstrated that the expression of genes involved in meristem development and starch/sucrose metabolism was down-regulated in the triple mutant. Collectively, our study demonstrates that OsbHLH067, OsbHLH068, and OsbHLH069 have redundant functions in regulating the formation of inflorescence AMs during panicle development in rice.
Collapse
Affiliation(s)
- Tingting Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Junkai Zhu
- Jiangsu Kingearth Seed Co., Ltd., Yangzhou, China
| | - Zhiyun Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaobin Liu
- Jiangsu Kingearth Seed Co., Ltd., Yangzhou, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
52
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Chen X, Weng Y, Liu X, Ren H. Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development. Int J Mol Sci 2023; 24:ijms24076435. [PMID: 37047408 PMCID: PMC10094329 DOI: 10.3390/ijms24076435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Chen
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
53
|
Alsamman AM, Abdelsattar M, El Allali A, Radwan KH, Nassar AE, Mousa KH, Hussein A, Mokhtar MM, Abd El-Maksoud MM, Istanbuli T, Kehel Z, Hamwieh A. Genome-wide identification, characterization, and validation of the bHLH transcription factors in grass pea. Front Genet 2023; 14:1128992. [PMID: 37021003 PMCID: PMC10067732 DOI: 10.3389/fgene.2023.1128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop.Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress.Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| |
Collapse
|
54
|
Chen J, Xie F, Shah K, Chen C, Zeng J, Chen J, Zhang Z, Zhao J, Hu G, Qin Y. Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111595. [PMID: 36646140 DOI: 10.1016/j.plantsci.2023.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins are dimeric transcription factors (TFs) involved in various plant physiological and biological processes. Despite this, little is known about the molecular properties and roles of bHLH TFs in pitaya betalain biosynthesis. Here we report the identification of 165 HubHLH genes in H. undantus genome, their chromosomal distribution, physiochemical characteristics, conserved motifs, gene structure, phylogeny and synteny of HubHLH genes. Based on phylogenetic relationship analysis, the 165 HubHLHs were divided into 26 subfamilies and unequally distributed on the 11 chromosomes of pitaya. Based on the pitaya transcriptome data, a candidate gene HubHLH159 was obtained, and the real-time quantitative PCR analysis confirmed that HubHLH159 showed a high expression level in 'Guanhuahong' pitaya (red-pulp) at mature stage, indicating its role in betalain biosynthesis. HubHLH159 is a Group II protein and contains a bHLH domain. It is a nuclear protein with transcriptional activation activity. Dual luciferase reporter assays and virus-induced gene silencing (VIGS) experiments showed that HubHLH159 promotes betalain biosynthesis by activating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The results of the present study lay a new theoretical reference for the regulation of pitaya betalain biosynthesis and also provides as essential basis for the future analysis of the functions of HubHLH gene family.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianmei Zeng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
55
|
Characterization and expression analysis of bHLH transcription factors reveal their putative regulatory effects on nectar spur development in Aquilegia species. Gene 2023; 852:147057. [PMID: 36410606 DOI: 10.1016/j.gene.2022.147057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Nectar spur is a hollow extension of certain flower parts and shows strikingly diverse size and shape in Aquilegia. Nectar spur development is involved in cell division and expansion processes. The basic helix-loop-helix (bHLH) transcription factors (TFs) control a diversity of organ morphogenesis, including cell division and cell expansion processes. However, the role of bHLH genes in nectar spur development in Aquilegia is mainly unknown. We conducted a genome-wide identification of the bHLH gene family in Aquilegia to determine structural characteristics and phylogenetic relationships, and to analyze expression profiles of these genes during the development of nectar spur in spurless and spurred species. A total of 120 AqbHLH genes were identified from the Aquilegia coerulea genome. The phylogenetic tree showed that AqbHLH proteins were divided into 15 subfamilies, among which S7 and S8 subfamilies occurred marked expansion. The AqbHLH genes in the same clade had similar motif composition and gene structure characteristics. Conserved residue analysis indicated nineteen residues with conservation of more than 50% were found in the four conserved regions. In the upstream sequence of AqbHLH genes, the light-responsive element was the most abundant cis-acting element. Eighteen AqbHLH genes showed syntenic relationships, and eight genes from four syntenic pairs underwent tandem duplications. According to the expression profiling analysis by public RNA-Seq data and qRT-PCR results, five AqbHLH genes, including AqbHLH027, AqbHLH046, AqbHLH082, AqbHLH083 and AqbHLH092, were differentially expressed between different tissues in A. coerulea at early developmental stages, as well as between spurless and spurred Aquilegia species. Of them, AqbHLH046 was not only highly expressed in spur compared with blade, but also showed higher expression levels in spurred species than spurless specie, suggesting it plays an essential role in the development of spur by regulating cell division. This study lays a foundation to investigate the function of AqbHLH genes family in nectar spur development, and has potential implications for speciation and genetic breeding in the genus Aquilegia.
Collapse
|
56
|
Chang S, Li Q, Huang B, Chen W, Tan H. Genome-wide identification and characterisation of bHLH transcription factors in Artemisia annua. BMC PLANT BIOLOGY 2023; 23:63. [PMID: 36721100 PMCID: PMC9890702 DOI: 10.1186/s12870-023-04063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND A. annua (also named Artemisia annua, sweet wormwood) is the main source of the anti-malarial drug artemisinin, which is synthesised and stored in its trichomes. Members of the basic Helix-Loop-Helix (bHLH) family of transcription factors (TFs) have been implicated in artemisinin biosynthesis in A. annua and in trichome development in other plant species. RESULTS Here, we have systematically identified and characterised 226 putative bHLH TFs in A. annua. All of the proteins contain a HLH domain, 213 of which also contain the basic motif that mediates DNA binding of HLH dimers. Of these, 22 also contained a Myc domain that permits dimerisation with other families of TFs; only two proteins lacking the basic motif contained a Myc domain. Highly conserved GO annotations reflected the transcriptional regulatory role of the identified TFs, and suggested conserved roles in biological processes such as iron homeostasis, and guard cell and endosperm development. Expression analysis revealed that three genes (AabHLH80, AabHLH96, and AaMyc-bHLH3) exhibited spatiotemporal expression patterns similar to genes encoding key enzymes in artemisinin synthesis. CONCLUSIONS This comprehensive analysis of bHLH TFs provides a new resource to direct further analysis into key molecular mechanisms underlying and regulating artemisinin biosynthesis and trichome development, as well as other biological processes, in the key medicinal plant A. annua.
Collapse
Affiliation(s)
- Shuwei Chang
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qi Li
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Baokang Huang
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wansheng Chen
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hexin Tan
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
57
|
Jia S, Liu X, Wen X, Waheed A, Ding Y, Kahar G, Li X, Zhang D. Genome-Wide Identification of bHLH Transcription Factor Family in Malus sieversii and Functional Exploration of MsbHLH155.1 Gene under Valsa Canker Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:620. [PMID: 36771705 PMCID: PMC9919239 DOI: 10.3390/plants12030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Xinjiang wild apple (Malus sieversii) is an ancient relic; a plant with abundant genetic diversity and disease resistance. Several transcription factors were studied in response to different biotic and abiotic stresses on the wild apple. Basic/helix-loop-helix (bHLH) is a large plant transcription factor family that plays important roles in plant responses to various biotic and abiotic stresses and has been extensively studied in several plants. However, no study has yet been conducted on the bHLH gene in M. sieversii. Based on the genome of M. sieversii, 184 putative MsbHLH genes were identified, and their physicochemical properties were studied. MsbHLH covered 23 subfamilies and lacked two subfamily genes of Arabidopsis thaliana based on the widely used classification method. Moreover, MsbHLH exon-intron structures matched subfamily classification, as evidenced by the analysis of their protein motifs. The analysis of cis-acting elements revealed that many MsbHLH genes share stress- and hormone-related cis-regulatory elements. These MsbHLH transcription factors were found to be involved in plant defense responses based on the protein-protein interactions among the differentially expressed MsbHLHs. Furthermore, 94 MsbHLH genes were differentially expressed in response to pathogenic bacteria. The qRT-PCR results also showed differential expression of MsbHLH genes. To further verify the gene function of bHLH, our study used the transient transformation method to obtain the overexpressed MsbHLH155.1 transgenic plants and inoculated them. Under Valsa canker infection, the lesion phenotype and physiological and biochemical indexes indicated that the antioxidant capacity of plants could increase and reduce the damage caused by membrane peroxidation. This study provides detailed insights into the classification, gene structure, motifs, chromosome distribution, and gene expression of bHLH genes in M. sieversii and lays a foundation for a better understanding disease resistance in plants, as well as providing candidate genes for the development of M. sieversii resistance breeding.
Collapse
Affiliation(s)
- Shanshan Jia
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaojie Liu
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Xuejing Wen
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Abdul Waheed
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Yu Ding
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Gulnaz Kahar
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaoshuang Li
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| |
Collapse
|
58
|
Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family and Its Response to Abiotic Stress in Mongolian Oak ( Quercus mongolica). Curr Issues Mol Biol 2023; 45:1127-1148. [PMID: 36826020 PMCID: PMC9955707 DOI: 10.3390/cimb45020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The basic helix-loop-helix (bHLH) family, one of the largest families of transcription factors in plants, is extensively involved in the growth, development, and stress response of several woody plants. However, no systematic analysis of the bHLH gene family in Quercus mongolica has been reported. We characterize QmbHLH genes and identify the functions of QmbHLH proteins in Q. mongolica. We used bioinformatics approaches, qRT-PCR analysis, and RNA sequencing data to examine chromosomal distributions, gene structures, and conserved patterns, and identified 89 QmbHLH genes, which were divided into 21 subgroups based on the phylogenetic analysis of bHLH genes in Arabidopsis thaliana. Segmental replication played a more prominent role than tandem duplication in the expansion of the QmbHLH gene family. Based on patterns of tissue-specific expression, protein interactions, and cis-element analysis, QmbHLH genes may be extensively involved in the growth and development of Q. mongolica. In leaves, stems, and roots, 12 selected QmbHLH genes exhibited responsiveness to abiotic stresses (salt, cold, weak light, and drought). Our study facilitates follow-up functional investigations of the bHLH gene family in Q. mongolica and provides novel insights into bHLH superfamilies in woody plants.
