51
|
Duprez K, Scranton MA, Walling LL, Fan L. Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. ACTA ACUST UNITED AC 2014; 70:1649-58. [PMID: 24914976 DOI: 10.1107/s1399004714006245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/20/2014] [Indexed: 11/10/2022]
Abstract
The acidic leucine aminopeptidase (LAP-A) from tomato is induced in response to wounding and insect feeding. Although LAP-A shows in vitro peptidase activity towards peptides and peptide analogs, it is not clear what kind of substrates LAP-A hydrolyzes in vivo. In the current study, the crystal structure of LAP-A was determined to 2.20 Å resolution. Like other LAPs in the M17 peptidase family, LAP-A is a dimer of trimers containing six monomers of bilobal structure. Each monomer contains two metal ions bridged by a water or a hydroxyl ion at the active site. Modeling of different peptides or peptide analogs in the active site of LAP-A reveals a spacious substrate-binding channel that can bind peptides of five or fewer residues with few geometric restrictions. The sequence specificity of the bound peptide is likely to be selected by the structural and chemical restrictions on the amino acid at the P1 and P1' positions because these two amino acids have to bind perfectly at the active site for hydrolysis of the first peptide bond to occur. The hexameric assembly results in the merger of the open ends of the six substrate-binding channels from the LAP-A monomers to form a spacious central cavity allowing the hexameric LAP-A enzyme to simultaneously hydrolyze six peptides containing up to six amino acids each. The hexameric LAP-A enzyme may also hydrolyze long peptides or proteins if only one such substrate is bound to the hexamer because the substrate can extend through the central cavity and the two major solvent channels between the two LAP-A trimers.
Collapse
Affiliation(s)
- Kevin Duprez
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Melissa A Scranton
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Linda L Walling
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Li Fan
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
52
|
Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwal R. Rice proteomics: a model system for crop improvement and food security. Proteomics 2014; 14:593-610. [PMID: 24323464 DOI: 10.1002/pmic.201300388] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
Rice proteomics has progressed at a tremendous pace since the year 2000, and that has resulted in establishing and understanding the proteomes of tissues, organs, and organelles under both normal and abnormal (adverse) environmental conditions. Established proteomes have also helped in re-annotating the rice genome and revealing the new role of previously known proteins. The progress of rice proteomics had recognized it as the corner/stepping stone for at least cereal crops. Rice proteomics remains a model system for crops as per its exemplary proteomics research. Proteomics-based discoveries in rice are likely to be translated in improving crop plants and vice versa against ever-changing environmental factors. This review comprehensively covers rice proteomics studies from August 2010 to July 2013, with major focus on rice responses to diverse abiotic (drought, salt, oxidative, temperature, nutrient, hormone, metal ions, UV radiation, and ozone) as well as various biotic stresses, especially rice-pathogen interactions. The differentially regulated proteins in response to various abiotic stresses in different tissues have also been summarized, indicating key metabolic and regulatory pathways. We envision a significant role of rice proteomics in addressing the global ground level problem of food security, to meet the demands of the human population which is expected to reach six to nine billion by 2040.
Collapse
Affiliation(s)
- Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | | | | | | | | |
Collapse
|
53
|
Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li CB, Li C. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 2013; 9:e1003964. [PMID: 24348260 PMCID: PMC3861047 DOI: 10.1371/journal.pgen.1003964] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/29/2013] [Indexed: 01/20/2023] Open
Abstract
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.
Collapse
Affiliation(s)
- Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Kambiranda D, Katam R, Basha SM, Siebert S. iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J Proteome Res 2013; 13:555-69. [PMID: 24251720 DOI: 10.1021/pr400731p] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening.
