51
|
Nakatsuka T, Saito M, Yamada E, Fujita K, Yamagishi N, Yoshikawa N, Nishihara M. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. BMC PLANT BIOLOGY 2015; 15:182. [PMID: 26183329 PMCID: PMC4504037 DOI: 10.1186/s12870-015-0569-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/07/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Generally, double-flowered varieties are more attractive than single-flowered varieties in ornamental plants. Japanese gentian is one of the most popular floricultural plants in Japan, and it is desirable to breed elite double-flowered cultivars. In this study, we attempted to characterize a doubled-flower mutant of Japanese gentian. To identify the gene that causes the double-flowered phenotype in Japanese gentian, we isolated and characterized MADS-box genes. RESULTS Fourteen MADS-box genes were isolated, and two of them were C-class MADS-box genes (GsAG1 and GsAG2). Both GsAG1 and GsAG2 were categorized into the PLE/SHP subgroup, rather than the AG/FAR subgroup. In expression analyses, GsAG1 transcripts were detected in the second to fourth floral whorls, while GsAG2 transcripts were detected in only the inner two whorls. Transgenic Arabidopsis expressing GsAG1 lacked petals and formed carpeloid organs instead of sepals. Compared with a single-flowered gentian cultivar, a double-flowered gentian mutant showed decreased expression of GsAG1 but unchanged expression of GsAG2. An analysis of the genomic structure of GsAG1 revealed that the gene had nine exons and eight introns, and that a 5,150-bp additional sequence was inserted into the sixth intron of GsAG1 in the double-flowered mutant. This insert had typical features of a Ty3/gypsy-type LTR-retrotransposon, and was designated as Tgs1. Virus-induced gene silencing of GsAG1 by the Apple latent spherical virus vector resulted in the conversion of the stamen to petaloid organs in early flowering transgenic gentian plants expressing an Arabidopsis FT gene. CONCLUSIONS These results revealed that GsAG1 plays a key role as a C-functional gene in stamen organ identity. The identification of the gene responsible for the double-flowered phenotype will be useful in further research on the floral morphogenesis of Japanese gentian.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Graduate School of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Misa Saito
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | - Eri Yamada
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | - Kohei Fujita
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | - Noriko Yamagishi
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| |
Collapse
|
52
|
Oblessuc PR, Francisco C, Melotto M. The Co-4 locus on chromosome Pv08 contains a unique cluster of 18 COK-4 genes and is regulated by immune response in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1193-1208. [PMID: 25805316 DOI: 10.1007/s00122-015-2500-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
The common bean locus Co - 4, traditionally referred to as an anthracnose-resistant gene, contains a cluster of predicted receptor-like kinases (COK-4 and CrRLK1-like), and at least two of these kinases are co-regulated with the plant's basal immunity. Genetic resistance to anthracnose, caused by the fungus Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is conferred by major loci throughout the Phaseolus vulgaris genome, named Co. The complex Co-4 locus was previously reported to have several copies of the COK-4 gene that is predicted to code for a receptor-like kinase (RLK). In general, plant RLKs are involved in pathogen perception and signal transduction; however, the molecular function of COK-4 remains elusive. Using newly identified molecular markers (PvTA25 and PvSNPCOK-4), the SAS13 marker, COK-4 sequences and phylogeny, and the recently released bean genome sequence, we determined the most probable boundaries of the Co-4 locus: a 325-Kbp region on chromosome Pv08. Out of the 49 predicted transcripts in that region, 24 encode for putative RLKs (including 18 COK-4 copies) with high similarity to members of the Catharanthus roseus RLK1-like (CrRLK1L) protein family from different plant species, including the well-described FERONIA (FER) and ANXUR. We also determined that two RLK-coding genes in the Co-4 locus (COK-4-3 and FER-like) are transcriptionally regulated when bean plants are challenged with the flg22 peptide, a commonly used elicitor of plant immunity, or the bacterium Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight. While COK-4-3 is activated during immune response, FER-like is downregulated suggesting that these genes could play a role in plant responses to biotic stress. These results highlight the importance of dissecting the regulation and molecular function of individual genes within each locus, traditionally referred to as resistance gene based on genetic segregation analysis.
Collapse
Affiliation(s)
- Paula Rodrigues Oblessuc
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | | | | |
Collapse
|
53
|
Chen Z, Ye M, Su X, Liao W, Ma H, Gao K, Lei B, An X. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar. Transgenic Res 2015; 24:705-15. [PMID: 25820621 DOI: 10.1007/s11248-015-9870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/19/2015] [Indexed: 11/26/2022]
Abstract
APETALA1 plays a crucial role in the transition from vegetative to reproductive phase and in floral development. In this study, to determine the effect of AP1 expression on flowering time and floral organ development, transgenic Arabidopsis and poplar overexpressing of AtAP1M3 (Arabidopsis AP1 mutant by dominant negative mutation) were generated. Transgenic Arabidopsis with e35Spro::AtAP1M3 displayed phenotypes with delayed-flowering compared to wild-type and flowers with abnormal sepals, petals and stamens. In addition, transgenic Arabidopsis plants exhibited reduced growth vigor compared to the wild-type plants. Ectopic expression of AtAP1M3 in poplar resulted in up- or down-regulation of some endogenous key flowering-related genes, including floral meristems identity gene LFY, B-class floral organ identity genes AP3 and PI, flowering pathway integrator FT1 and flower repressors TFL1 and SVP. These results suggest that AtAP1M3 regulates flowering time and floral development in plants.