Collapse
|
59
|
Ding Y, Wang X, Wang D, Jiang L, Xie J, Wang T, Song L, Zhao X. Identification of CmbHLH Transcription Factor Family and Excavation of CmbHLHs Resistant to Necrotrophic Fungus Alternaria in Chrysanthemum. Genes (Basel) 2023; 14:genes14020275. [PMID: 36833202 PMCID: PMC9957535 DOI: 10.3390/genes14020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Chrysanthemum morifolium Ramat. 'Huaihuang' is a traditional Chinese medicinal plant. However, a black spot disease caused by Alternaria sp., a typical necrotrophic fungus, has a serious damaging influence on the field growth, yield, and quality of the plant. 'Huaiju 2#' being bred from 'Huaihuang', shows resistance to Alternaria sp. bHLH transcription factor has been widely studied because of their functions in growth development, signal transduction, and abiotic stress. However, the function of bHLH in biotic stress has rarely been studied. To characterize the resistance genes, the CmbHLH family was surveyed in 'Huaiju 2#'. On the basis of the transcriptome database of 'Huaiju 2#' after Alternaria sp. inoculation, with the aid of the Chrysanthemum genome database, 71 CmbHLH genes were identified and divided into 17 subfamilies. Most (64.8%) of the CmbHLH proteins were rich in negatively charged amino acids. CmbHLH proteins are generally hydrophilic proteins with a high aliphatic amino acid content. Among the 71 CmbHLH proteins, five CmbHLHs were significantly upregulated by Alternaria sp. infection, and the expression of CmbHLH18 was the most significant. Furthermore, heterologous overexpression of CmbHLH18 could improve the resistance of Arabidopsis thaliana to necrotrophic fungus Alternaria brassicicola by enhancing callose deposition, preventing spores from entering leaves, reducing ROS accumulation, increasing the activities of antioxidant enzymes and defense enzymes, and promoting their gene expression levels. These results indicate that the five CmbHLHs, especially CmbHLH18, may be considered candidate genes for resistance to necrotrophic fungus. These findings not only increase our understanding of the role CmbHLHs play in biotic stress but also provide a basis by using CmbHLHs to breed a new variety of Chrysanthemum with high resistance to necrotrophic fungus.
Collapse
Affiliation(s)
- Yifeng Ding
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaomeng Wang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dandan Wang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liwei Jiang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jing Xie
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianle Wang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Lingyu Song
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiting Zhao
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang 453007, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan Province, Xinxiang 453007, China
- Correspondence: or ; Tel.: +86-182-3739-1085 or +86-135-6988-6182
| |
Collapse
|
60
|
Liang J, Fang Y, An C, Yao Y, Wang X, Zhang W, Liu R, Wang L, Aslam M, Cheng Y, Qin Y, Zheng P. Genome-wide identification and expression analysis of the bHLH gene family in passion fruit (Passiflora edulis) and its response to abiotic stress. Int J Biol Macromol 2023; 225:389-403. [PMID: 36400210 DOI: 10.1016/j.ijbiomac.2022.11.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Passion fruit is a tropical fruit crop with significant agricultural, economic and ornamental values. The growth and development of passion fruit are greatly affected by climatic conditions. In plants, the basic helix-loop-helix (bHLH) gene family plays essential roles in the floral organ and fruit development, as well as stress response. However, the characteristics and functions of the bHLH genes of passion fruit remain unclear. Here, 138 passion fruit bHLH members were identified and classified into 20 subfamilies. The structural analysis illustrated that PebHLH proteins of the specific subfamily are relatively conserved. Collinearity analysis indicated that the expansion of the PebHLH gene family mainly took place by segmental duplication, and the structural diversity of duplicated genes might contribute to their functional diversity. PebHLHs, which potentially regulate different floral organ and fruit development, were further screened out, and many of these genes were differentially expressed under various stress treatments. The co-presence of different cis-regulatory elements involved in developmental regulation, hormone and stress responses in the promoter regions of PebHLHs might be closely related to their diverse regulatory roles. Overall, this study will be helpful for further functional investigation of PebHLHs and provides clues for improvement of the passion fruit breeding.
Collapse
Affiliation(s)
- Jianxiang Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunying Fang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuanbin Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530004, China
| | - Wenbin Zhang
- Xinluo Breeding Center for Excellent Germplasms, Longyan 361000, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
61
|
Zuo ZF, Lee HY, Kang HG. Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. Int J Mol Sci 2023; 24:ijms24021419. [PMID: 36674933 PMCID: PMC9867082 DOI: 10.3390/ijms24021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors are involved in many physiological processes, and they play important roles in the abiotic stress responses. The literature related to genome sequences has increased, with genome-wide studies on the bHLH transcription factors in plants. Researchers have detailed the functionally characterized bHLH transcription factors from different aspects in the model plant Arabidopsis thaliana, such as iron homeostasis and abiotic stresses; however, other important economic crops, such as rice, have not been summarized and highlighted. The bHLH members in the same subfamily have similar functions; therefore, unraveling their regulatory mechanisms will help us to identify and understand the roles of some of the unknown bHLH transcription factors in the same subfamily. In this review, we summarize the available knowledge on functionally characterized bHLH transcription factors according to four categories: plant growth and development; metabolism synthesis; plant signaling, and abiotic stress responses. We also highlight the roles of the bHLH transcription factors in some economic crops, especially in rice, and discuss future research directions for possible genetic applications in crop breeding.
Collapse
|
62
|
Wang N, Shu X, Zhang F, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. FRONTIERS IN PLANT SCIENCE 2023; 13:975530. [PMID: 36704164 PMCID: PMC9872026 DOI: 10.3389/fpls.2022.975530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
As one of the biggest plant specific transcription factor (TF) families, basic helix-loop-helix (bHLH) protein, plays significant roles in plant growth, development, and abiotic stress responses. However, there has been minimal research about the effects of methyl jasmonate (MeJA) treatment on the bHLH gene family in Lycoris radiata (L'Her.) Herb. In this study, based on transcriptome sequencing data, 50 putative L. radiata bHLH (LrbHLH) genes with complete open reading frames (ORFs), which were divided into 20 bHLH subfamilies, were identified. The protein motif analyses showed that a total of 10 conserved motifs were found in LrbHLH proteins and motif 1 and motif 2 were the most highly conserved motifs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of LrbHLH genes revealed their involvement in regulation of plant growth, jasmonic acid (JA) mediated signaling pathway, photoperiodism, and flowering. Furthermore, subcellular localization revealed that most LrbHLHs were located in the nucleus. Expression pattern analysis of LrbHLH genes in different tissues and at flower developmental stages suggested that their expression differed across lineages and might be important for plant growth and organ development in Lycoris. In addition, all LrbHLH genes exhibited specific spatial and temporal expression patterns under MeJA treatment. Moreover, protein-protein interaction (PPI) network analysis and yeast two-hybrid assay showed that numerous LrbHLHs could interact with jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins. This research provides a theoretical basis for further investigation of LrbHLHs to find their functions and insights for their regulatory mechanisms involved in JA signaling pathway.
Collapse
|
63
|
Hou S, Zhang Q, Chen J, Meng J, Wang C, Du J, Guo Y. Genome-Wide Identification and Analysis of the GRAS Transcription Factor Gene Family in Theobroma cacao. Genes (Basel) 2022; 14:57. [PMID: 36672798 PMCID: PMC9858872 DOI: 10.3390/genes14010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
GRAS genes exist widely and play vital roles in various physiological processes in plants. In this study, to identify Theobroma cacao (T. cacao) GRAS genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the GRAS gene family in T. cacao. A total of 46 GRAS genes of T. cacao were identified. Chromosomal distribution analysis showed that all the TcGRAS genes were evenly distributed on ten chromosomes. Phylogenetic relationships revealed that GRAS proteins could be divided into twelve subfamilies (HAM: 6, LISCL: 10, LAS: 1, SCL4/7: 1, SCR: 4, DLT: 1, SCL3: 3, DELLA: 4, SHR: 5, PAT1: 6, UN1: 1, UN2: 4). Of the T. cacao GRAS genes, all contained the GRAS domain or GRAS superfamily domain. Subcellular localization analysis predicted that TcGRAS proteins were located in the nucleus, chloroplast, and endomembrane system. Gene duplication analysis showed that there were two pairs of tandem repeats and six pairs of fragment duplications, which may account for the rapid expansion in T. cacao. In addition, we also predicted the physicochemical properties and cis-acting elements. The analysis of GO annotation predicted that the TcGRAS genes were involved in many biological processes. This study highlights the evolution, diversity, and characterization of the GRAS genes in T. cacao and provides the first comprehensive analysis of this gene family in the cacao genome.