Collapse
Affiliation(s)
- Devaiah Kambiranda
- Plant Biotechnology Laboratory, Center for Viticulture and Small Fruit Research, Florida A&M University , 6505 Mahan Drive, Tallahassee, Florida 32317, United States
| | | | | | | |
Collapse
|
55
|
Scranton MA, Fowler JH, Girke T, Walling LL. Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A. PLoS One 2013; 8:e77889. [PMID: 24205013 PMCID: PMC3812031 DOI: 10.1371/journal.pone.0077889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 11/22/2022] Open
Abstract
Wounding due to mechanical injury or insect feeding causes a wide array of damage to plant cells including cell disruption, desiccation, metabolite oxidation, and disruption of primary metabolism. In response, plants regulate a variety of genes and metabolic pathways to cope with injury. Tomato (Solanum lycopersicum) is a model for wound signaling but few studies have examined the comprehensive gene expression profiles in response to injury. A cross-species microarray approach using the TIGR potato 10-K cDNA array was analyzed for large-scale temporal (early and late) and spatial (locally and systemically) responses to mechanical wounding in tomato leaves. These analyses demonstrated that tomato regulates many primary and secondary metabolic pathways and this regulation is dependent on both timing and location. To determine if LAP-A, a known modulator of wound signaling, influences gene expression beyond the core of late wound-response genes, changes in RNAs from healthy and wounded Leucine aminopeptidase A-silenced (LapA-SI) and wild-type (WT) leaves were examined. While most of the changes in gene expression after wounding in LapA-SI leaves were similar to WT, overall responses were delayed in the LapA-SI leaves. Moreover, two pathogenesis-related 1 (PR-1c and PR-1a2) and two dehydrin (TAS14 and Dhn3) genes were negatively regulated by LAP-A. Collectively, this study has shown that tomato wound responses are complex and that LAP-A's role in modulation of wound responses extends beyond the well described late-wound gene core.
Collapse
Affiliation(s)
- Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Jonathan H. Fowler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Thomas Girke
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
56
|
Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 2013; 8:e76487. [PMID: 24098512 PMCID: PMC3789685 DOI: 10.1371/journal.pone.0076487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022] Open
Abstract
Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.
Collapse
Affiliation(s)
- Sandra M. Mathioni
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Nrupali Patel
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bianca Riddick
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - James A. Sweigard
- DuPont Stine Haskell Research Center, Newark, Delaware, United States of America
| | - Kirk J. Czymmek
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Caplan
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
| | - Sridhara G. Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Saritha Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Vidhyavathi Raman
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Bradley I. Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Donald Y. Kobayashi
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nicole M. Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
57
|
Lomate PR, Jadhav BR, Giri AP, Hivrale VK. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase. PLoS One 2013; 8:e74889. [PMID: 24098675 PMCID: PMC3786982 DOI: 10.1371/journal.pone.0074889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/06/2013] [Indexed: 11/18/2022] Open
Abstract
Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.
Collapse
Affiliation(s)
- Purushottam R. Lomate
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra State, India
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra State, India
| | - Bhakti R. Jadhav
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra State, India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra State, India
| | - Vandana K. Hivrale
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra State, India
| |
Collapse
|
58
|
Yeh SH, Lee BH, Liao SC, Tsai MH, Tseng YH, Chang HC, Yang CC, Jan HC, Chiu YC, Wang AY. Identification of genes differentially expressed during the growth of Bambusa oldhamii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:217-226. [PMID: 23291655 DOI: 10.1016/j.plaphy.2012.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Bamboos are ecologically and economically important grasses, and are distinguished by their rapid growth. To identify genes associated with bamboo growth, PCR-based mRNA differential display was used to clone genes that were differentially expressed in various tissues of bamboo (Bambusa oldhamii) shoots at different growth stages. In total, 260 different cDNA sequences were obtained. These genes displayed complex expression profiles across the different tissues and growth stages as revealed by a cDNA microarray analysis. Notable among them were genes that were temporally up-regulated or down-regulated in the internode-containing region of rapidly elongating shoots. These genes might participate in the rapid elongation of the bamboo culm. Of the 36 up-regulated and 46 down-regulated genes, 16 genes and 8 genes, respectively, were predicted to encode hypothetical proteins or were unknown sequences. Aside from these, genes involved in hormonal signaling and homeostasis, stress responses, peptide processing and signaling and lignin biosynthesis composed most of the up-regulated genes; genes involved in DNA replication, nucleic acid binding and signal transduction were highly represented among the down-regulated genes. These results suggested that genes associated with plant hormonal signaling and homeostasis, peptide signaling, reactive oxygen species signaling and homeostasis, several stress-related genes and a monocot-specific unknown gene, BoMSP41, play important roles in the elongation of bamboo internodes. Multiple signaling pathways might form a complex interconnected network that controls the rapid growth of this giant grass.