Collapse
Affiliation(s)
- Zhong Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Jaudal M, Zhang L, Che C, Putterill J. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis. Front Genet 2015; 6:50. [PMID: 25745430 PMCID: PMC4333866 DOI: 10.3389/fgene.2015.00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
Abstract
The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago), a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalization) followed by long day lengths (LD). Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL) MADS transcription factors, MtFULa, MtFULb, and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.
Collapse
Affiliation(s)
| | | | | | - Joanna Putterill
- The Flowering Lab, School of Biological Sciences, University of AucklandAuckland, New Zealand
| |
Collapse
|
55
|
Abstract
The development of plant leaves follows a common basic program that is flexible and is adjusted according to species, developmental stage and environmental circumstances. Leaves initiate from the flanks of the shoot apical meristem and develop into flat structures of variable sizes and forms. This process is regulated by plant hormones, transcriptional regulators and mechanical properties of the tissue. Here, we review recent advances in the understanding of how these factors modulate leaf development to yield a substantial diversity of leaf forms. We discuss these issues in the context of leaf initiation, the balance between morphogenesis and differentiation, and patterning of the leaf margin.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
56
|
Jia Z, Jiang B, Gao X, Yue Y, Fei Z, Sun H, Wu C, Sun S, Hou W, Han T. GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean. PLANT CELL REPORTS 2015; 34:121-32. [PMID: 25326369 DOI: 10.1007/s00299-014-1693-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE A FRUITFULL homolog GmFULa was cloned and found to play roles in the flowering and maturation of soybean. Soybean varieties exhibit great diversity in terms of flowering and maturation due to differences in their photoperiodic responses. The underlying mechanism remains unclear despite the fact that some upstream flowering genes have been studied. FRUITFULL (FUL) genes are one group of downstream flowering genes known to have major roles in reproductive transition, floral meristem identity, and floral organ identity. However, FUL homologs and their functions are poorly understood in soybean. Here, a soybean FUL homolog was cloned from the late-maturing photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and designated GmFULa. In ZGDD, GmFULa exhibited a terminal-preferential expression pattern, with higher expression in the root and shoot apices than in the middle parts. Diurnal rhythm analysis revealed that photoperiod regulates the GmFULa expression level but does not alter its diurnal rhythm. ZGDD was maintained under different photoperiod conditions (long day, LD; short day, SD; LD after 13 short days, SD13-LD) to assess GmFULa expression in newly expanded leaves and in the shoot apex. From this analysis, GmFULa expression was detected in the floral meristem, floral organs and their primordia; trifoliate leaves; and the inflorescence meristem, with the expression levels induced by SD and inhibited by LD. GmFULa expression was also associated with maturity in seven soybean varieties with different photoperiod sensitivities. Therefore, photoperiod conditions affect the expression level of GmFULa but not its diurnal rhythm. The gene plays pleiotropic roles in reproductive transition, flowering, and leaf development and is associated with maturity in soybean.
Collapse
Affiliation(s)
- Zhen Jia
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
McCarthy EW, Mohamed A, Litt A. Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence. FRONTIERS IN PLANT SCIENCE 2015; 6:1076. [PMID: 26697035 PMCID: PMC4667048 DOI: 10.3389/fpls.2015.01076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 05/21/2023]
Abstract
Gene duplications are prevalent in plants, and functional divergence subsequent to duplication may be linked with the occurrence of novel phenotypes in plant evolution. Here, we examine the functional divergence of Arabidopsis thaliana APETALA1 (AP1) and FRUITFULL (FUL), which arose via a duplication correlated with the origin of the core eudicots. Both AP1 and FUL play a role in floral meristem identity, but AP1 is required for the formation of sepals and petals whereas FUL is involved in cauline leaf and fruit development. AP1 and FUL are expressed in mutually exclusive domains but also differ in sequence, with unique conserved motifs in the C-terminal domains of the proteins that suggest functional differentiation. To determine whether the functional divergence of AP1 and FUL is due to changes in regulation or changes in coding sequence, we performed promoter swap experiments, in which FUL was expressed in the AP1 domain in the ap1 mutant and vice versa. Our results show that FUL can partially substitute for AP1, and AP1 can partially substitute for FUL; thus, the functional divergence between AP1 and FUL is due to changes in both regulation and coding sequence. We also mutated AP1 and FUL conserved motifs to determine if they are required for protein function and tested the ability of these mutated proteins to interact in yeast with known partners. We found that these motifs appear to play at best a minor role in protein function and dimerization capability, despite being strongly conserved. Our results suggest that the functional differentiation of these two paralogous key transcriptional regulators involves both differences in regulation and in sequence; however, sequence changes in the form of unique conserved motifs do not explain the differences observed.
