51
|
Vadde BVL. Not-so-selfish DNA? Intronic enhancers fine-tune spatiotemporal gene expression. THE PLANT CELL 2021; 33:1851-1852. [PMID: 35234259 PMCID: PMC8290274 DOI: 10.1093/plcell/koab095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 06/14/2023]
|
52
|
Pei L, Li G, Lindsey K, Zhang X, Wang M. Plant 3D genomics: the exploration and application of chromatin organization. THE NEW PHYTOLOGIST 2021; 230:1772-1786. [PMID: 33560539 PMCID: PMC8252774 DOI: 10.1111/nph.17262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/29/2023]
Abstract
Eukaryotic genomes are highly folded for packing into higher-order chromatin structures in the nucleus. With the emergence of state-of-the-art chromosome conformation capture methods and microscopic imaging techniques, the spatial organization of chromatin and its functional implications have been interrogated. Our knowledge of 3D chromatin organization in plants has improved dramatically in the past few years, building on the early advances in animal systems. Here, we review recent advances in 3D genome mapping approaches, our understanding of the sophisticated organization of spatial structures, and the application of 3D genomic principles in plants. We also discuss directions for future developments in 3D genomics in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Guoliang Li
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
53
|
Lin Y, Zhao H, Kotlarz M, Jiang J. Enhancer-mediated reporter gene expression in Arabidopsis thaliana: a forward genetic screen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:661-671. [PMID: 33547831 DOI: 10.1111/tpj.15189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Gene expression is controlled and regulated by interactions between cis-regulatory DNA elements (CREs) and regulatory proteins. Enhancers are one of the most important classes of CREs in eukaryotes. Eukaryotic genes, especially those related to development or responses to environmental cues, are often regulated by multiple enhancers in different tissues and/or at different developmental stages. Remarkably, little is known about the molecular mechanisms by which enhancers regulate gene expression in plants. We identified a distal enhancer, CREβ, which regulates the expression of AtDGK7, which encodes a diacylglycerol kinase in Arabidopsis. We developed a transgenic line containing the luciferase reporter gene (LUC) driven by CREβ fused with a minimal cauliflower mosaic virus (CaMV) 35S promoter. The CREβ enhancer was shown to play a role in the response to osmotic pressure of the LUC reporter gene. A forward genetic screen pipeline based on the transgenic line was established to generate mutations associated with altered expression of the LUC reporter gene. We identified a suite of mutants with variable LUC expression levels as well as different segregation patterns of the mutations in populations. We demonstrate that this pipeline will allow us to identify trans-regulatory factors associated with CREβ function as well as those acting in the regulation of the endogenous AtDGK7 gene.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agriculture University, Changsha, 410128, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Magdalena Kotlarz
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
54
|
Wang P, Jin S, Chen X, Wu L, Zheng Y, Yue C, Guo Y, Zhang X, Yang J, Ye N. Chromatin accessibility and translational landscapes of tea plants under chilling stress. HORTICULTURE RESEARCH 2021; 8:96. [PMID: 33931606 PMCID: PMC8087716 DOI: 10.1038/s41438-021-00529-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Plants have evolved regulatory mechanisms at multiple levels to regulate gene expression in order to improve their cold adaptability. However, limited information is available regarding the stress response at the chromatin and translational levels. Here, we characterize the chromatin accessibility, transcriptional, and translational landscapes of tea plants in vivo under chilling stress for the first time. Chilling stress significantly affected both the transcription and translation levels as well as the translation efficiency of tea plants. A total of 3010 genes that underwent rapid and independent translation under chilling stress were observed, and they were significantly enriched in the photosynthesis-antenna protein and phenylpropanoid biosynthesis pathways. A set of genes that were significantly responsive to cold at the transcription and translation levels, including four (+)-neomenthol dehydrogenases (MNDs) and two (E)-nerolidol synthases (NESs) arranged in tandem on the chromosomes, were also found. We detected potential upstream open reading frames (uORFs) on 3082 genes and found that tea plants may inhibit the overall expression of genes by enhancing the translation of uORFs under chilling stress. In addition, we identified distal transposase hypersensitive sites (THSs) and proximal THSs and constructed a transcriptional regulatory network for tea plants under chilling stress. We also identified 13 high-confidence transcription factors (TFs) that may play a crucial role in cold regulation. These results provide valuable information regarding the potential transcriptional regulatory network in plants and help to clarify how plants exhibit flexible responses to chilling stress.