Collapse
Affiliation(s)
- Sheng-Hsiung Yeh
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Scranton MA, Fowler JH, Girke T, Walling LL. Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A. PLoS One 2013. [PMID: 24205013 DOI: 10.1371/journal.pone.007788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Wounding due to mechanical injury or insect feeding causes a wide array of damage to plant cells including cell disruption, desiccation, metabolite oxidation, and disruption of primary metabolism. In response, plants regulate a variety of genes and metabolic pathways to cope with injury. Tomato (Solanum lycopersicum) is a model for wound signaling but few studies have examined the comprehensive gene expression profiles in response to injury. A cross-species microarray approach using the TIGR potato 10-K cDNA array was analyzed for large-scale temporal (early and late) and spatial (locally and systemically) responses to mechanical wounding in tomato leaves. These analyses demonstrated that tomato regulates many primary and secondary metabolic pathways and this regulation is dependent on both timing and location. To determine if LAP-A, a known modulator of wound signaling, influences gene expression beyond the core of late wound-response genes, changes in RNAs from healthy and wounded Leucine aminopeptidase A-silenced (LapA-SI) and wild-type (WT) leaves were examined. While most of the changes in gene expression after wounding in LapA-SI leaves were similar to WT, overall responses were delayed in the LapA-SI leaves. Moreover, two pathogenesis-related 1 (PR-1c and PR-1a2) and two dehydrin (TAS14 and Dhn3) genes were negatively regulated by LAP-A. Collectively, this study has shown that tomato wound responses are complex and that LAP-A's role in modulation of wound responses extends beyond the well described late-wound gene core.
Collapse
Affiliation(s)
- Melissa A Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | | | | | | |
Collapse
|
60
|
Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 2013; 78:58-71. [DOI: 10.1016/j.jprot.2012.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
|
61
|
Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One 2012; 7:e50785. [PMID: 23226384 PMCID: PMC3511270 DOI: 10.1371/journal.pone.0050785] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022] Open
Abstract
The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as 'response to stimulus' and 'response to stress'. Moreover, GO terms 'response to hormone stimulus', 'response to reactive oxygen species (ROS)', and 'calcium-mediated signaling' were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide new insights into the molecular mechanisms of cold tolerance in tomato, but also provide potential candidate genes for genetic improvement.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
62
|
Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda K, Masuta C, Nabeta K. Transportation of de novo synthesized jasmonoyl isoleucine in tomato. PHYTOCHEMISTRY 2012; 83:25-33. [PMID: 22898385 DOI: 10.1016/j.phytochem.2012.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/22/2012] [Accepted: 06/18/2012] [Indexed: 05/08/2023]
Abstract
In plants, jasmonic acid (JA) and its derivatives are thought to be involved in mobile forms of defense against biotic and abiotic stresses. In this study, the distal transport of JA-isoleucine (JA-Ile) that is synthesized de novo in response to leaf wounding in tomato (Solanum lycopersicum) plants was investigated. JA-[¹³C₆]Ile was recovered in distal untreated leaves after wounded leaves were treated with [¹³C₆]Ile. However, as [¹³C₆]Ile was also recovered in the distal untreated leaves, whether JA-Ile was synthesized in the wounded or in the untreated leaves was unclear. Hence, stem exudates were analyzed to obtain more detailed information. When [¹³C₆]Ile and [²H₆]JA were applied separately into the wounds on two different leaves, JA-[¹³C₆]Ile and [²H₆]JA-Ile were detected in the stem exudates but [²H₆]JA-[¹³C₆]Ile was not, indicating that JA was conjugated with Ile in the wounded leaf and that the resulting JA-Ile was then transported into systemic tissues. The [²H₃]JA-Ile that was applied exogenously to the wounded tissues reached distal untreated leaves within 10 min. Additionally, applying [²H₃]JA-Ile to the wounded leaves at concentrations of 10 and 60 nmol/two leaves induced the accumulation of PIN II, LAP A, and JAZ3 mRNA in the distal untreated leaves of the spr2 mutant S. lycopersicum plants. These results demonstrate the transportation of de novo synthesized JA-Ile and suggest that JA-Ile may be a mobile signal.