Collapse
Affiliation(s)
- Sijia Hou
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Jing Chen
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junhong Du
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
64
|
Zhang Y, Xu YP, Nie JK, Chen H, Qin G, Wang B, Su XD. DNA-TCP complex structures reveal a unique recognition mechanism for TCP transcription factor families. Nucleic Acids Res 2022; 51:434-448. [PMID: 36546761 PMCID: PMC9841405 DOI: 10.1093/nar/gkac1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-specific TCP transcription factors are key regulators of diverse plant functions. TCP transcription factors have long been annotated as basic helix-loop-helix (bHLH) transcription factors according to remote sequence homology without experimental validation, and their consensus DNA-binding sequences and protein-DNA recognition mechanisms have remained elusive. Here, we report the crystal structures of the class I TCP domain from AtTCP15 and the class II TCP domain from AtTCP10 in complex with different double-stranded DNA (dsDNA). The complex structures reveal that the TCP domain is a distinct DNA-binding motif and the homodimeric TCP domains adopt a unique three-site recognition mode, binding to dsDNA mainly through a central pair of β-strands formed by the dimer interface and two basic flexible loops from each monomer. The consensus DNA-binding sequence for class I TCPs is a perfectly palindromic 11 bp (GTGGGNCCCAC), whereas that for class II TCPs is a near-palindromic 11 bp (GTGGTCCCCAC). The unique DNA binding mode allows the TCP domains to display broad specificity for a range of DNA sequences even shorter than 11 bp, adding further complexity to the regulatory network of plant TCP transcription factors.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yong-ping Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Ju-kui Nie
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Hong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | | |
Collapse
|
65
|
Alam MS, Yang ZK, Li C, Yan Y, Liu Z, Nazir MM, Xu JH. Loss-of-function mutations of OsbHLH044 transcription factor lead to salinity sensitivity and a greater chalkiness in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:110-123. [PMID: 36347113 DOI: 10.1016/j.plaphy.2022.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The most hazardous abiotic stress, salinity, restricted the world crop production, and grain chalkiness affected the grain quality to limit consumers' acceptance. The basic helix-loop-helix (bHLH) proteins modulate massive biological processes in plants. Here the CRISPR/Cas9 gene editing mutants were obtained to detect the function of OsbHLH044. The loss-of-function of OsbHLH044 mutants showed numerous altered plant phenotypes. Notably, the osbhlh044 mutants resulted in prominently reduced morphological and physiological parameters under salt stress. Lower antioxidant activities and higher lipid peroxidation and hydrogen peroxide (H2O2) accumulation in the osbhlh044 mutants caused salinity sensitivity due to elevated reactive oxygen species (ROS). Under salt stress, both shoots and roots of the osbhlh044 mutants acquired higher Na+. Moreover, the expression of ion homeostasis-related genes (OsHKTs, OsHAK, OsSOSs, and OsNHX) and ABA-responsive gene (OsLEA3) was significantly altered in the osbhlh044 mutants after salt stress. The expression levels of genes coding for starch (OsAGPL1, OsSSIIa, OsWx, and OsFLO2) and seed storage proteins (GluA1 and Globulin 1) were significantly decreased, indicating that they synthesize less store starch and proteins, resulting in grain chalkiness in the osbhlh044 mutants. Yeast one Hybrid (Y1H) showed that OsbHLH044 could activate salt- (OsHKT1;3, OsHAK7, OsSOS1, OsSOS2, OsNHX2, and OsLEA3 but not OsHKT2;1), and starch-related genes (OsSSIIa, OsWx, and OsFLO2) by binding to the G-boxes of their promoters. Therefore, the OsbHLH044 gene editing mutants revealed multiple functions, specifically a positive regulator of salt stress and grain quality, which might bring new insights into the breeding of rice varieties.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Kun Yang
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chao Li
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yan Yan
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Muhammad Mudassir Nazir
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Hong Xu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China; Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
66
|
Shan B, Bao G, Shi T, Zhai L, Bian S, Li X. Genome-wide identification of BBX gene family and their expression patterns under salt stress in soybean. BMC Genomics 2022; 23:820. [PMID: 36510141 PMCID: PMC9743715 DOI: 10.1186/s12864-022-09068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND BBX genes are key players in the regulation of various developmental processes and stress responses, which have been identified and functionally characterized in many plant species. However, our understanding of BBX family was greatly limited in soybean. RESULTS In this study, 59 BBX genes were identified and characterized in soybean, which can be phylogenetically classified into 5 groups. GmBBXs showed diverse gene structures and motif compositions among the groups and similar within each group. Noticeably, synteny analysis suggested that segmental duplication contributed to the expansion of GmBBX family. Moreover, our RNA-Seq data indicated that 59 GmBBXs showed different transcript profiling under salt stress, and qRT-PCR analysis confirmed their expression patterns. Among them, 22 GmBBXs were transcriptionally altered with more than two-fold changes by salt stress, supporting that GmBBXs play important roles in soybean tolerance to salt stress. Additionally, Computational assay suggested that GmBBXs might potentially interact with GmGI3, GmTOE1b, GmCOP1, GmCHI and GmCRY, while eight types of transcription factors showed potentials to bind the promoter regions of GmBBX genes. CONCLUSIONS Fifty-nine BBX genes were identified and characterized in soybean, and their expression patterns under salt stress and computational assays suggested their functional roles in response to salt stress. These findings will contribute to future research in regard to functions and regulatory mechanisms of soybean BBX genes in response to salt stress.
Collapse
Affiliation(s)
- Binghui Shan
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Guohua Bao
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Lulu Zhai
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
67
|
Comprehensive Analysis of Betula platyphylla Suk. PIF Gene Family and Their Potential Functions in Growth and Development. Int J Mol Sci 2022; 23:ijms232315326. [PMID: 36499652 PMCID: PMC9738378 DOI: 10.3390/ijms232315326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Phytochrome-interacting factors (PIFs) are transcription factors with the basic helix-loop-helix (bHLH) domain. As integration factors between different signal pathways, members of the PIF protein family regulate many aspects of plant growth and development, such as seed germination, photomorphogenesis, thermomorphogenesis, rhythm regulation, flowering response, stomatal development, and stress responses. Our previous studies have shown that the BpSPL2 gene may regulate plants' adventitious root development through PIF genes. Within the Betula platyphylla genome, we identified eight PIF (BpPIFs) genes. We analysed and named them based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that transposition or segmental duplication events played a minor role in the expansion of BpPIFs. The comparative syntenic analysis combined with phylogenetic analysis provided a deep insight into the phylogenetic relationships of BpPIF genes, suggesting that BpPIF proteins are closer to PtPIF than to AtPIF. The analysis of cis-acting elements in promoter regions of BpPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. In addition, we found that these promoters have the transcription factor of B. platyphylla SPL2 (BpSPL2) binding motif GTAC. Expression analysis demonstrated that BpPIF genes, especially BpPIF4, BpPIF9b, and BpPIF10, might be the potential target genes of BpSPL2 in the process of adventitious root formation. Besides providing a comprehensive understanding of the BpPIF family, we propose a hypothetical gene network regulatory model for adventitious root formation.
Collapse
|
68
|
Guan Y, Ding L, Jiang J, Jia D, Li S, Jin L, Zhao W, Zhang X, Song A, Chen S, Wang H, Ding B, Chen F. The TIFY family protein CmJAZ1-like negatively regulates petal size via interaction with the bHLH transcription factor CmBPE2 in Chrysanthemum morifolium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1489-1506. [PMID: 36377371 DOI: 10.1111/tpj.16031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Petals are the second floral whorl of angiosperms, exhibiting astonishing diversity in their size between and within species. This variation is essential for protecting their inner reproductive organs and attracting pollinators for fertilization. However, currently, the genetic and developmental control of petal size remains unexplored. Chrysanthemum (Chrysanthemum morifolium) belongs to the Asteraceae family, the largest group of angiosperms, and the extraordinary diversity of petal size in chrysanthemums makes it an ideal model for exploring the regulation mechanism of petal size. Here, we reveal that overexpression of a JAZ repressor CmJAZ1-like exhibits decreased petal size compared to that of the wild-type as a result of repressed cell expansion. Through further in-depth exploration, we confirm an interaction pair between CmJAZ1-like and the bHLH transcription factor CmBPE2. The inhibition of CmBPE2 expression negatively regulates petal size by downregulating the expression of genes involved in cell expansion. Furthermore, CmJAZ1-like significantly reduced the activation ability of CmBPE2 on its target gene CmEXPA7 by directly interacting with it, thus participating in the regulation of petal size development in chrysanthemum. Our results will provide insights into the molecular mechanisms of petal size regulation in flowering plants.
Collapse
Affiliation(s)
- Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Li Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
69
|
Li D, Tang X, Dong Y, Wang Y, Shi S, Li S, Liu Y, Ge H, Chen H. Comparative genomic investigation of TCP gene family in eggplant (Solanum melongena L.) and expression analysis under divergent treatments. PLANT CELL REPORTS 2022; 41:2213-2228. [PMID: 36001130 DOI: 10.1007/s00299-022-02918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The putative TCP genes and their responses to abiotic stress in eggplant were comprehensively characterized, and SmTCP genes (Smechr0202855.1 and Smechr0602431.1) may be involved in anthocyanin synthesis. The Teosinte branched1/Cycloidea/Proliferating cell factors (TCPs), a family of plant-specific transcription factors, plays paramount roles in a plethora of developmental and physiological processes. We here systematically characterized putative TCP genes and their response to abiotic stress in eggplant. In total, 30 SmTCP genes were categorized into two subfamilies based on the classical TCP conserved domains. Chromosomal location analysis illustrated the random distribution of putative SmTCP genes along 12 eggplant chromosomes. Cis-acting elements and miRNA target prediction suggested that versatile and complicated regulatory mechanisms that control SmTCPs gene expression, and 3 miRNAs (miR319a, miR319b, and miR319c-3p) might act as major regulators targeting SmTCPs. Tissue expression profiles indicated divergent spatiotemporal expression patterns of SmTCPs. qRT-PCR assays demonstrated different expression profiles of SmTCP under 4 °C, drought and ABA treatment conditions, suggesting the possible participation of SmTCP genes in multiple signaling pathways. Furthermore, RNA-seq data of eggplant anthocyanin synthesis coupled with yeast one-hybrid and dual-luciferase assays suggested the involvement of SmTCP genes (Smechr0202855.1 and Smechr0602431.1) in the mediation of anthocyanin synthesis. Our study will facilitate further investigation on the putative functional characterization of eggplant TCP genes and lay a solid foundation for the in-depth study of the involvement of SmTCP genes in the regulation of anthocyanin synthesis.