Collapse
Affiliation(s)
- Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, USA
| | - Abeer Mohamed
- Department of Agricultural Botany, Faculty of Agriculture (Saba Basha), Alexandria UniversityAlexandria, Egypt
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, USA
- *Correspondence: Amy Litt,
| |
Collapse
|
58
|
Pabón-Mora N, Suárez-Baron H, Ambrose BA, González F. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). FRONTIERS IN PLANT SCIENCE 2015; 6:1095. [PMID: 26697047 PMCID: PMC4675851 DOI: 10.3389/fpls.2015.01095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 05/21/2023]
Abstract
Aristolochia fimbriata (Aristolochiaceae: Piperales) exhibits highly synorganized flowers with a single convoluted structure forming a petaloid perianth that surrounds the gynostemium, putatively formed by the congenital fusion between stamens and the upper portion of the carpels. Here we present the flower development and morphology of A. fimbriata, together with the expression of the key regulatory genes that participate in flower development, particularly those likely controlling perianth identity. A. fimbriata is a member of the magnoliids, and thus gene expression detected for all ABCE MADS-box genes in this taxon, can also help to elucidate patterns of gene expression prior the independent duplications of these genes in eudicots and monocots. Using both floral development and anatomy in combination with the isolation of MADS-box gene homologs, gene phylogenetic analyses and expression studies (both by reverse transcription PCR and in situ hybridization), we present hypotheses on floral organ identity genes involved in the formation of this bizarre flower. We found that most MADS-box genes were expressed in vegetative and reproductive tissues with the exception of AfimSEP2, AfimAGL6, and AfimSTK transcripts that are only found in flowers and capsules but are not detected in leaves. Two genes show ubiquitous expression; AfimFUL that is found in all floral organs at all developmental stages as well as in leaves and capsules, and AfimAG that has low expression in leaves and is found in all floral organs at all stages with a considerable reduction of expression in the limb of anthetic flowers. Our results indicate that expression of AfimFUL is indicative of pleiotropic roles and not of a perianth identity specific function. On the other hand, expression of B-class genes, AfimAP3 and AfimPI, suggests their conserved role in stamen identity and corroborates that the perianth is sepal and not petal-derived. Our data also postulates an AGL6 ortholog as a candidate gene for sepal identity in the Aristolochiaceae and provides testable hypothesis for a modified ABCE model in synorganized magnoliid flowers.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical Garden, BronxNY, USA
- *Correspondence: Natalia Pabón-Mora,
| | | | | | - Favio González
- Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de ColombiaBogotá, Colombia
| |
Collapse
|
59
|
Ferrándiz C, Fourquin C. Role of the FUL-SHP network in the evolution of fruit morphology and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4505-13. [PMID: 24482369 DOI: 10.1093/jxb/ert479] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabidopsis research in the last decade has started to unravel the genetic networks directing gynoecium and fruit patterning in this model species. Only recently, the work from several groups has also started to address the conservation of these networks in a wide number of species with very different fruit morphologies, and we are now beginning to understand how they might have evolved. This review summarizes recent advances in this field, focusing mainly on MADS-box genes with a well-known role in dehiscence zone development, while also discussing how these studies may contribute to expand our views on fruit evolution.
Collapse
Affiliation(s)
- Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Av. de los Naranjos s/n 46022 Valencia, Spain
| | - Chloé Fourquin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Av. de los Naranjos s/n 46022 Valencia, Spain
| |
Collapse
|
60
|
Kourmpetli S, Drea S. The fruit, the whole fruit, and everything about the fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4491-503. [PMID: 24723396 DOI: 10.1093/jxb/eru144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fruits come in an impressive array of shapes, sizes, and consistencies, and also display a huge diversity in biochemical/metabolite profiles, wherein lies their value as rich sources of food, nutrition, and pharmaceuticals. This is in addition to their fundamental function in supporting and dispersing the developing and mature seeds for the next generation. Understanding developmental processes such as fruit development and ripening, particularly at the genetic level, was once largely restricted to model and crop systems for practical and commercial reasons, but with the expansion of developmental genetic and evo-devo tools/analyses we can now investigate and compare aspects of fruit development in species spanning the angiosperms. We can superimpose recent genetic discoveries onto the detailed characterization of fruit development and ripening conducted with primary considerations such as yield and harvesting efficiency in mind, as well as on the detailed description of taxonomically relevant characters. Based on our own experience we focus on two very morphologically distinct and evolutionary distant fruits: the capsule of opium poppy, and the grain or caryopsis of cereals. Both are of massive economic value, but because of very different constituents; alkaloids of varied pharmaceutical value derived from secondary metabolism in opium poppy capsules, and calorific energy fuel derived from primary metabolism in cereal grains. Through comparative analyses in these and other fruit types, interesting patterns of regulatory gene function diversification and conservation are beginning to emerge.
Collapse
Affiliation(s)
- Sofia Kourmpetli
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Sinéad Drea
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
61
|
Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. PHYSIOLOGIA PLANTARUM 2014; 151:495-506. [PMID: 24200078 DOI: 10.1111/ppl.12123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/27/2013] [Accepted: 10/27/2013] [Indexed: 05/04/2023]
Abstract
The involvement of APETALA1 (AP1) in the flowering transition has been the focus of much research. Here, we produced Betula platyphylla × Betula pendula (birch) lines that overexpressed BpAP1 using Agrobacterium-mediated transformation; we obtained five independent 35S::BpAP1 transgenic lines. Polymerase chain reaction (PCR), Southern, northern and western analyses were used to identify the transformants. As determined by quantitative real-time PCR (qRT-PCR), BpAP1 expression in roots, shoots, leaves and terminal buds of 35S::BpAP1 transgenic lines was significantly higher than that in the wild type (WT, P < 0.01). The average height of 2-year-old 35S::BpAP1 plants was significantly lower (41.17%) than that of non-transgenic plants. In the 35S::BpAP1 lines, inflorescences emerged successively beginning 2 months after transplanting. In addition, the length-diameter ratio of fully developed male and female inflorescences were both significantly less than those of the WT (P < 0.05), i.e. the morphological characteristic was stubby. The male inflorescences emerged early, with empty, draped anthers, and pollen was rarely produced, whereas the female floret structure was not different from WT. The pistils developed normally and could accept pollen, leading to the production of hybrid progeny (F1 ). F1 plants completed flowering within only 1 year after sowing. We demonstrate that BpAP1 can be inherited through sexual reproduction. Overexpression of BpAP1 caused early flowering and dwarfism; these lines had an obviously shortened juvenile phase. These results greatly increase our understanding of the mechanisms underlying the flowering transition and enhance genetic studies of birch traits, and they open up new possibilities for the breeding of birch and other woody plants.