Collapse
Affiliation(s)
- Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | | | | | | | | | |
Collapse
|
63
|
Insect eggs can enhance wound response in plants: a study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLoS One 2012; 7:e37420. [PMID: 22616005 PMCID: PMC3352884 DOI: 10.1371/journal.pone.0037420] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/21/2012] [Indexed: 01/16/2023] Open
Abstract
Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable feeding sites. Here, we report induction of antiherbivore defense by insect oviposition which targets newly hatched larvae, not the eggs, in the system of tomato Solanum lycopersicum L., and tomato fruitworm moth Helicoverpa zea Boddie. When tomato plants were oviposited by H. zea moths, pin2, a highly inducible gene encoding protease inhibitor2, which is a representative defense protein against herbivorous arthropods, was expressed at significantly higher level at the oviposition site than surrounding tissues, and expression decreased with distance away from the site of oviposition. Moreover, more eggs resulted in higher pin2 expression in leaves, and both fertilized and unfertilized eggs induced pin2 expression. Notably, when quantified daily following deposition of eggs, pin2 expression at the oviposition site was highest just before the emergence of larvae. Furthermore, H. zea oviposition primed the wound-induced increase of pin2 transcription and a burst of jasmonic acid (JA); tomato plants previously exposed to H. zea oviposition showed significantly stronger induction of pin2 and higher production of JA upon subsequent simulated herbivory than without oviposition. Our results suggest that tomato plants recognize H. zea oviposition as a signal of impending future herbivory and induce defenses to prepare for this herbivory by newly hatched neonate larvae.
Collapse
|
64
|
Scranton MA, Yee A, Park SY, Walling LL. Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J Biol Chem 2012; 287:18408-17. [PMID: 22493451 DOI: 10.1074/jbc.m111.309500] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress.
Collapse
Affiliation(s)
- Melissa A Scranton
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
65
|
Goetz S, Hellwege A, Stenzel I, Kutter C, Hauptmann V, Forner S, McCaig B, Hause G, Miersch O, Wasternack C, Hause B. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. PLANT PHYSIOLOGY 2012; 158:1715-27. [PMID: 22337921 PMCID: PMC3320180 DOI: 10.1104/pp.111.192658] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/10/2012] [Indexed: 05/19/2023]
Abstract
Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.
Collapse
|
66
|
Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. THE NEW PHYTOLOGIST 2012; 193:770-778. [PMID: 22142268 DOI: 10.1111/j.1469-8137.2011.03987.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. • We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or β-aminobutryric acid (BABA). • Plants grown from JA-treated seed showed increased resistance against herbivory by spider mites, caterpillars and aphids, and against the necrotrophic fungal pathogen, Botrytis cinerea. BABA seed treatment provided primed defence against powdery mildew disease caused by the biotrophic fungal pathogen, Oidium neolycopersici. Priming responses were long-lasting, with significant increases in resistance sustained in plants grown from treated seed for at least 8 wk, and were associated with enhanced defence gene expression during pathogen attack. There was no significant antagonism between different forms of defence in plants grown from seeds treated with a combination of JA and BABA. • Long-term defence priming by seed treatments was not accompanied by reductions in growth, and may therefore be suitable for commercial exploitation.
Collapse
Affiliation(s)
- Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Geoff H Holroyd
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jason P Moore
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Marcin Glowacz
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Patricia Croft
- Stockbridge Technology Centre Ltd, Cawood, Selby, North Yorkshire YO8 3TZ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
67
|
Lomate PR, Hivrale VK. Changes and induction of aminopeptidase activities in response to pathogen infection during germination of pigeonpea (Cajanas cajan) seeds. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1735-1742. [PMID: 21640431 DOI: 10.1016/j.jplph.2011.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/01/2011] [Accepted: 05/07/2011] [Indexed: 05/30/2023]
Abstract
Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.