Collapse
Affiliation(s)
- Pengjie Wang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xuejin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yongchun Guo
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jiangfan Yang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China.
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
55
|
Huang MK, Zhang L, Zhou LM, Yung WS, Li MW, Lam HM. Genomic Features of Open Chromatin Regions (OCRs) in Wild Soybean and Their Effects on Gene Expressions. Genes (Basel) 2021; 12:640. [PMID: 33923056 PMCID: PMC8146116 DOI: 10.3390/genes12050640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription activation is tightly associated with the openness of chromatin, which allows direct contact between transcriptional regulators, such as transcription factors, and their targeted DNA for downstream gene activation. However, the annotation of open chromatin regions (OCRs) in the wild soybean (Glycine soja) genome is limited. We performed assay for transposase-accessible chromatin using sequencing (ATAC-seq) and successfully identified 22,333 OCRs in the leaf of W05 (a wild soybean accession). These OCRs were enriched in gene transcription start sites (TSS) and were positively correlated with downstream gene expression. Several known transcription factor (TF)-binding motifs were also enriched at the OCRs. A potential regulatory network was constructed using these transcription factors and the OCR-marked genes. Furthermore, by overlapping the OCR distribution with those of histone modifications from chromatin immunoprecipitation followed by sequencing (ChIP-seq), we found that the distribution of the activation histone mark, H3K4me3, but not that of the repressive H3K27me3 mark, was closely associated with OCRs for gene activation. Several putative enhancer-like distal OCRs were also found to overlap with LincRNA-encoding loci. Moreover, our data suggest that homologous OCRs could potentially influence homologous gene expression. Hence, the duplication of OCRs might be essential for plant genome architecture as well as for regulating gene expression.
Collapse
Affiliation(s)
- Ming-Kun Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518055, China
| | - Li-Meng Zhou
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| |
Collapse
|
56
|
Fagny M, Kuijjer ML, Stam M, Joets J, Turc O, Rozière J, Pateyron S, Venon A, Vitte C. Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks. Front Genet 2021; 11:606285. [PMID: 33505431 PMCID: PMC7834273 DOI: 10.3389/fgene.2020.606285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Enhancers are key players in the spatio-temporal coordination of gene expression during numerous crucial processes, including tissue differentiation across development. Characterizing the transcription factors (TFs) and genes they connect, and the molecular functions underpinned is important to better characterize developmental processes. In plants, the recent molecular characterization of enhancers revealed their capacity to activate the expression of several target genes. Nevertheless, identifying these target genes at a genome-wide level is challenging, particularly for large-genome species, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to plant regulatory networks remains poorly understood. Here, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage (V2-IST) and husks (bracts) at flowering. Using systems biology, we integrate genomic, epigenomic, and transcriptomic data to model the regulatory relationships between TFs and their potential target genes, and identify regulatory modules specific to husk and V2-IST. We show that leaves at the V2-IST stage are characterized by the response to hormones and macromolecules biogenesis and assembly, which are regulated by the BBR/BPC and AP2/ERF TF families, respectively. In contrast, husks are characterized by cell wall modification and response to abiotic stresses, which are, respectively, orchestrated by the C2C2/DOF and AP2/EREB families. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped part of the regulatory network in each tissue, and that MITEs have provided potential new TF binding sites involved in husk tissue-specificity.