Collapse
Affiliation(s)
- Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xin Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yanxiao Dong
- Shanghai Agricultural Science and Technology Service Center, Shanghai, 200335, China
| | - Yingying Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
70
|
Chen E, Yang X, Liu R, Zhang M, Zhang M, Zhou F, Li D, Hu H, Li C. GhBEE3-Like gene regulated by brassinosteroids is involved in cotton drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1019146. [PMID: 36311136 PMCID: PMC9606830 DOI: 10.3389/fpls.2022.1019146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are important phytohormones that play a vital role in plant drought tolerance, but their mechanisms in cotton (Gossypium hirsutum L.) are poorly understood. Numerous basic helix-loop-helix (bHLH) family genes are involved in the responses to both BRs and drought stress. GhBEE3-Like, a bHLH transcription factor, is repressed by both 24-epi-BL (an active BR substance) and PEG8000 (drought simulation) treatments in cotton. Moreover, GhBZR1, a crucial transcription factor in BR signaling pathway, directly binds to the E-box element in GhBEE3-Like promoter region and inhibits its expression, which has been confirmed by electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assay. Functional analysis revealed that Arabidopsis with GhBEE3-Like overexpression had drought sensitive phenotype, while GhBEE3-Like knock-down cotton plants obtained by virus-induced gene silencing (VIGS) technology were more tolerant to drought stress. Furthermore, the expression levels of three stress-related genes, GhERD10, GhCDPK1 and GhRD26, were significantly higher in GhBEE3-Like knock-down cotton than in control cotton after drought treatment. These results suggest that GhBEE3-Like is inhibited by BRs which elevates the expressions of stress-related genes to enhance plant drought tolerance. This study lays the foundation for understanding the mechanisms of BR-regulated drought tolerance and establishment of drought-resistant cotton lines.
Collapse
Affiliation(s)
- Eryong Chen
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobei Yang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruie Liu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengke Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongxiao Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
71
|
Liu W, Yi Y, Zhuang J, Ge C, Cao Y, Zhang L, Liu M. Genome-wide identification and transcriptional profiling of the basic helix-loop-helix gene family in tung tree ( Vernicia fordii). PeerJ 2022; 10:e13981. [PMID: 36193421 PMCID: PMC9526410 DOI: 10.7717/peerj.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor gene family is one of the largest gene families and is extensively involved in plant growth, development, biotic and abiotic stress responses. Tung tree (Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. However, the characteristics of the bHLH gene family in the tung tree genome are still unclear. Hence, VfbHLHs were first searched at a genome-wide level, and their expression levels in various tissues or under low temperature were investigated systematically. In this study, we identified 104 VfbHLHs in the tung tree genome, and these genes were classified into 18 subfamilies according to bHLH domains. Ninety-eight VfbHLHs were mapped to but not evenly distributed on 11 pseudochromosomes. The domain sequences among VfbHLHs were highly conserved, and their conserved residues were also identified. To explore their expression, we performed gene expression profiling using RNA-Seq and RT-qPCR. We identified five, 18 and 28 VfbHLH genes in female flowers, male flowers and seeds, respectively. Furthermore, we found that eight genes (VfbHLH29, VfbHLH31, VfbHLH47, VfbHLH51, VfbHLH57, VfbHLH59, VfbHLH70, VfbHLH72) were significant differential expressed in roots, leaves and petioles under low temperature stress. This study lays the foundation for future studies on bHLH gene cloning, transgenes, and biological mechanisms.
Collapse
Affiliation(s)
- Wenjuan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yaqi Yi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jingyi Zhuang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Chang Ge
- School of Urban Design, Wuhan University, Wuhan, Hubei, China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
72
|
Zhang N, Hecht C, Sun X, Fei Z, Martin GB. Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. PLANT PHYSIOLOGY 2022; 190:1334-1348. [PMID: 35751605 PMCID: PMC9516780 DOI: 10.1093/plphys/kiac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/10/2022] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes, but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato (Solanum lycopersicum) leaves of one bHLH transcription factor-encoding gene, negative regulator of resistance to DC3000 1 (Nrd1), increased significantly after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses, such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides, were unaltered compared to wild-type plants. RNA-sequencing (RNA-seq) analysis identified a gene, Arabinogalactan protein 1 (Agp1), whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein, and overexpression of the Agp1 gene in Nicotiana benthamiana led to ∼10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-seq also revealed that the loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes, including AvrPtoB tomato-interacting 9 (Bti9), Cold-shock protein receptor (Core), Flagellin sensing 2 (Fls2), Flagellin sensing (Fls3), and Wall-associated kinase 1 (Wak1) upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as the loss of Nrd1-regulated suppression of Agp1.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Chloe Hecht
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | | |
Collapse
|
73
|
Gao Q, Song W, Li X, Xiang C, Chen G, Xiang G, Liu X, Zhang G, Li X, Yang S, Zhai C, Zhao Y. Genome-wide identification of bHLH transcription factors: Discovery of a candidate regulator related to flavonoid biosynthesis in Erigeron breviscapus. FRONTIERS IN PLANT SCIENCE 2022; 13:977649. [PMID: 36186051 PMCID: PMC9515989 DOI: 10.3389/fpls.2022.977649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Erigeron breviscapus is a Compositae plant, and its rich flavonoids have shown strong preventative and curative effects in the treatment of cardio- and cerebrovascular diseases. bHLH genes play a crucial role in plant growth and development. There are 116 EbbHLH genes in E. breviscapus, and each gene has been named based on its chromosome location. Our phylogenetic analysis divided these genes into 18 subfamilies. To further investigate its function, EbbHLH80 was isolated from E. breviscapus leaves. Next, transcriptomic and metabolomic analyses of tobacco leaves were performed. Among 421 differentially accumulated compounds, 98 flavonoids were identified. In addition, differentially expressed genes were identified using RNA-seq, and further analysis suggested that EbbHLH80-OE could not only regulate the expression of some structural genes in the flavonoid biosynthesis pathway to achieve flavonoid accumulation but also be involved in the regulation of a series of downstream pathways, such as stress response, ABA and ethylene signal transduction, to affect plant growth and development. The results of our analysis provide new insights into the function of EbbHLH80 and lay the foundation for future functional studies on E. breviscapus.
Collapse
Affiliation(s)
- Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wanling Song
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Geng Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Guisheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiangyu Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiaoning Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
74
|
Zhang H, Guo J, Chen X, Zhou Y, Pei Y, Chen L, ul Haq S, Lu M, Gong H, Chen R. Pepper bHLH transcription factor CabHLH035 contributes to salt tolerance by modulating ion homeostasis and proline biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac203. [PMID: 36349081 PMCID: PMC9634760 DOI: 10.1093/hr/uhac203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Members of the bHLH family of transcription factors play important roles in multiple aspects of plant biological processes, for instance, abiotic stress responses. Previously, we characterized CaNAC035, a gene that positively regulates stress tolerance and identified CabHLH035, a CaNAC035-interacting protein in pepper (Capsicum annuum L.). In this study, we describe the role of CabHLH035 in the response to salt stress. Our results show that the expression of CabHLH035 increased following salt treatment. Transient expression of CabHLH035 (CabHLH035-To) in pepper enhanced salt tolerance, ectopic expression of CabHLH035 in Arabidopsis increased the salt stress tolerance, whereas knocking down the expression of CabHLH035 in pepper plants resulted in decreased salt tolerance. Homologs of the Salt Overly Sensitive 1 (SOS1) and pyrroline-5-carboxylate acid synthetase (P5CS) genes showed drastically increased expression in transgenic Arabidopsis plants expressing CabHLH035 and CabHLH035-To plants, but expression decreased in CabHLH035-silenced plants. Our results also showed that CabHLH035 can directly bind to the CaSOS1 and CaP5CS gene promoters and positively activate their expression. We found that transgenic Arabidopsis plants, ectopic expression of CabHLH035 and pepper plants transiently overexpressing CabHLH035 (CabHLH035-To) showed lower Na+ and higher proline contents in response to NaCl treatment, while CabHLH035-silenced plants had higher Na+ and lower proline concentrations. Overall, CabHLH035 plays important roles in salt tolerance through its effects on the intracellular Na+ : K+ ratio and proline biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Yunyun Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yingping Pei
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | | | | |
Collapse
|
75
|
Liu Z, Fan H, Ma Z. Comparison of SWEET gene family between maize and foxtail millet through genomic, transcriptomic, and proteomic analyses. THE PLANT GENOME 2022; 15:e20226. [PMID: 35713030 DOI: 10.1002/tpg2.20226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2021] [Indexed: 06/15/2023]
Abstract
Foxtail millet [Setaria italica (L.) P. Beauv.] does not show high yield and biomass compared with maize (Zea mays L.) although it is a C4 crop with the potential for high productivity. Because SWEET genes, which are important for sugar transport in plants, play critical roles in biomass production and seed filling in crops, genome-wide, transcriptomic, and proteomic comparison on SWEET gene family between these two species would provide some clues for unlocking this issue. In our study, 24 SWEET genes were identified in foxtail millet and maize. Sequence-based bioinformatics combined with gene expression analyses identified several candidate functional orthologs in these two species. A comparative analysis on expression characteristics of SWEET genes and proteins between maize and foxtail millet indicate that not only some critical major SWEET proteins show significant upregulation in maize compared with their orthologs in foxtail millet, but also there are more quantities of maize SWEET genes showing high expressions than that of foxtail millet genes, suggesting that compared with foxtail millet, maize possesses higher capacity of sugar transport, the crucial determinant for crop yield and biomass. These results provide a basis on revealing why foxtail millet exhibits low yield and biomass although it is a C4 crop with the potential for high productivity.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural Univ., Baoding, Hebei, 071001, People's Republic of China
| | - Hui Fan
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural Univ., Baoding, Hebei, 071001, People's Republic of China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural Univ., Baoding, Hebei, 071001, People's Republic of China
| |
Collapse
|
76
|
Cheng J, Shi Y, Wang J, Duan C, Yu K. Transcription factor VvibHLH93 negatively regulates proanthocyanidin biosynthesis in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:1007895. [PMID: 36092430 PMCID: PMC9449495 DOI: 10.3389/fpls.2022.1007895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Proanthocyanidins (PAs) derived from grape berries determine the astringency and bitterness of red wines. The two leucoanthocyanidin reductases (VviLAR1 and VviLAR2) are crucial for PA accumulation in grapevine. Our previous studies show that the promoter of VviLAR1 contains multiple proposed bHLH transcription factor binding sites, but the corresponding bHLH family regulators remain unknown. Here we identified and functionally characterized VvibHLH93 as a new bHLH transcription factor in PA pathway. Yeast one-hybrid and electrophoretic mobility shift assays showed that VvibHLH93 bound the E/G-box in VviLAR1 promoter. And VvibHLH93 gene was mainly expressed in grape flowers, tendrils, stems and berries at PA active stages. Overexpression of VvibHLH93 suppressed PA accumulation in grape callus, which was linked to the repression of the transcript levels of two VviLARs. The gene expression analysis in transgenic grape callus and the dual-luciferase assay in tobacco leaves together revealed that VvibHLH93 targeted a broad set of structural genes and transcription factors in flavonoid pathway. This research enriches the regulatory mechanism of the two VviLAR genes, and provides new insights into regulating PA content in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
77
|
Lu X, Zhang H, Hu J, Nie G, Khan I, Feng G, Zhang X, Wang X, Huang L. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct Integr Genomics 2022; 22:1331-1344. [PMID: 35941266 DOI: 10.1007/s10142-022-00890-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.