Collapse
Affiliation(s)
- Purushottam R Lomate
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India
| | | |
Collapse
|
68
|
Boulila-Zoghlami L, Gallusci P, Holzer FM, Basset GJ, Djebali W, Chaïbi W, Walling LL, Brouquisse R. Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots. PLANTA 2011; 234:857-863. [PMID: 21744092 DOI: 10.1007/s00425-011-1468-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The effects of cadmium (Cd) on aminopeptidase (AP) activities and Leucine-AP (LAP) expression were investigated in the roots of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 10 days in the presence of 0.3-300 μM Cd and compared to control plants grown in the absence of Cd. AP activities were measured using six different p-nitroanilide (p-NA) substrates. Leu, Met, Arg, Pro and Lys hydrolyzing activities increased in roots of Cd-treated plants, while Phe-pNA cleavage was not enhanced after Cd treatments. The use of peptidase inhibitors showed that most of the Leu-pNA hydrolyzing activity was related to one or several metallo-APs. Changes in Lap transcripts, protein and activities were measured in the roots of 0 and 30-μM Cd-treated plants. LapA transcript levels increased in Cd-treated roots, whereas LapN RNAs levels were not modified. To assess amount of Leu-pNA hydrolyzing activity associated with the hexameric LAPs, LAP activity was measured following immunoprecipitation with a LAP polyclonal antiserum. LAP activity increased in Cd-treated roots. There was a corresponding increase in LAP-A protein levels detected in 2D-immunoblots. The role of LAP-A in the proteolytic response to Cd stress is discussed.
Collapse
Affiliation(s)
- Latifa Boulila-Zoghlami
- Département de Biologie, Faculté des Sciences de Tunis El Manar, Unité de Recherche de Biologie et Physiologie Cellulaires Végétales, 1060 Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Waditee-Sirisattha R, Hattori A, Shibato J, Rakwal R, Sirisattha S, Takabe T, Tsujimoto M. Role of the Arabidopsis leucine aminopeptidase 2. PLANT SIGNALING & BEHAVIOR 2011; 6:1581-3. [PMID: 21918372 PMCID: PMC3256389 DOI: 10.4161/psb.6.10.17105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Proteolysis-related genes have diverse functions across taxa and have long been considered as key players for intracellular protein turnover. Growing evidence indicates the biological significance of peptidases in degradation, maturation and modulation of bioactive peptides/proteins. By screening T-DNA tagged lines and functional analysis approaches we unraveled the Arabidopsis leucine aminopeptidase (AtLAP2) function in amino acid turnover. Transcriptomics and metabolomics profiling data suggested involvement of AtLAP2 in specific metabolic pathways. Loss-of-function of AtLAP2 resulted in early-leaf senescent and stress-sensitive phenotypes. Our work indicates an important in planta role for AtLAP2 contributing to a further understanding of the proteases having several implications in higher plants.
Collapse
|
70
|
Zhao F, Chen L, Perl A, Chen S, Ma H. Proteomic changes in grape embryogenic callus in response to Agrobacterium tumefaciens-mediated transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:485-495. [PMID: 21889056 DOI: 10.1016/j.plantsci.2011.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation is highly required for studies of grapevine gene function and of huge potential for tailored variety improvements. However, grape is recalcitrant to transformation, and the underlying mechanism is largely unknown. To better understand the overall response of grapevine to A. tumefaciens-mediated transformation, the proteomic profile of cv. Prime embryogenic callus (EC) after co-cultivation with A. tumefaciens was investigated by two-dimensional electrophoresis and MALDI-TOF-MS analysis. Over 1100 protein spots were detected in both inoculated and control EC, 69 of which showed significantly differential expression; 38 of these were successfully identified. The proteins significantly up-regulated 3 d after inoculation were PR10, resistance protein Pto, secretory peroxidase, cinnamoyl-CoA reductase and different expression regulators; down-regulated proteins were ascorbate peroxidase, tocopherol cyclase, Hsp 70 and proteins involved in the ubiquitin-associated protein-degradation pathway. A. tumefaciens transformation-induced oxidative burst and modified protein-degradation pathways were further validated with biochemical measurements. Our results reveal that agrobacterial transformation markedly inhibits the cellular ROS-removal system, mitochondrial energy metabolism and the protein-degradation machinery for misfolded proteins, while the apoptosis signaling pathway and hypersensitive response are strengthened, which might partially explain the low efficiency and severe EC necrosis in grape transformation.