Collapse
Affiliation(s)
- Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | | | | | | | | | | | | |
Collapse
|
62
|
de Oliveira RR, Cesarino I, Mazzafera P, Dornelas MC. Flower development in Coffea arabica L.: new insights into MADS-box genes. PLANT REPRODUCTION 2014; 27:79-94. [PMID: 24715004 DOI: 10.1007/s00497-014-0242-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/24/2014] [Indexed: 05/27/2023]
Abstract
Coffea arabica L. shows peculiar characteristics during reproductive development, such as flowering asynchrony, periods of floral bud dormancy, mucilage secretion and epipetalous stamens. The MADS-box transcription factors are known to control several developmental processes in plants, including flower and fruit development. Significant differences are found among plant species regarding reproductive development and little is known about the role of MADS-box genes in Coffea reproductive development. Thus, we used anatomical and comparative molecular analyses to explore the flowering process in coffee. The main morphological changes during flower development in coffee were observed by optical and scanning electron microscopy. Flowering asynchrony seems to be related to two independent processes: the asynchronous development of distinct buds before the reproductive induction and the asynchronous development of floral meristems within each bud after the reproductive induction. A total of 23 C. arabica MADS-box genes were characterized by sequence comparison with putative Arabidopsis orthologs and their expression profiles were analyzed by RT-PCR in different tissues. The expression of the ABC model orthologs in Coffea during floral development was determined by in situ hybridization. The APETALA1 (AP1) ortholog is expressed only late in the perianth, which is also observed for the APETALA3 and TM6 orthologs. Conversely, the PISTILLATA ortholog is widely expressed in early stages, but restrict to stamens and carpels in later stages of flower development, while the expression of the AGAMOUS ortholog is always restricted to fertile organs. The AP1 and PISTILLATA orthologs are also expressed at specific floral organs, such as bracts and colleters, respectively, suggesting a potential role in the development of such structures. Altogether, the results from our comprehensive expression analyses showed significant differences between the spatiotemporal expression profiles of C. arabica MADS-box genes and their orthologs, which suggests differential functionalization in coffee. Moreover, these differences might also partially explain the particular characteristics of floral development in coffee, such as mucilage secretion and formation of epipetalous stamens.
Collapse
Affiliation(s)
- Raphael Ricon de Oliveira
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Cidade Universitária "Zeferino Vaz", Campinas, São Paulo, Brazil,
| | | | | | | |
Collapse
|
63
|
Fourquin C, Ferrándiz C. The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. THE NEW PHYTOLOGIST 2014; 202:1001-1013. [PMID: 24483275 DOI: 10.1111/nph.12703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/25/2013] [Indexed: 05/07/2023]
Abstract
Carpel development and evolution are central issues for plant biology. The conservation of genetic functions conferring carpel identity has been widely studied in higher plants. However, although genetic networks directing the development of characteristic features of angiosperm carpels such as stigma and style are increasingly known in Arabidopsis thaliana, little information is available on the conservation and diversification of these networks in other species. Here, we have studied the functional conservation of NGATHA transcription factors in widely divergent species within the eudicots. We determined by in situ hybridization the expression patterns of NGATHA orthologs in Eschscholzia californica and Nicotiana benthamiana. Virus-induced gene silencing (VIGS)-mediated inactivation of NGATHA genes in both species was performed and different microscopy techniques were used for phenotypic characterization. We found the expression patterns of EcNGA and NbNGA genes during flower development to be highly similar to each other, as well as to those reported for Arabidopsis NGATHA genes. Inactivation of EcNGA and NbNGA also caused severe defects in style and stigma development in both species. These results demonstrate the widely conserved essential role of NGATHA genes in style and stigma specification and suggest that the angiosperm-specific NGATHA genes were likely recruited to direct a carpel-specific developmental program.
Collapse
Affiliation(s)
- Chloé Fourquin
- Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, 46022, Valencia, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, 46022, Valencia, Spain
| |
Collapse
|
64
|
Ferreira e Silva GF, Silva EM, Azevedo MDS, Guivin MAC, Ramiro DA, Figueiredo CR, Carrer H, Peres LEP, Nogueira FTS. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:604-18. [PMID: 24580734 DOI: 10.1111/tpj.12493] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/18/2014] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum L.) is well understood at the molecular level. However, information regarding genetic pathways associated with tomato ovary and early fruit development is still lacking. Here, we investigate the possible role(s) of the microRNA156/SQUAMOSA promoter-binding protein-like (SPL or SBP box) module (miR156 node) in tomato ovary development. miR156-targeted S. lycopersicum SBP genes were dynamically expressed in developing flowers and ovaries, and miR156 was mainly expressed in meristematic tissues of the ovary, including placenta and ovules. Transgenic tomato cv. Micro-Tom plants over-expressing the AtMIR156b precursor exhibited abnormal flower and fruit morphology, with fruits characterized by growth of extra carpels and ectopic structures. Scanning electron microscopy and histological analyses showed the presence of meristem-like structures inside the ovaries, which are probably responsible for the ectopic organs. Interestingly, expression of genes associated with meristem maintenance and formation of new organs, such as LeT6/TKN2 (a KNOX-like class I gene) and GOBLET (a NAM/CUC-like gene), was induced in developing ovaries of transgenic plants as well as in the ovaries of the natural mutant Mouse ear (Me), which also displays fruits with extra carpels. Conversely, expression of the MADS box genes MACROCALYX (MC) and FUL1/TDR4, and the LEAFY ortholog FALSIFLORA, was repressed in the developing ovaries of miR156 over-expressors, suggesting similarities with Arabidopsis at this point of the miR156/SPL pathway but with distinct functional consequences in reproductive development. Altogether, these observations suggest that the miR156 node is involved in maintenance of the meristematic state of ovary tissues, thereby controlling initial steps of fleshy fruit development and determinacy.