Collapse
Affiliation(s)
- Xiaowen Lu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
78
|
Zhang L, Chen W, Liu R, Shi B, Shu Y, Zhang H. Genome-wide characterization and expression analysis of bHLH gene family in physic nut ( Jatropha curcas L.). PeerJ 2022; 10:e13786. [PMID: 35966923 PMCID: PMC9373979 DOI: 10.7717/peerj.13786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
The basic helix loop helix (bHLH) transcription factor perform essential roles in plant development and abiotic stress. Here, a total of 122 bHLH family members were identified from the physic nut (Jatropha curcas L.) genomic database. Chromosomal localization results showed that 120 members were located on 11 chromosomes. The phylogenetic tree manifested that the JcbHLHs could be grouped into 28 subfamilies. Syntenic analysis showed that there were 10 bHLH collinear genes among the physic nut, Arabidopsis thaliana and Oryza sativa. These genes, except JcbHLH84, were highly expressed in various tissues of the physic nut, implying a key role in plant development. Gene expression profiles showed that ten genes (especially JcbHLH33, JcbHLH45 and JcbHLH55) correspond to both salinity and drought stresses; while eight genes only respond to salinity and another eight genes only respond to drought stress. Moreover, the protein interaction network revealed that the JcbHLHs are involved in growth, development and stress signal transduction pathways. These discoveries will help to excavate several key genes may involve in salt or drought stresses and seed development, elucidate the complex transcriptional regulation mechanism of JcbHLH genes and provide the theoretical basis for stress response and genetic improvement of physic nut.
Collapse
Affiliation(s)
- Lin Zhang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, China
| | - Wei Chen
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, China
| | - Rongrong Liu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, China
| | - Ben Shi
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, China
| | - Youju Shu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, China
| | - Haoyu Zhang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
79
|
Li C, Cai X, Shen Q, Chen X, Xu M, Ye T, Si D, Wu L, Chen D, Han Z, Si J. Genome-wide analysis of basic helix-loop-helix genes in Dendrobium catenatum and functional characterization of DcMYC2 in jasmonate-mediated immunity to Sclerotium delphinii. FRONTIERS IN PLANT SCIENCE 2022; 13:956210. [PMID: 35982703 PMCID: PMC9378844 DOI: 10.3389/fpls.2022.956210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium catenatum, belonging to the Orchidaceae, is a precious Chinese herbal medicine. Sclerotium delphinii (P1) is a broad-spectrum fungal disease, which causes widespread loss in the near-wild cultivation of D. catenatum. Thus, resistance breeding of D. catenatum has become the key to solve this problem. The basic helix-loop-helix (bHLH) gene family is closely related to plant resistance to external stresses, but the related research in D. catenatum is not deep enough yet. Phylogenetic analysis showed that 108 DcbHLH genes could be divided into 23 subgroups. Promoter cis-acting elements revealed that DcbHLHs contain a large number of stress-related cis-acting elements. Transcriptome analysis of MeJA and P1 treatment manifested that exogenous MeJA can change the expression pattern of most bHLH genes, especially the IIIe subgroup, including inhibiting the expression of DcbHLH026 (MYC2a) and promoting the expression of DcbHLH027 (MYC2b). Subcellular localization indicated that they were located in the nucleus. Furthermore, exogenous MeJA treatment significantly delayed disease time and reduced lesion size after infection with P1. DcMYC2b-overexpression Arabidopsis lines showed significantly smaller lesions after being infected with P1 than the wild type, indicating that DcMYC2b functions as an important positive regulator in D. catenatum defense against P1. Our findings shed more insights into the critical role of the DcbHLH family in plants and the resistance breeding of D. catenatum.
Collapse
|
80
|
Veisi S, Sabouri A, Abedi A. Meta-analysis of QTLs and candidate genes associated with seed germination in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1587-1605. [PMID: 36389095 PMCID: PMC9530108 DOI: 10.1007/s12298-022-01232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/12/2023]
Abstract
Seed germination is one of the critical stages of plant life, and many quantitative trait loci (QTLs) control this complex trait. Meta-analysis of QTLs is a powerful computational technique for estimating the most stable QTLs regardless of the population's genetic background. Besides, this analysis effectively narrows down the confidence interval (CI) to identify candidate genes (CGs) and marker development. In the current study, a comprehensive genome-wide meta-analysis was performed on QTLs associated with germination in rice. This analysis was conducted based on the data reported over the last two decades. In this case, various analyses were performed, including seed germination rate, plumule length, radicle length, germination percentage, coleoptile length, coleorhiza length, radicle fresh weight, germination potential, and germination index. A total of 67 QTLs were projected onto a reference map for these traits and then integrated into 32 meta-QTLs (MQTLs) to provide a genetic framework for seed germination. The average CI of MQTLs was considerably reduced from 15.125 to 8.73 cM compared to the initial QTLs. This situation identified 728 well-known functionally characterized genes and novel putative CGs for investigated traits. The fold change calculation demonstrated that 155 CGs had significant changes in expression analysis. In this case, 112 and 43 CGs were up-regulated and down-regulated during germination, respectively. This study provides an overview and compares genetic loci controlling traits related to seed germination in rice. The findings can bridge the gap between QTLs and CGs for seed germination. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01232-1.
Collapse
Affiliation(s)
- Sheida Veisi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
81
|
Liu H, Wang Y, Liu L, Wei B, Wang X, Xiao Q, Li Y, Ajayo BS, Huang Y. Pleiotropic ZmICE1 Is an Important Transcriptional Regulator of Maize Endosperm Starch Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:895763. [PMID: 35937346 PMCID: PMC9355408 DOI: 10.3389/fpls.2022.895763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch, the major component of cereal grains, affects crop yield and quality and is widely used in food and industrial applications. The biosynthesis of maize starch is a complex process involving a series of functional enzymes. However, the sophisticated regulatory mechanisms of starch biosynthetic genes have not been fully elaborated. The basic/helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes and participate in many physiological processes. In this study, 202 bHLH encoding genes were identified in the maize genome by Blast method. ZmICE1 gene, which belongs to the ICE subfamily of the bHLH family, was obtained and expressed mainly in maize filling endosperm and co-expressed with 14 starch biosynthesis genes. Based on the comparative analyses across different plant species, we revealed that the gene structures and protein domains of the ICE subfamily were conserved between monocots and dicots, suggesting their functional conservation feature. Yeast activation and subcellular localization assays suggested that ZmICE1 had transcriptional activation activity and localized in the nucleus. Yeast one-hybrid assays confirmed that ZmICE1 could directly bind to the promoters of ZmSSIIa and ZmGBSSI. Transient gene expression analysis in maize endosperm revealed that ZmICE1 positively regulated the expression of ZmSSIIa, but inhibited the expression of ZmGBSSI. Our results indicated that ZmICE1 could function as a regulator of maize starch biosynthesis.
Collapse
Affiliation(s)
- Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yongbin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Lijun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Bin Wei
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xieqin Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | | | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
82
|
Wei X, Cao J, Lan H. Genome-Wide Characterization and Analysis of the bHLH Transcription Factor Family in Suaeda aralocaspica, an Annual Halophyte With Single-Cell C4 Anatomy. Front Genet 2022; 13:927830. [PMID: 35873472 PMCID: PMC9301494 DOI: 10.3389/fgene.2022.927830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors play important roles in plant growth, development, metabolism, hormone signaling pathways, and responses to abiotic stresses. However, comprehensive genomic and functional analyses of bHLH genes have not yet been reported in desert euhalophytes. Suaeda aralocaspica, an annual C4 halophyte without Kranz anatomy, presents high photosynthetic efficiency in harsh natural habitats and is an ideal plant for identifying transcription factors involved in stress resistance. In this study, 83 bHLH genes in S. aralocaspica were identified and categorized into 21 subfamilies based on conserved motifs, gene structures, and phylogenetic analysis. Functional annotation enrichment revealed that the majority of SabHLHs were enriched in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the response to stress conditions, as transcription factors. A number of cis-acting elements related to plant hormones and stress responses were also predicted in the promoter regions of SabHLHs, which were confirmed by expression analysis under various abiotic stress conditions (NaCl, mannitol, low temperature, ABA, GA3, MeJA, and SA); most were involved in tolerance to drought and salinity. SabHLH169 (076) protein localized in the nucleus was involved in transcriptional activity, and gene expression could be affected by different light qualities. This study is the first comprehensive analysis of the bHLH gene family in S. aralocaspica. These data will facilitate further characterization of their molecular functions in the adaptation of desert plants to abiotic stress.