Collapse
Affiliation(s)
- Fengxia Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
71
|
Stitz M, Gase K, Baldwin IT, Gaquerel E. Ectopic expression of AtJMT in Nicotiana attenuata: creating a metabolic sink has tissue-specific consequences for the jasmonate metabolic network and silences downstream gene expression. PLANT PHYSIOLOGY 2011; 157:341-54. [PMID: 21753114 PMCID: PMC3165883 DOI: 10.1104/pp.111.178582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/12/2011] [Indexed: 05/19/2023]
Abstract
To create a metabolic sink in the jasmonic acid (JA) pathway, we generated transgenic Nicotiana attenuata lines ectopically expressing Arabidopsis (Arabidopsis thaliana) jasmonic acid O-methyltransferase (35S-jmt) and additionally silenced in other lines the N. attenuata methyl jasmonate esterase (35S-jmt/ir-mje) to reduce the deesterification of methyl jasmonate (MeJA). Basal jasmonate levels did not differ between transgenic and wild-type plants; however, after wounding and elicitation with Manduca sexta oral secretions, the bursts of JA, jasmonoyl-isoleucine (JA-Ile), and their metabolites that are normally observed in the lamina, midvein, and petiole of elicited wild-type leaves were largely absent in both transformants but replaced by a burst of endogenous MeJA that accounted for almost half of the total elicited jasmonate pools. In these plants, MeJA became a metabolic sink that affected the jasmonate metabolic network and its spread to systemic leaves, with major effects on 12-oxo-phytodieonic acid, JA, and hydroxy-JA in petioles and on JA-Ile in laminas. Alterations in the size of jasmonate pools were most obvious in systemic tissues, especially petioles. Expression of threonine deaminase and trypsin proteinase inhibitor, two JA-inducible defense genes, was strongly decreased in both transgenic lines without influencing the expression of JA biosynthesis genes that were uncoupled from the wounding and elicitation with M. sexta oral secretions-elicited JA-Ile gradient in elicited leaves. Taken together, this study provides support for a central role of the vasculature in the propagation of jasmonates and new insights into the versatile spatiotemporal characteristics of the jasmonate metabolic network.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Gaquerel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| |
Collapse
|
72
|
Kim J, Quaghebeur H, Felton GW. Reiterative and interruptive signaling in induced plant resistance to chewing insects. PHYTOCHEMISTRY 2011; 72:1624-1634. [PMID: 21549401 DOI: 10.1016/j.phytochem.2011.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Our understanding of induced resistance against herbivores has grown immeasurably during the last several decades. Based upon the emerging literature, we argue that induced resistance represents a continuum of phenotypes that is determined by the plant's ability to integrate multiple suites of signals of plant and herbivore origin. We present a model that illustrates the range of signals arising from early detection through herbivore feeding, and then through subsequent plant generations.
Collapse
Affiliation(s)
- Jinwon Kim
- Department of Entomology and Center for Chemical Ecology, Penn State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
73
|
Waditee-Sirisattha R, Shibato J, Rakwal R, Sirisattha S, Hattori A, Nakano T, Takabe T, Tsujimoto M. The Arabidopsis aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. THE NEW PHYTOLOGIST 2011; 191:958-969. [PMID: 21569035 DOI: 10.1111/j.1469-8137.2011.03758.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Peptidases are known to play key roles in multiple biological processes in all living organisms. In higher plants, the vast majority of putative aminopeptidases remain uncharacterized. In this study, we performed functional and expression analyses of the Arabidopsis LAP2 through cDNA cloning, isolation of T-DNA insertional mutants, characterization of the enzymatic activity, characterization of gene expression and transcriptomics and metabolomics analyses of the mutants. Loss of function of LAP2, one of the 28 aminopeptidases in Arabidopsis, reduced vegetative growth, accelerated leaf senescence and rendered plants more sensitive to various stresses. LAP2 is highly expressed in the leaf vascular tissue and the quiescent center region. Integration of global gene expression and metabolite analyses suggest that LAP2 controlled intracellular amino acid turnover. The mutant maintained free leucine by up-regulating key genes for leucine biosynthesis. However, this influenced the flux of glutamate strikingly. As a result, γ-aminobutyric acid, a metabolite that is derived from glutamate, was diminished in the mutant. Decrements in these nitrogen-rich compounds are associated with morphological alterations and stress sensitivity of the mutant. The results indicate that LAP2 is indeed an enzymatically active aminopeptidase and plays key roles in senescence, stress response and amino acid turnover.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Laboratory of Cellular Biochemistry, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Junko Shibato