Collapse
Affiliation(s)
- Geraldo Felipe Ferreira e Silva
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biociências, State University of Sao Paulo, Botucatu, Sao Paulo, 18618-970, Brazil; Centro de Biotecnologia Agricola, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gutiérrez J, Maere S. Modeling the evolution of molecular systems from a mechanistic perspective. TRENDS IN PLANT SCIENCE 2014; 19:292-303. [PMID: 24709144 DOI: 10.1016/j.tplants.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Systems biology-inspired genotype-phenotype mapping models are increasingly being used to study the evolutionary properties of molecular biological systems, in particular the general emergent properties of evolving systems, such as modularity, robustness, and evolvability. However, the level of abstraction at which many of these models operate might not be sufficient to capture all relevant intricacies of biological evolution in sufficient detail. Here, we argue that in particular gene and genome duplications, both evolutionary mechanisms of potentially major importance for the evolution of molecular systems and of special relevance to plant evolution, are not adequately accounted for in most GPM modeling frameworks, and that more fine-grained mechanistic models may significantly advance understanding of how gen(om)e duplication impacts molecular systems evolution.
Collapse
Affiliation(s)
- Jayson Gutiérrez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
66
|
Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC PLANT BIOLOGY 2014; 14:89. [PMID: 24693922 PMCID: PMC4021551 DOI: 10.1186/1471-2229-14-89] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/27/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND The MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean. RESULT Through microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins. CONCLUSION In this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral organ number, filament length and pollen release. The sterility caused by the ectopic expression of GmMADS28 offers a promising way to genetically produce new sterile material that could potentially be applied in the hybrid breeding of crops like soybean.
Collapse
Affiliation(s)
- Fang Huang
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangli Xu
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Chi
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haicui Liu
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xue
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyue Yu
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
67
|
Sun W, Huang W, Li Z, Song C, Liu D, Liu Y, Hayward A, Liu Y, Huang H, Wang Y. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. ANNALS OF BOTANY 2014; 113:653-68. [PMID: 24532606 PMCID: PMC3936592 DOI: 10.1093/aob/mct301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS MADS-box transcriptional regulators play important roles during plant development. Based on phylogenetic reconstruction, the AP1/SEP/AGL6 superclade of floral MADS-box genes underwent one or two duplication events in the common ancestor of the core eudicots. However, the functional evolution of the AP1/SEP/AGL6 superclade in basal eudicots remains uncharacterized. Epimedium sagittatum is a basal eudicot species valued for its medicinal properties and showing unique floral morphology. In this study, structural and functional variation of FUL-like (AP1 subfamily), SEP-like and AGL6-like genes in this species was investigated to further our understanding of flower evolution in angiosperms. Detailed investigations into the microsynteny and evolutionary history of the floral A and E class MADS-box genes in eudicots were undertaken and used to trace their genomic rearrangements. METHODS One AP1-like gene, two SEP-like genes and one AGL6-like gene were cloned from E. sagittatum. Their expression patterns were examined using quantitative RT-PCR in different vegetative and reproductive organs at two developmental stages. Yeast two-hybrid assays were carried out among AP1/SEP/AGL6 superclade, AP3/PI and AGAMOUS subfamily members for elucidation of dimerization patterns. In addition, possible formation of a ternary complex involving B class proteins with the A class protein EsFUL-like, the E class SEP-like protein EsAGL2-1 or the AGL6-class protein EsAGL6 were detected using yeast three-hybrid assays. Transgenic Arabidopsis or tobacco plants expressing EsFUL-like, EsAGL2-1 and EsAGL6-like under the cauliflower mosaic virus (CaMV) 35S promoter were generated and analysed. Genomic studies of AP1 syntenic regions in arabidopsis, columbine, strawberry, papaya, peach, grapevine and tomato were conducted for microsyntenic analyses. KEY RESULTS Sequence and phylogenetic analyses showed that EsFUL-like is a member of the AP1 (A class) subfamily, EsAGL2-1 and EsAGL2-2 belong to the SEP-like (E class) subfamily, and EsAGL6-like belongs to the AGL6 (AGL6 class) subfamily. Quantitative RT-PCR analyses revealed that the transcripts of the four genes are absent, or minimal, in vegetative tissues and are most highly expressed in floral organs. Yeast two-hybrid results revealed that of the eight MADS-box proteins tested, only EsAGL6-like, EsAGL2-1 and EsAGL2 were able to form strong homo- and heterodimers, with EsAGL6-like and EsAGL2-1 showing similar interaction patterns. Yeast three-hybrid analysis revealed that EsFUL1-like, EsAGL6-like and EsAGL2-1 (representing the three major lineages of the Epimedium AGL/SEP/ALG6 superclade) could act as bridging proteins in ternary complexes with both EsAP3-2 (B class) and EsPI (B class), which do not heterodimerize themselves. Syntenic analyses of sequenced basal eudicots, rosids and asterids showed that most AP1-like and SEP-like genes have been tightly associated as neighbours since the origin of basal eudicots. Ectopic expression of EsFUL-like in arabidopsis caused early flowering through endogenous high-level expression of AP1 and formation of secondary flowers between the first and second whorls. Tobacco plants with ectopic expression of EsAGL2-1 showed shortened pistils and styles, as well as axillary and extra petals in the initial flower. CONCLUSIONS This study provides a description of EsFUL-like, EsAGL2-1, EsAGL2-2 and EsAGL6-like function divergence and conservation in comparison with a selection of model core eudicots. The study also highlights how organization in genomic segments containing A and E class genes in sequenced model species has resulted in similar topologies of AP1 and SEP-like gene trees.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Zhineng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Chi Song
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yongliang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Alice Hayward
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Yifei Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- For correspondence. E-mail or
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- For correspondence. E-mail or
| |
Collapse
|
68
|
Wellmer F, Bowman JL, Davies B, Ferrándiz C, Fletcher JC, Franks RG, Graciet E, Gregis V, Ito T, Jack TP, Jiao Y, Kater MM, Ma H, Meyerowitz EM, Prunet N, Riechmann JL. Flower development: open questions and future directions. Methods Mol Biol 2014; 1110:103-24. [PMID: 24395254 DOI: 10.1007/978-1-4614-9408-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.