Collapse
|
83
|
Li J, Gong J, Zhang L, Shen H, Chen G, Xie Q, Hu Z. Overexpression of SlPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153698. [PMID: 35461174 DOI: 10.1016/j.jplph.2022.153698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play vital regulatory roles in a series of metabolic, physiological, and developmental processes of plants. Here, SlPRE5, an atypical bHLH gene, was isolated from tomato. SlPRE5 was noticeably expressed in young leaves, sepals, and flowers. SlPRE5-overexpressing plants exhibited rolling leaves with reduced chlorophyll content, increased stem internode length, leaf angle, and compound leaf length. The water loss rate of mature leaves and the content of starch were significantly reduced, while the content of gibberellin was significantly increased in transgenic plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) showed that SlPRE5 could interact with SlAIF1, SlAIF2, and SlPAR1. qRT-PCR and RNA-seq results revealed that the expression levels of genes related to chloroplast development, chlorophyll metabolism, gibberellin metabolism and signal transduction, starch, photosynthesis, and cell expansion were significantly altered in SlPRE5-overexpression plants. Collectively, our results suggest that SlPRE5 is a crucial transcription factor involved in plant morphology and chlorophyll accumulation in tomato leaves.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
84
|
Heterologous Expression of Dehydration-Inducible MfbHLH145 of Myrothamnus flabellifoli Enhanced Drought and Salt Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23105546. [PMID: 35628358 PMCID: PMC9146472 DOI: 10.3390/ijms23105546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Myrothamnus flabellifolia is the only woody resurrection plant found in the world. It has a strong tolerance to drought and can survive long-term exposure to desiccated environments. However, few genes related to its drought tolerance have been functionally characterized and the molecular mechanisms underlying the stress tolerance of M. flabellifolia are largely unknown. In this study, we isolated a dehydration-inducible bHLH transcription factor gene MfbHLH145 from M. flabellifolia. Heterologous expression of MfbHLH145 enhanced the drought and salt tolerance of Arabidopsis. It can not only promote root system development under short-term stresses, but also improve growth performance under long-term treatments. Further investigation showed that MfbHLH145 contributes to enhanced leaf water retention capacity through the promotion of stomatal closure, increased osmolyte accumulation, and decreased stress-induced oxidative damage through an increase in antioxidant enzyme activities. These results suggest that MfbHLH145 may be involved in the positive regulation of stress responses in M. flabellifolia. This study provides insight into the molecular mechanism underlying the survival of M. flabellifolia in extreme dehydration conditions.
Collapse
|
85
|
Sun PW, Gao ZH, Lv FF, Yu CC, Jin Y, Xu YH, Wei JH. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Aquilaria sinensis. Sci Rep 2022; 12:7194. [PMID: 35505005 PMCID: PMC9065063 DOI: 10.1038/s41598-022-10785-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors are involved in several biological processes both in plant development and stress responses. Agarwood, a major active and economical product, is only induced and accumulated when the roots, stems, or branches are wounded in Aquilaria sinensis. Although genome-wide comprehensive analyses of the bHLH family have been identified in many plants, no systematic study of the genes in this family has been conducted in A. sinensis. In this study, 105 bHLH genes were identified in A. sinensis through genome-wide analysis and named according to their chromosomal locations. Based on a phylogenetic tree, AsbHLH family proteins were classified into 18 subfamilies. Most of them were distributed on eight chromosomes, with the exception of two genes. Based on the tissue-specific expression characteristics and expression patterns in response to methyl jasmonate (MeJA) treatment, seven AsbHLH genes were likely involved in wound-induced agarwood formation. The results provide comprehensive information on AsbHLHs that can be used to elucidate the molecular functions and physiological roles of these proteins in A. sinensis.
Collapse
Affiliation(s)
- Pei-Wen Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhi-Hui Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fei-Fei Lv
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Cui-Cui Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China. .,Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
86
|
Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, Abdelsalam NR, Xu JH. CRISPR/Cas9 Mediated Knockout of the OsbHLH024 Transcription Factor Improves Salt Stress Resistance in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091184. [PMID: 35567185 PMCID: PMC9101608 DOI: 10.3390/plants11091184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 05/07/2023]
Abstract
Salinity stress is one of the most prominent abiotic stresses that negatively affect crop production. Transcription factors (TFs) are involved in the absorption, transport, or compartmentation of sodium (Na+) or potassium (K+) to resist salt stress. The basic helix-loop-helix (bHLH) is a TF gene family critical for plant growth and stress responses, including salinity. Herein, we used the CRISPR/Cas9 strategy to generate the gene editing mutant to investigate the role of OsbHLH024 in rice under salt stress. The A nucleotide base deletion was identified in the osbhlh024 mutant (A91). Exposure of the A91 under salt stress resulted in a significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence. Moreover, high antioxidant activities coincided with less reactive oxygen species (ROS) and stabilized levels of MDA in the A91. This better control of oxidative stress was accompanied by fewer Na+ but more K+, and a balanced level of Ca2+, Zn2+, and Mg2+ in the shoot and root of the A91, allowing it to withstand salt stress. Furthermore, the A91 also presented a significantly up-regulated expression of the ion transporter genes (OsHKT1;3, OsHAK7, and OsSOS1) in the shoot when exposed to salt stress. These findings imply that the OsbHLH024 might play the role of a negative regulator of salt stress, which will help to understand better the molecular basis of rice production improvement under salt stress.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Jiarui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Ruofu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Md. Alamin
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| |
Collapse
|
87
|
Gao Y, Chen N, Zhang X, Li EY, Luo W, Zhang J, Zhang W, Li S, Wang J, Liu S. Juvenile Hormone Membrane Signaling Enhances its Intracellular Signaling Through Phosphorylation of Met and Hsp83. Front Physiol 2022; 13:872889. [PMID: 35574494 PMCID: PMC9091338 DOI: 10.3389/fphys.2022.872889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Juvenile hormone (JH) regulates insect development and reproduction through both intracellular and membrane signaling, and the two pathways might crosstalk with each other. Recent studies have reported that JH membrane signaling induces phosphorylation of the JH intracellular receptor Met, thus enhancing its transcriptional activity. To gain more insights into JH-induced Met phosphorylation, we here performed phosphoproteomics to identify potential phosphorylation sites of Met and its paralog Germ-cell expressed (Gce) in Drosophila Kc cells. In vitro experiments demonstrate that JH-induced phosphorylation sites in the basic helix-loop-helix (bHLH) domain, but not in the Per-Arnt-Sim-B (PAS-B) domain, are required for maximization of Met transcriptional activity. Moreover, phosphoproteomics analysis reveale that JH also induces the phosphorylation of Hsp83, a chaperone protein involved in JH-activated Met nuclear import. The JH-induced Hsp83 phosphorylation at S219 facilitates Hsp83-Met binding, thus promoting Met nuclear import and its transcription. By using proteomics, subcellular distribution, and co-immunoprecipitation approaches, we further characterized 14-3-3 proteins as negative regulators of Met nuclear import through physical interaction with Hsp83. These results show that JH membrane signaling induces phosphorylation of the key components in JH intracellular signaling, such as Met and Hsp83, and consequently facilitating JH intracellular signaling.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiangle Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Emma Y. Li
- International Department, The Affiliated High School of South China Normal University, Guangzhou, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenqiang Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
88
|
Li T, Shi Y, Zhu B, Zhang T, Feng Z, Wang X, Li X, You C. Genome-Wide Identification of Apple Atypical bHLH Subfamily PRE Members and Functional Characterization of MdPRE4.3 in Response to Abiotic Stress. Front Genet 2022; 13:846559. [PMID: 35401662 PMCID: PMC8987198 DOI: 10.3389/fgene.2022.846559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Paclobutrazol Resistance (PRE) genes encode atypical basic helix–loop–helix (bHLH) transcription factor family. Typical bHLH proteins contain a bifunctional structure with a basic region involved in DNA binding and an adjacent helix–loop–helix domain involved in protein–protein interaction. PRE members lack the basic region but retain the HLH domain, which interacts with other typical bHLH proteins to suppress or enhance their DNA-binding activity. PRE proteins are involved in phytohormone responses, light signal transduction, and fruit pigment accumulation. However, apple (Malus domestica) PRE protein functions have not been studied. In this study, nine MdPRE genes were identified from the apple GDDH13 v1.1 reference genome and were mapped to seven chromosomes. The cis-acting element analysis revealed that MdPRE promoters possessed various elements related to hormones, light, and stress responses. Expression pattern analysis showed that MdPRE genes have different tissue expression profiles. Hormonal and abiotic stress treatments can induce the expression of several MdPRE genes. Moreover, we provide molecular and genetic evidence showing that MdPRE4.3 increases the apple’s sensitivity to NaCl, abscisic acid (ABA), and indoleacetic acid (IAA) and improves tolerance to brassinosteroids (BR); however, it does not affect the apple’s response to gibberellin (GA). Finally, the protein interaction network among the MdPRES proteins was predicted, which could help us elucidate the molecular and biological functions of atypical bHLH transcription factors in the apple.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuming Li