Collapse
Affiliation(s)
- Maud Fagny
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Marieke Lydia Kuijjer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Maike Stam
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Johann Joets
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Olivier Turc
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Julien Rozière
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
57
|
Lin Y, Jiang J. Rapid Validation of Transcriptional Enhancers Using a Transient Reporter Assay. Methods Mol Biol 2021; 2328:253-259. [PMID: 34251631 DOI: 10.1007/978-1-0716-1534-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Enhancers are one of the main classes of cis-regulatory elements (CREs) in the regulation of plant gene expression. Plant enhancers can be predicted based on genomic signatures associated with open chromatin. However, predicted enhancers need to be validated experimentally. We developed an experimental system for rapid enhancer validation. Predicted enhancer candidates are cloned into a vector containing a minimal 35S promoter and a luciferase reporter gene. The construct is then agroinfiltrated into Nicotiana benthamiana leaves followed by bioluminescence signal detection and analysis. Positive bioluminescence signals indicate the enhancer function of each candidate, and the relative signal strength from different enhancers can be quantitatively measured and compared. In summary, we have developed an efficient and rapid plant enhancer validation assay based on a bioluminescent luciferase reporter and agroinfiltration-based N. benthamiana leaf transient expression. This assay can be used for the initial screening of candidate enhancers that are active in leaf tissue. The system can potentially be used to examine the activity of candidate enhancers under different environmental conditions.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
- Michigan State University AgBioResearch, East Lansing, MI, USA.
| |
Collapse
|
58
|
Huang M, Zhang L, Zhou L, Wang M, Yung WS, Wang Z, Duan S, Xiao Z, Wang Q, Wang X, Li MW, Lam HM. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics 2021; 113:344-355. [PMID: 33338631 DOI: 10.1016/j.ygeno.2020.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022]
Abstract
ChIP-seq is widely used for mapping the transcription factor (TF) binding sites throughout the genome in vivo. In this study, we adopted and modified ChIPmentation, a fast, robust, low-input requirement ChIP-seq method, to a transient expression system using soybean protoplasts to expedite the exploration of TF binding sites. To test this new protocol, we expressed a tagged version of a C2H2-type zinc finger TF, JAGGED1 (GmJAG1), in soybean protoplasts and successfully identified its binding sites in the soybean genome. Furthermore, valuable genomic features such as a novel GmJAG1-binding motif, and the epigenetic characteristics as well as an enhancer-like function of GmJBSs were also found via coupling ATAC-seq and H3K27me3 ChIP-seq data. The application of the modified ChIPmentation protocol in this study using soybean protoplasts provided a new approach for rapid elucidation of how a TF binds to the various target genes in the soybean genome, as illustrated here using GmJAG1.
Collapse
Affiliation(s)
- Mingkun Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Limeng Zhou
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Mozhu Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhili Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Shaowei Duan
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhixia Xiao
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Qianwen Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Xin Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China.
| |
Collapse
|
59
|
Zaborowski AB, Walther D. Determinants of correlated expression of transcription factors and their target genes. Nucleic Acids Res 2020; 48:11347-11369. [PMID: 33104784 PMCID: PMC7672440 DOI: 10.1093/nar/gkaa927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/14/2022] Open
Abstract
While transcription factors (TFs) are known to regulate the expression of their target genes (TGs), only a weak correlation of expression between TFs and their TGs has generally been observed. As lack of correlation could be caused by additional layers of regulation, the overall correlation distribution may hide the presence of a subset of regulatory TF-TG pairs with tight expression coupling. Using reported regulatory pairs in the plant Arabidopsis thaliana along with comprehensive gene expression information and testing a wide array of molecular features, we aimed to discern the molecular determinants of high expression correlation of TFs and their TGs. TF-family assignment, stress-response process involvement, short genomic distances of the TF-binding sites to the transcription start site of their TGs, few required protein-protein-interaction connections to establish physical interactions between the TF and polymerase-II, unambiguous TF-binding motifs, increased numbers of miRNA target-sites in TF-mRNAs, and a young evolutionary age of TGs were found particularly indicative of high TF-TG correlation. The modulating roles of post-transcriptional, post-translational processes, and epigenetic factors have been characterized as well. Our study reveals that regulatory pairs with high expression coupling are associated with specific molecular determinants.