Collapse
Affiliation(s)
- Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Pabón-Mora N, Wong GKS, Ambrose BA. Evolution of fruit development genes in flowering plants. FRONTIERS IN PLANT SCIENCE 2014; 5:300. [PMID: 25018763 PMCID: PMC4071287 DOI: 10.3389/fpls.2014.00300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/07/2014] [Indexed: 05/18/2023]
Abstract
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
- *Correspondence: Natalia Pabón-Mora, Instituto de Biología, Universidad de Antioquia, Calle 70 No 52-21, AA 1226 Medellín, Colombia e-mail:
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | | |
Collapse
|
70
|
Bartlett ME, Whipple CJ. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2013; 4:382. [PMID: 24124420 PMCID: PMC3794426 DOI: 10.3389/fpls.2013.00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/06/2013] [Indexed: 05/29/2023]
Abstract
Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism's phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection's source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein-protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.
Collapse
Affiliation(s)
| | - Clinton J. Whipple
- *Correspondence: Clinton J. Whipple, Biology Department, Brigham Young University, 401 WIDB, Provo, UT 84602, USA e-mail:
| |
Collapse
|
71
|
Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. FRONTIERS IN PLANT SCIENCE 2013; 4:358. [PMID: 24062757 PMCID: PMC3775002 DOI: 10.3389/fpls.2013.00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/23/2013] [Indexed: 05/03/2023]
Abstract
Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Grupo de Biotecnología, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
| | - Oriane Hidalgo
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
| | | | - Amy Litt
- The New York Botanical GardenBronx, NY, USA
| |
Collapse
|
72
|
Shui XR, Chen ZW, Li JX. MicroRNA prediction and its function in regulating drought-related genes in cowpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:25-35. [PMID: 23849110 DOI: 10.1016/j.plantsci.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 05/26/2023]
Abstract
Cowpea has indigenous drought-tolerant characteristics, but the molecular mechanisms underlying the drought-tolerance are largely unknown. Drought sensitive and resistant cowpea have different responses regarding to drought stress. We applied homology search to predict miRNAs and their corresponding targets. The newly identified cowpea miRNAs were validated by real-time quantitative PCR in the leaves and roots of cowpea plants under drought treatment. Target gene prediction shows that a set of miRNA target genes are involved in the metabolic pathways regarding the physiological changes that are highly related to drought stress. We analyzed the expression levels of some important genes that participate in the physiological responses to drought stress and found that variations in their expression levels correspond well to the different responses of drought sensitive and resistant cowpea to drought stress. The expression levels of the target genes were negatively correlated to those of miRNAs. The same miRNA in different tissues responds differently to drought stress. Our results indicate that miRNAs play important roles in response to drought stress by regulating the expression levels of drought-related genes in cowpea.
Collapse
Affiliation(s)
- Xiao-Rong Shui
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | | | | |
Collapse
|
73
|
Fourquin C, del Cerro C, Victoria FC, Vialette-Guiraud A, de Oliveira AC, Ferrándiz C. A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in medicago genus. PLANT PHYSIOLOGY 2013; 162:907-17. [PMID: 23640757 PMCID: PMC3668079 DOI: 10.1104/pp.113.217570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Angiosperms are the most diverse and numerous group of plants, and it is generally accepted that this evolutionary success owes in part to the diversity found in fruits, key for protecting the developing seeds and ensuring seed dispersal. Although studies on the molecular basis of morphological innovations are few, they all illustrate the central role played by transcription factors acting as developmental regulators. Here, we show that a small change in the protein sequence of a MADS-box transcription factor correlates with the origin of a highly modified fruit morphology and the change in seed dispersal strategies that occurred in Medicago, a genus belonging to the large legume family. This protein sequence modification alters the functional properties of the protein, affecting the affinities for other protein partners involved in high-order complexes. Our work illustrates that variation in coding regions can generate evolutionary novelties not based on gene duplication/subfunctionalization but by interactions in complex networks, contributing also to the current debate on the relative importance of changes in regulatory or coding regions of master regulators in generating morphological novelties.