- *Correspondence: Xiuming Li, ; Chunxiang You,
| | | |
Collapse
|
89
|
Wang Z, Zhang Y, Hu H, Chen L, Zhang H, Chen R. CabHLH79 Acts Upstream of CaNAC035 to Regulate Cold Stress in Pepper. Int J Mol Sci 2022; 23:ijms23052537. [PMID: 35269676 PMCID: PMC8910607 DOI: 10.3390/ijms23052537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Cold stress is one of the main restricting factors affecting plant growth and agricultural production. Complex cold signaling pathways induce the expression of hundreds of cold-sensitive genes. The NAC transcription factor CaNAC035 has previously been reported to significantly influence the response of pepper to cold stress. Here, using Yeast one-hybrid (Y1H) library screened to search for other relevant molecular factors, we identified that CabHLH79 directly binds to the CaNAC035 promoter. Different basic helix–loop–helix (bHLH) transcription factors (TFs) in plants significantly respond to multiple plant stresses, but the mechanism of bHLHs in the cold tolerance of pepper is still unclear. This study investigated the functional characterization of CabHLH79 in the regulation of cold resistance in pepper. Down-regulation of CabHLH79 in pepper by virus-induced gene silencing (VIGS) increased its sensitivity to low temperature, whereas overexpression of CabHLH79 in pepper or Arabidopsis enhanced cold resistance. Compared with control plants, VIGS mediated of CabHLH79 had lower enzyme activity and related gene expression levels, accompanied by higher reactive oxygen species (ROS) accumulation, relative electrolyte leakage (REL), and malondialdehyde accumulation (MDA) contents. Transient overexpression of CabHLH79 pepper positively regulated cold stress response genes and ROS genes, which reduced REL and MDA contents. Similarly, ectopic expression of CabHLH79 in Arabidopsis showed less ROS accumulation, and higher enzymes activities and expression levels. These results indicated that CabHLH79 enhanced cold tolerance by enhancing the expression of ROS-related and other cold stress tolerance-related genes. Taken together, our results showed a multifaceted module of bHLH79-NAC035 in the cold stress of pepper.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Yumeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huifang Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence: ; Tel./Fax: +86-29-8708-2613
| |
Collapse
|
90
|
Xue Y, Shen Z, Tao F, Zhou J, Xu B. Transcriptomic Analysis Reveal the Molecular Mechanisms of Seed Coat Development in Cucurbita pepo L. FRONTIERS IN PLANT SCIENCE 2022; 13:772685. [PMID: 35283914 PMCID: PMC8912962 DOI: 10.3389/fpls.2022.772685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/06/2022] [Indexed: 05/24/2023]
Abstract
Cucurbita pepo is one of the earliest cultivated crops. It is native to Central and South America and is now widely cultivated all over the world for its rich nutrition, short growth period, and high yield, which make it suitable for intercropping. Hull-less C. pepo L. (HLCP) is a rare variant in nature that is easier to consume. Its seed has a seed kernel but lacks a seed coat. The molecular mechanism underlying the lack of seed coat development in the HLCP variety is not clear yet. The BGISEQ-500 sequencing platform was used to sequence 18 cDNA libraries of seed coats from hulled C. pepo (CP) and HLCP at three developmental stages (8, 18, and 28 days) post-pollination. We found that lignin accumulation in the seed coat of the HLCP variety was much lower than that of the CP variety. A total of 2,099 DEGs were identified in the CP variety, which were enriched mainly in the phenylpropanoid biosynthesis pathway, amino sugar, and nucleotide sugar metabolism pathways. A total of 1,831 DEGs were identified in the HLCP variety and found to be enriched mainly in the phenylpropanoid biosynthesis and metabolism pathways of starch and sucrose. Among the DEGs, hub proteins (FusA), protein kinases (IRAK4), and several transcription factors related to seed coat development (MYB, bHLH, NAC, AP2/EREBP, WRKY) were upregulated in the CP variety. The relative expression levels of 12 randomly selected DEGs were determined using quantitative real-time PCR analysis and found to be consistent with those obtained using RNA-Seq, with a correlation coefficient of 0.9474. We found that IRAK4 protein kinases, AP2/EREBP, MYB, bHLH, and NAC transcription factors may play important roles in seed coat development, leading to the formation of HLCP.
Collapse
Affiliation(s)
- Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Zhiyan Shen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jingjiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
91
|
Xu Y, Zhang H, Zhong Y, Jiang N, Zhong X, Zhang Q, Chai S, Li H, Zhang Z. Comparative genomics analysis of bHLH genes in cucurbits identifies a novel gene regulating cucurbitacin biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac038. [PMID: 35184192 PMCID: PMC9071377 DOI: 10.1093/hr/uhac038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 05/08/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors (TFs) participate in a variety of biological regulatory processes in plants, and have undergone significant expansion during land plant evolution by gene duplications. In cucurbit crops, several bHLH genes have been found to be responsible for the agronomic traits such as bitterness. However, the characterization of bHLH genes across the genomes of cucurbit species has not been reported, and how they have evolved and diverged remains largely unanswered. Here we identified 1160 bHLH genes in seven cucurbit crops and performed a comprehensive comparative genomics analysis. We determined orthologous and paralogous bHLH genes across cucurbit crops by syntenic analysis between or within species. Orthology and phylogenetic analysis of the tandem-duplicated bHLH genes in the Bt cluster which regulate the biosynthesis of cucurbitacins suggest that this cluster is derived from three ancestral genes after the cucurbit-common tetraploidization event. Interestingly, we identified a new conserved cluster paralogous to the Bt cluster that includes two tandem bHLH genes, and the evolutionary history and expression profiles of these two genes in the new cluster suggest the involvement of one gene (Brp) in the regulation of cucurbitacin biosynthesis in roots. Further biochemical and transgenic assays in melon hairy roots support the function of Brp. This study provides useful information for further investigating the functions of bHLH TFs and novel insights into the regulation of cucurbitacin biosynthesis in cucurbit crops and other plants.
Collapse
Affiliation(s)
- Yuanchao Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huimin Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Naiyu Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyun Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiqi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
92
|
The Caucasian Clover Gene TaMYC2 Responds to Abiotic Stress and Improves Tolerance by Increasing the Activity of Antioxidant Enzymes. Genes (Basel) 2022; 13:genes13020329. [PMID: 35205373 PMCID: PMC8871790 DOI: 10.3390/genes13020329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Abiotic stress affects metabolic processes in plants and restricts plant growth and development. In this experiment, Caucasian clover (Trifolium ambiguum M. Bieb.) was used as a material, and the CDS of TaMYC2, which is involved in regulating the response to abiotic stress, was cloned. The CDS of TaMYC2 was 726 bp in length and encoded 241 amino acids. The protein encoded by TaMYC2 was determined to be unstable, be highly hydrophilic, and contain 23 phosphorylation sites. Subcellular localization results showed that TaMYC2 was localized in the nucleus. TaMYC2 responded to salt, alkali, cold, and drought stress and could be induced by IAA, GA3, and MeJA. By analyzing the gene expression and antioxidant enzyme activity in plants before and after stress, we found that drought and cold stress could induce the expression of TaMYC2 and increase the antioxidant enzyme activity. TaMYC2 could also induce the expression of ROS scavenging-related and stress-responsive genes and increase the activity of antioxidant enzymes, thus improving the ability of plants to resist stress. The results of this experiment provide references for subsequent in-depth exploration of both the function of TaMYC2 in and the molecular mechanism underlying the resistance of Caucasian clover.
Collapse
|
93
|
Yi X, Wang X, Wu L, Wang M, Yang L, Liu X, Chen S, Shi Y. Integrated Analysis of Basic Helix Loop Helix Transcription Factor Family and Targeted Terpenoids Reveals Candidate AarbHLH Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. FRONTIERS IN PLANT SCIENCE 2022; 12:811166. [PMID: 35111184 PMCID: PMC8801783 DOI: 10.3389/fpls.2021.811166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or β-caryophyllene. Protein-protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.
Collapse
Affiliation(s)
- Xiaozhe Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
94
|
Key Genes in the JAZ Signaling Pathway Are Up-Regulated Faster and More Abundantly in Caterpillar-Resistant Maize. J Chem Ecol 2022; 48:179-195. [PMID: 34982368 DOI: 10.1007/s10886-021-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Jasmonic acid (JA) and its derivatives, collectively known as jasmonates (JAs), are important signaling hormones for plant responses against chewing herbivores. In JA signaling networks, jasmonate ZIM-domain (JAZ) proteins are transcriptional repressors that regulate JA-modulated downstream herbivore defenses. JAZ repressors are widely presented in land plants, however, there is only limited information about the regulation/function of JAZ proteins in maize. In this study, we performed a comprehensive expression analysis of ZmJAZ genes with other selected genes in the jasmonate pathway in response to feeding by fall armyworm (Spodoptera frugiperda, FAW), mechanical wounding, and exogenous hormone treatments in two maize genotypes differing in FAW resistance. Results showed that transcript levels of JAZ genes and several key genes in JA-signaling and biosynthesis pathways were rapidly and abundantly expressed in both genotypes in response to these various treatments. However, there were key differences between the two genotypes in the expression of ZmJAZ1 and ZmCOI1a, these two genes were expressed significantly rapidly and abundantly in the resistant line which was tightly regulated by endogenous JA level upon feeding. For instance, transcript levels of ZmJAZ1 increase dramatically within 30 min of FAW-fed Mp708 but not Tx601, correlating with the JA accumulation. The results also demonstrated that wounding or JA treatment alone was not as effective as FAW feeding; this suggests that insect-derived factors are required for optimal defense responses.