- Health Technology Research Center, AIST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Randeep Rakwal
- Health Technology Research Center, AIST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Sophon Sirisattha
- Health Technology Research Center, AIST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Biosciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nakano
- Plant Chemical Biology Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
- JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Teruhiro Takabe
- Research Institute of Meijo University, Nagoya 468-8502, Japan
| | - Masafumi Tsujimoto
- Laboratory of Cellular Biochemistry, RIKEN, Wako, Saitama 351-0198, Japan
- Faculty of Pharmaceutical Sciences, Teikyo-Heisei University, Chiba 290-0193, Japan
| |
Collapse
|
74
|
Tsuji A, Fujisawa Y, Mino T, Yuasa K. Identification of a plant aminopeptidase with preference for aromatic amino acid residues as a novel member of the prolyl oligopeptidase family of serine proteases. J Biochem 2011; 150:525-34. [PMID: 21788307 DOI: 10.1093/jb/mvr092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome analysis has indicated that plants, like animals, possess a variety of protease genes. However, bulk of putative proteases has not been characterized at the enzyme level. In this article, a novel enzyme that hydrolyses phenylalanyl-4-methylcoumaryl 7-amide (phenylalanyl-MCA) was purified from cotyledons of daikon radish by ammonium sulphate fractionation and successive chromatography with DEAE-cellulose, phenyl-Sepharose, Sephacryl S-200 and Mini-Q. The molecular mass of the enzyme was estimated to be 78 kDa by SDS-PAGE under reducing conditions and 74 kDa by gel filtration, indicating that the enzyme is a monomer. The deduced amino acid sequence from the cDNA nucleotide sequence indicated that the enzyme is an orthologue of Arabidopsis unidentified protein, acylpeptide hydrolase-like protein (AHLP; UniProt ID: Q9FG66) belonging to the prolyl oligopeptidase (POP) family of a serine-type peptidase predicted from genetic information. Good substrates identified for the enzyme include phenylalanyl-MCA, tyrosyl-MCA and enkephalin. Neither acylamino acid-releasing activity nor endopeptidase activity was detected. The enzyme cleaved enkephalin (YGGFM, YGGFL), whereas, BAM-12 P (YGGFMRRVGRPE) and dynorphin A (YGGFLRRIRPKLK) were not digested. These results suggested that the enzyme possesses strict size selectivity of substrate. We propose the name 'tyrosyl aminopeptidase' for the uncharacterized protein AHLP.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, The University of Tokushima Graduate School, Minamijosanjima, Tokushima, Japan.
| | | | | | | |
Collapse
|
75
|
Lomate PR, Hivrale VK. Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeonpea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:609-616. [PMID: 21420308 DOI: 10.1016/j.plaphy.2011.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 02/24/2011] [Indexed: 05/30/2023]
Abstract
Aminopeptidases are ubiquitous in nature and their activities have been identified in several plant species. Leucine aminopeptidases (LAPs) are predominantly studied in solanaceous plants and are induced in response to wounding, herbivory and methyl jasmonate (MeJA). The functions of plant aminopeptidases are still under discussion and it is likely that the different classes play various roles. In the present study we report the local and systemic induction of LAP-like activity upon mechanical wounding and MeJA treatment. Two proteins with LAP-like activity were detected in pigeonpea leaves. They were designated as AP1 and AP2. AP1 activity was significantly induced upon wounding and application of MeJA. The estimated molecular masses of AP1 and AP2 were ∼ 60 and 41 kDa respectively in SDS-PAGE. The pH optimum for LAP-like activity in control leaf extracts was found to be neutral (pH 7.0) however the enzymes showed highest activity at alkaline pH (pH 9.0) in the leaf extracts of treated plants. The temperature optimum for LAP-like activity was around 40-50 °C. The enzymes were strongly inhibited by 1, 10 phenanthroline and bestatin. Heavy metal ions and EDTA inhibited LAP-like activities, whereas Mn(+2) and Mg(+2) activated the enzyme activities. Beside LpNA (33.5 U/mg/min) pigeonpea LAP-like enzymes also cleaved ApNA (15 U/mg/min) but were unable to cleave VpNA. Total proteolytic activity was also observed to be induced in treated plants. LAP-like activity was increased upto 19.5 fold after gel filtration chromatography. Results suggest that these enzymes may have functional defensive role in pigeonpea.