Collapse
|
74
|
Zhao J, Tian Y, Zhang JS, Zhao M, Gong P, Riss S, Saedler R, He C. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis. THE PLANT CELL 2013; 25:2002-21. [PMID: 23792370 PMCID: PMC3723609 DOI: 10.1105/tpc.113.111757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 05/20/2023]
Abstract
The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ying Tian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093 Beijing, China
| | - Ji-Si Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Simone Riss
- Max-Planck-Institute for Plant Breeding Research, Department of Molecular Plant Genetics, 50829 Cologne, Germany
| | - Rainer Saedler
- Max-Planck-Institute for Plant Breeding Research, Department of Molecular Plant Genetics, 50829 Cologne, Germany
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093 Beijing, China
- Address correspondence to
| |
Collapse
|
75
|
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N. A role for APETALA1/fruitfull transcription factors in tomato leaf development. THE PLANT CELL 2013; 25:2070-83. [PMID: 23771895 PMCID: PMC3723613 DOI: 10.1105/tpc.113.113035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.
Collapse
Affiliation(s)
- Yogev Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Sharona Shleizer-Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Osnat Yanai
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Iris Daphne Zelnik
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Jasmine Jacob-Hirsch
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Itai Kela
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leor Eshed-Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
- Address correspondence to
| |
Collapse
|
76
|
Stammler A, Meyer SS, Plant AR, Townsley BT, Becker A, Gleissberg S. Duplicated STM-like KNOX I genes act in floral meristem activity in Eschscholzia californica (Papaveraceae). Dev Genes Evol 2013; 223:289-301. [DOI: 10.1007/s00427-013-0446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/01/2013] [Indexed: 01/06/2023]
|
77
|
Pabón-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:197-212. [PMID: 23294330 DOI: 10.1111/tpj.12113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 05/03/2023]
Abstract
The APETALA1/FRUITFULL (AP1/FUL) MADS box transcription factors are best known for the role of AP1 in Arabidopsis sepal and petal identity, the canonical A function of the ABC model of flower development. However, this gene lineage underwent multiple duplication events during angiosperm evolution, providing different taxa with unique gene complements. One such duplication correlates with the origin of the core eudicots, and produced the euAP1 and euFUL clades. Together, euAP1 and euFUL genes function in proper floral meristem identity and repression of axillary meristem growth. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth and fruit development. To investigate the impact of the core eudicot duplication on the functional diversification of this gene lineage, we studied the role of pre-duplication FUL-like genes in columbine (Aquilegia coerulea). Our results show that AqcFL1 genes are broadly expressed in vegetative and reproductive meristems, leaves and flowers. Virus-induced gene silencing of the loci results in plants with increased branching, shorter inflorescences with fewer flowers, and dramatic changes in leaf shape and complexity. However, aqcfl1 plants have normal flowers and fruits. Our results show that, in contrast to characterized AP1/FUL genes, the AqcFL1 loci are either genetically redundant or have been decoupled from the floral genetic program, and play a major role in leaf morphogenesis. We analyze the results in the context of the core eudicot duplication, and discuss the implications of our findings in terms of the genetic regulation of leaf morphogenesis in Aquilegia and other flowering plants.
Collapse
|
78
|
Lange M, Orashakova S, Lange S, Melzer R, Theißen G, Smyth DR, Becker A. The seirena B class floral homeotic mutant of California Poppy (Eschscholzia californica) reveals a function of the enigmatic PI motif in the formation of specific multimeric MADS domain protein complexes. THE PLANT CELL 2013; 25:438-53. [PMID: 23444328 PMCID: PMC3608770 DOI: 10.1105/tpc.112.105809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The products of B class floral homeotic genes specify petal and stamen identity, and loss of B function results in homeotic conversions of petals into sepals and stamens into carpels. Here, we describe the molecular characterization of seirena-1 (sei-1), a mutant from the basal eudicot California poppy (Eschscholzia californica) that shows homeotic changes characteristic of floral homeotic B class mutants. SEI has been previously described as EScaGLO, one of four B class-related MADS box genes in California poppy. The C terminus of SEI, including the highly conserved PI motif, is truncated in sei-1 proteins. Nevertheless, like the wild-type SEI protein, the sei-1 mutant protein is able to bind CArG-boxes and can form homodimers, heterodimers, and several higher order complexes with other MADS domain proteins. However, unlike the wild type, the mutant protein is not able to mediate higher order complexes consisting of specific B, C, and putative E class related proteins likely involved in specifying stamen identity. Within the PI motif, five highly conserved N-terminal amino acids are specifically required for this interaction. Several families lack this short conserved sequence, including the Brassicaceae, and we propose an evolutionary scenario to explain these functional differences.