Collapse
|
95
|
Yang J, Chen Y, Gao M, Wu L, Xiong S, Wang S, Gao J, Zhao Y, Wang Y. Comprehensive identification of bHLH transcription factors in Litsea cubeba reveals candidate gene involved in the monoterpene biosynthesis pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:1081335. [PMID: 36618662 PMCID: PMC9811127 DOI: 10.3389/fpls.2022.1081335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
Litsea cubeba (Lour.) Person, an economically important aromatic plant producing essential oils, has lemon-like fragrance and 96.44-98.44% monoterpene contents. bHLH transcription factor plays an important role in plant secondary metabolism and terpene biosynthesis. In this study, we used bioinformatics to identify bHLH transcription factors in L. cubeba, 173 bHLH genes were identified from L. cubeba and divided these into 26 subfamilies based on phylogenetic analysis. The majority of bHLHs in each subfamily shared comparable structures and motifs. While LcbHLHs were unevenly distributed across 12 chromosomes, 10 tandem repeats were discovered. Expression profiles of bHLH genes in different tissues demonstrated that LcbHLH78 is a potential candidate gene for regulating monoterpene biosynthesis. LcbHLH78 and the terpene synthase LcTPS42 showed comparable expression patterns in various tissues and fruit development stages of L. cubeba. Subcellular localization analysis revealed that LcbHLH78 protein localizes to the nucleus, consistent with a transcription factor function. Importantly, transient overexpression of LcbHLH78 increased geraniol and linalol contents. Our research demonstrates that LcbHLH78 enhances terpenoid biosynthesis. This finding will be beneficial for improving the quality of L. cubeba and provides helpful insights for further research into the control mechanism of LcbHLH genes over terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiahui Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Siqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Jing Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
- *Correspondence: Yunxiao Zhao, ; Yangdong Wang,
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangZhou, Zhejiang, China
- *Correspondence: Yunxiao Zhao, ; Yangdong Wang,
| |
Collapse
|
96
|
Yang H, Li P, Jin G, Gui D, Liu L, Zhang C. Temporal regulation of alternative splicing events in rice memory under drought stress. PLANT DIVERSITY 2022; 44:116-125. [PMID: 35281128 PMCID: PMC8897166 DOI: 10.1016/j.pld.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
Plant adaptation to drought stress is essential for plant survival and crop yield. Recently, harnessing drought memory, which is induced by repeated stress and recovery cycles, was suggested as a means to improve drought resistance at the transcriptional level. However, the genetic mechanism underlying drought memory is unclear. Here, we carried out a quantitative analysis of alternative splicing (AS) events in rice memory under drought stress, generating 12 transcriptome datasets. Notably, we identified exon skipping (ES) as the predominant AS type (>80%) in differential alternative splicing (DAS) in response to drought stress. Applying our analysis pipeline to investigate DAS events following drought stress in six other plant species revealed variable ES frequencies ranging from 9.94% to 60.70% depending on the species, suggesting that the relative frequency of DAS types in plants is likely to be species-specific. The dinucleotide sequence at AS splice sites in rice following drought stress was preferentially GC-AG and AT-AC. Since U12-type splicing uses the AT-AC site, this suggests that drought stress may increase U12-type splicing, and thus increase ES frequency. We hypothesize that multiple isoforms derived from exon skipping may be induced by drought stress in rice. We also identified 20 transcription factors and three highly connected hub genes with potential roles in drought memory that may be good targets for plant breeding.
Collapse
Affiliation(s)
- Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daping Gui
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Haiyan Engineering & Technology Center, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
97
|
Ma M, Chen Q, Dong H, Zhang S, Huang X. Genome-wide identification and expression analysis of the bZIP transcription factors, and functional analysis in response to drought and cold stresses in pear (Pyrus breschneideri). BMC PLANT BIOLOGY 2021; 21:583. [PMID: 34886805 PMCID: PMC8656046 DOI: 10.1186/s12870-021-03356-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/23/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcription factors (TFs) are involved in many important biological processes, including cell stretching, histological differentiation, metabolic activity, seed storage, gene regulation, and response to abiotic and biotic stresses. Little is known about the functions, evolutionary history, and expression patterns of basic region-leucine zipper TF family genes in pear, despite the release of the genome of Chinese white pears ("Dangshansuli"). RESULTS Overall, 92 bZIP genes were identified in the pear genome (Pyrus breschneideri). Of these, 83 were randomly distributed on all 17 chromosomes except chromosome 4, and the other 9 genes were located on loose scaffolding. The genes were divided into 14 subgroups. Whole-genome duplications, dispersed duplication, and purifying selection for whole-genome duplications are the main reasons for the expansion of the PbrbZIP gene family. The analysis of functional annotation enrichment indicated that most of the functions of PbrbZIP genes were enriched in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways involved in the abiotic stress response. Next, expression analysis and virus-induced gene silencing results indicated that PbrbZIP genes might play critical roles in response to drought and cold stresses, especially for the genes from subgroups A, C, G, I, and S. CONCLUSIONS Ninety-two PbrbZIP genes were identified from the pear genome and classified into 14 subgroups. PbrbZIP genes were mainly expanded from whole-genome duplications and dispersed duplications and retained by purifying selection. PbrbZIP genes were induced by cold and drought stresses and played important roles in drought and cold tolerance. These results provided useful information for further increasing the tolerance of pears to stresses and a foundation to study the cold and drought tolerance mechanism of PbrbZIP genes.
Collapse
Affiliation(s)
- Ming Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
98
|
Bai G, Yang DH, Chao P, Yao H, Fei M, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H. Genome-wide identification and expression analysis of NtbHLH gene family in tobacco ( Nicotiana tabacum) and the role of NtbHLH86 in drought adaptation. PLANT DIVERSITY 2021; 43:510-522. [PMID: 35024520 PMCID: PMC8720692 DOI: 10.1016/j.pld.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The bHLH transcription factors play pivotal roles in plant growth and development, production of secondary metabolites and responses to various environmental stresses. Although the bHLH genes have been well studied in model plant species, a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome. In the present study, a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies. The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins. Moreover, the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs. A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome. Moreover, transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues, and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR, indicating their potential functions in the plant growth and development. Importantly, overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress. Therefore, our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco.
Collapse
Affiliation(s)
- Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Peijian Chao
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Heng Yao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - MingLiang Fei
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Yihan Zhang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Xuejun Chen
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Bingguang Xiao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| | - Feng Li
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - Zhen-Yu Wang
- Institute ofBioengineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Jun Yang
- National Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan, China
- National Tobacco Genetic Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
99
|
Zuo ZF, Sun HJ, Lee HY, Kang HG. Identification of bHLH genes through genome-wide association study and antisense expression of ZjbHLH076/ZjICE1 influence tolerance to low temperature and salinity in Zoysia japonica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111088. [PMID: 34763873 DOI: 10.1016/j.plantsci.2021.111088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Abiotic stress greatly affects plant growth and developmental processes, resulting in poor productivity. A variety of basic helix-loop-helix (bHLH) transcription factors (TFs) that play important roles in plant abiotic stress response pathways have been identified. However, bHLH proteins of Zoysia japonica, one of the warm-season turfgrasses, have not been widely studied. In this study, 141 bHLH genes (ZjbHLHs) were identified and classified into 22 subfamilies. The ZjbHLHs were mapped on 19 chromosomes except for Chr17 and one pair of the tandemly arrayed genes was identified on Chr06. Also, the co-linearity of ZjbHLHs was found to have been driven mostly by segmental duplication events. The subfamily IIIb genes of our present interest, possessed various stress responsive cis-elements in their promoters. ZjbHLH076/ZjICE1, a MYC-type bHLH TF in subfamily IIIb was analyzed by overexpression and its loss-of-function via overexpressing a short ZjbHLH076/ZjICE1 fragment in the antisense direction. The overexpression of ZjbHLH076/ZjICE1 enhanced the tolerance to cold and salinity stress in the transgenic Z. japonica plants. However, the anti-sense expression of ZjbHLH076/ZjICE1 showed sensitive to these abiotic stresses. These results suggest that ZjbHLH076/ZjICE1 would be a promising candidate for the molecular breeding program to improve the abiotic stress tolerance of Z. japonica.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
100
|
Jin R, Kim HS, Yu T, Zhang A, Yang Y, Liu M, Yu W, Zhao P, Zhang Q, Cao Q, Kwak SS, Tang Z. Identification and function analysis of bHLH genes in response to cold stress in sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:224-235. [PMID: 34808465 DOI: 10.1016/j.plaphy.2021.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
Basic/helix-loop-helix (bHLH) transcription factors are involved in various metabolic and physiological processes in plants. Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop in China but is highly susceptible to cold stress. However, little information on the bHLH gene family is available, and the function of this family in response to cold stress has not been revealed in sweetpotato. Here, 110 IbbHLHs were identified and classified into 17 categories based on phylogenetic relationships, conserved motifs and gene structure analyses. Except for 5 IbbHLHs, 90 IbbHLHs were putative E-box-binding proteins including 70 IbbHLHs belonging to G-box, whereas 15 IbbHLHs were putative non-E box-binding proteins based on DNA-binding analysis. In total, 37 pairs of segmental duplicated genes and 5 pairs of tandem duplication genes were identified within the IbbHLH gene family. The transcript level of 20 IbbHLHs was regulated by cold stress based on RNA-seq data, and 8 genes were selected for further quantitative real-time PCR (qRT-PCR) analysis. IbHLH8 and IbHLH92 are involved in network interaction with several genes related to abiotic and biotic stresses under cold treatment. IbbHLH79, an ICE1-like gene, was isolated and overexpressed in sweetpotato. The IbbHLH79 protein can activate the CBF (C-repeat Binding Factor) pathway, and IbbHLH79-overexpressing transgenic plants display enhanced cold tolerance. Taken together, these results provide valuable information on the IbbHLH gene family; in addition, several IbbHLHs may regulate cold stress, and the results suggest IbbHLH79 will be useful for molecular breeding of enhanced cold tolerance in sweetpotato.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, South Korea
| | - Tao Yu
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Yufeng Yang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Wenhui Yu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Qiangqiang Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Qinghe Cao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, South Korea.
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China.
| |
Collapse
|