Collapse
Affiliation(s)
- Purushottam R Lomate
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India
| | | |
Collapse
|
76
|
Hind SR, Pulliam SE, Veronese P, Shantharaj D, Nazir A, Jacobs NS, Stratmann JW. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:480-91. [PMID: 21265900 DOI: 10.1111/j.1365-313x.2010.04437.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The COP9 signalosome (CSN) is a multi-protein complex that regulates the activities of cullin-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound-responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over-expression. In contrast, expression of pathogenesis-related genes was increased in a stimulus-independent manner in these plants. The reduced wound response in CSN-silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN-silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA-dependent plant defense responses.
Collapse
Affiliation(s)
- Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Martínez-Esteso MJ, Casado-Vela J, Sellés-Marchart S, Elortza F, Pedreño MA, Bru-Martínez R. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method. ACTA ACUST UNITED AC 2011; 7:749-65. [DOI: 10.1039/c0mb00194e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Bhosale M, Pande S, Kumar A, Kairamkonda S, Nandi D. Characterization of two M17 family members in Escherichia coli, Peptidase A and Peptidase B. Biochem Biophys Res Commun 2010; 395:76-81. [PMID: 20350528 DOI: 10.1016/j.bbrc.2010.03.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/23/2010] [Indexed: 11/25/2022]
Abstract
Escherichia coli encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and high temperature stress. Purified PepA and PepB display broad substrate specificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms.
Collapse
Affiliation(s)
- Manoj Bhosale
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
79
|
Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R. Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway: ACTIVATION IN RESPONSE TO CADMIUM. J Biol Chem 2009; 284:35412-24. [PMID: 19822524 PMCID: PMC2790970 DOI: 10.1074/jbc.m109.035394] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/09/2009] [Indexed: 11/06/2022] Open
Abstract
Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 mum cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress.
Collapse
Affiliation(s)
- Cécile Polge
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| | - Michel Jaquinod
- Etude de la Dynamique des Protéomes, F-38054 Grenoble, France and
| | - Frances Holzer
- the Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124
| | - Jacques Bourguignon
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| | - Linda Walling
- the Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124
| | - Renaud Brouquisse
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| |
Collapse
|
80
|
Ankala A, Luthe DS, Williams WP, Wilkinson JR. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1555-1564. [PMID: 19888821 DOI: 10.1094/mpmi-22-12-1555] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armyworm (Spodoptera frugiperda) herbivory. Within 1 h of herbivory by fall armyworm, Mir1-CP accumulates at the feeding site and continues to increase in abundance until 24 h without any increase in its transcript (mir1) levels. To resolve this discrepancy and elucidate the role of ethylene and jasmonate in the signaling of Mir1-CP expression, the effects of phytohormone biosynthesis and perception inhibitors on Mir1-CP expression were tested. Immunoblot analysis of Mir1-CP accumulation and quantitative reverse-transcriptase polymerase chain reaction examination of mir1 levels in these treated plants demonstrate that Mir1-CP accumulation is regulated by both transcript abundance and protein expression levels. The results also suggest that jasmonate functions upstream of ethylene in the Mir1-CP expression pathway, allowing for both low-level constitutive expression and a two-stage defensive response, an immediate response involving Mir1-CP accumulation and a delayed response inducing mir1 transcript expression.
Collapse
Affiliation(s)
- A Ankala
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississipi State, MS 39762, USA
| | | | | | | |
Collapse
|
81
|
Heil M. Damaged-self recognition in plant herbivore defence. TRENDS IN PLANT SCIENCE 2009; 14:356-63. [PMID: 19540148 DOI: 10.1016/j.tplants.2009.04.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 05/21/2023]
Abstract
Feeding by herbivores induces plant defences, but we still do not know all the signals that mediate this response. Here, I argue that a general principle in this mediation is 'damaged-self recognition', that is, the perception of motifs by the plant that indicate disintegrated plant cells. Most defence-inducing molecules are (or contain) plant-derived motifs or disintegrate plant cells and thereby release defence elicitors. By perceiving the 'damaged self', plants can retain evolutionary control over their interactions with herbivores rather than allowing herbivores to dominate the interaction. The concept of 'damaged-self recognition' provides a paradigm for plant responses to herbivory and helps the search for the currently unknown elicitors of those defence responses, which have so far only been described at the phenotypic level.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética. CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Irapuato, Guanajuato, México.
| |
Collapse
|