Collapse
Affiliation(s)
- Matthias Lange
- Evolutionary Developmental Genetics Group, Zentrum für Umweltforschung und nachhaltige Technologien, University of Bremen, D-28359 Bremen, Germany
| | - Svetlana Orashakova
- Evolutionary Developmental Genetics Group, Zentrum für Umweltforschung und nachhaltige Technologien, University of Bremen, D-28359 Bremen, Germany
| | - Sabrina Lange
- Evolutionary Developmental Genetics Group, Zentrum für Umweltforschung und nachhaltige Technologien, University of Bremen, D-28359 Bremen, Germany
| | - Rainer Melzer
- Department of Genetics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - David R. Smyth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Annette Becker
- Evolutionary Developmental Genetics Group, Zentrum für Umweltforschung und nachhaltige Technologien, University of Bremen, D-28359 Bremen, Germany
- Address correspondence to
| |
Collapse
|
79
|
Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto PDB, Angenent GC, de Maagd RA. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. THE PLANT CELL 2012; 24:4437-51. [PMID: 23136376 PMCID: PMC3531844 DOI: 10.1105/tpc.112.103283] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/05/2012] [Accepted: 10/16/2012] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Plant Cell Biology, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Rumyana Karlova
- Business Unit Bioscience, Plant Research International, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Ana Rosa Ballester
- Business Unit Biodiversity and Breeding, Plant Research International, 6700 AA Wageningen, The Netherlands
| | - Yury M. Tikunov
- Business Unit Biodiversity and Breeding, Plant Research International, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Arnaud G. Bovy
- Business Unit Biodiversity and Breeding, Plant Research International, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Mieke Wolters-Arts
- Department of Plant Cell Biology, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | | | - Gerco C. Angenent
- Business Unit Bioscience, Plant Research International, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Business Unit Bioscience, Plant Research International, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Address correspondence to ruud.
| |
Collapse
|
80
|
Vosnakis N, Maiden A, Kourmpetli S, Hands P, Sharples D, Drea S. A FILAMENTOUS FLOWER orthologue plays a key role in leaf patterning in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:662-673. [PMID: 22816617 DOI: 10.1111/j.1365-313x.2012.05112.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant-specific YABBY genes were initially defined by their roles in determining abaxial/adaxial cell fate in lateral organs of eudicots, and repressing meristematic genes in differentiating tissues such as leaves. In Arabidopsis thaliana FILAMENTOUS FLOWER (FIL) is also required for inflorescence and floral meristem establishment and flower development in a pathway involving the floral transition and identity genes. Here we describe the characterization of a FIL orthologue from the basal eudicot, Papaver somniferum (the opium poppy), and demonstrate a role for the gene in patterning the highly lobed leaf of the poppy. Silencing of PapsFIL using viral-induced gene silencing resulted in leaves of reduced laminar area, more pronounced margin serration and, in some cases, leaf bifurcation. In contrast, the gene does not appear to affect the development of the flower, and these variations in function are discussed in relation to its taxonomic position as a basal eudicot and its determinate growth habit.
Collapse
Affiliation(s)
- Nikolaos Vosnakis
- Department of Biology, University of Leicester, University Road, Leciester LE1 7RH, UK
| | | | | | | | | | | |
Collapse
|
81
|
Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012; 139:3081-98. [PMID: 22872082 DOI: 10.1242/dev.074674] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the MADS-box transcription factor family play essential roles in almost every developmental process in plants. Many MADS-box genes have conserved functions across the flowering plants, but some have acquired novel functions in specific species during evolution. The analyses of MADS-domain protein interactions and target genes have provided new insights into their molecular functions. Here, we review recent findings on MADS-box gene functions in Arabidopsis and discuss the evolutionary history and functional diversification of this gene family in plants. We also discuss possible mechanisms of action of MADS-domain proteins based on their interactions with chromatin-associated factors and other transcriptional regulators.
Collapse
Affiliation(s)
- Cezary Smaczniak
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
82
|
Gramzow L, Barker E, Schulz C, Ambrose B, Ashton N, Theißen G, Litt A. Selaginella Genome Analysis - Entering the "Homoplasy Heaven" of the MADS World. FRONTIERS IN PLANT SCIENCE 2012; 3:214. [PMID: 23049534 PMCID: PMC3442193 DOI: 10.3389/fpls.2012.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 05/05/2023]
Abstract
In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKC(C) and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I); vegetative and floral tissues in sporophytes (MIKC(C)); and male gametophytes (MIKC*), but their functions in other plants are largely unknown. The complete set of MADS-box genes has been described for several angiosperms and a moss, Physcomitrella patens. Our examination of the complete genome sequence of a lycophyte, Selaginella moellendorffii, revealed 19 putative MADS-box genes (13 Type I, 3 MIKC(C), and 3 MIKC*). Our results suggest that the most recent common ancestor of vascular plants possessed at least two Type I and two Type II genes. None of the S. moellendorffii MIKC(C) genes were identified as orthologs of any floral organ identity genes. This strongly corroborates the view that the clades of floral organ identity genes originated in a common ancestor of seed plants after the lineage that led to lycophytes had branched off, and that expansion of MIKC(C) genes in the lineage leading to seed plants facilitated the evolution of their unique reproductive organs. The number of MIKC* genes and the ratio of MIKC* to MIKC(C) genes is lower in S. moellendorffii and angiosperms than in P. patens, correlated with reduction of the gametophyte in vascular plants. Our data indicate that Type I genes duplicated and diversified independently within lycophytes and seed plants. Our observations on MADS-box gene evolution echo morphological evolution since the two lineages of vascular plants appear to have arrived independently at similar body plans. Our annotation of MADS-box genes in S. moellendorffii provides the basis for functional studies to reveal the roles of this crucial gene family in basal vascular plants.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University JenaJena, Germany
| | | | - Christian Schulz
- Department of Evolution and Biodiversity of Plants, Ruhr-University BochumBochum, Germany
| | | | - Neil Ashton
- Department of Biology, University of ReginaRegina, Canada
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University JenaJena, Germany
| | - Amy Litt
- The New York Botanical GardenBronx, NY, USA
| |
Collapse
|