Collapse
Affiliation(s)
- Adam B Zaborowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
60
|
Ouyang W, Cao Z, Xiong D, Li G, Li X. Decoding the plant genome: From epigenome to 3D organization. J Genet Genomics 2020; 47:425-435. [PMID: 33023833 DOI: 10.1016/j.jgg.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a three-dimensional (3D) structure, which has functional implications in DNA replication, DNA repair, and transcriptional regulation. Over the past decades, research on plant functional genomics and epigenomics has made great progress, with thousands of genes cloned and molecular mechanisms of diverse biological processes elucidated. Recently, 3D genome research has gradually attracted great attention of many plant researchers. Herein, we briefly review the progress in genomic and epigenomic research in plants, with a focus on Arabidopsis and rice, and summarize the currently used technologies and advances in plant 3D genome organization studies. We also discuss the relationships between one-dimensional linear genome sequences, epigenomic states, and the 3D chromatin architecture. This review provides basis for future research on plant 3D genomics.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Resources and Environment, Henan University of Engineering, Zhengzhou, 451191, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
61
|
Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Scaria V, Agarwal M. Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5280-5293. [PMID: 32526034 DOI: 10.1093/jxb/eraa286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/10/2020] [Indexed: 05/18/2023]
Abstract
Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.
Collapse
Affiliation(s)
- Vivek Kumar Raxwal
- Department of Botany, University of Delhi, Delhi, India
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sourav Ghosh
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Somya Singh
- Department of Botany, University of Delhi, Delhi, India
| | | | | | | | - Amar Kumar
- Department of Botany, University of Delhi, Delhi, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
62
|
Han J, Wang P, Wang Q, Lin Q, Chen Z, Yu G, Miao C, Dao Y, Wu R, Schnable JC, Tang H, Wang K. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. THE PLANT CELL 2020; 32:2457-2473. [PMID: 32471863 PMCID: PMC7401015 DOI: 10.1105/tpc.19.00716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 05/05/2023]
Abstract
Deep sequencing of DNase-I treated chromatin (DNase-seq) can be used to identify DNase I-hypersensitive sites (DHSs) and facilitates genome-scale mining of de novo cis-regulatory DNA elements. Here, we adapted DNase-seq to generate genome-wide maps of DHSs using control and cold-treated leaf, stem, and root tissues of three widely studied grass species: Brachypodium distachyon, foxtail millet (Setaria italica), and sorghum (Sorghum bicolor). Functional validation demonstrated that 12 of 15 DHSs drove reporter gene expression in transiently transgenic B. distachyon protoplasts. DHSs under both normal and cold treatment substantially differed among tissues and species. Intriguingly, the putative DHS-derived transcription factors (TFs) are largely colocated among tissues and species and include 17 ubiquitous motifs covering all grass taxa and all tissues examined in this study. This feature allowed us to reconstruct a regulatory network that responds to cold stress. Ethylene-responsive TFs SHINE3, ERF2, and ERF9 occurred frequently in cold feedback loops in the tissues examined, pointing to their possible roles in the regulatory network. Overall, we provide experimental annotation of 322,713 DHSs and 93 derived cold-response TF binding motifs in multiple grasses, which could serve as a valuable resource for elucidating the transcriptional networks that function in the cold-stress response and other physiological processes.
Collapse
Affiliation(s)
- Jinlei Han
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Pengxi Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Qiongli Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Qingfang Lin
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhiyong Chen
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Guangrun Yu
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Chenyong Miao
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yihang Dao
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ruoxi Wu
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Haibao Tang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
63
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
64
|
Sun Y, Dong L, Zhang Y, Lin D, Xu W, Ke C, Han L, Deng L, Li G, Jackson D, Li X, Yang F. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biol 2020; 21:143. [PMID: 32546248 PMCID: PMC7296987 DOI: 10.1186/s13059-020-02063-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maize ears and tassels are two separate types of inflorescence which are initiated by similar developmental processes but gradually develop distinct architectures. However, coordinated trans and cis regulation of differentially expressed genes determining ear and tassel architecture within the 3D genome context is largely unknown. RESULTS We identify 56,055 and 52,633 open chromatin regions (OCRs) in developing maize ear and tassel primordia using ATAC-seq and characterize combinatorial epigenome features around these OCRs using ChIP-seq, Bisulfite-seq, and RNA-seq datasets. Our integrative analysis of coordinated epigenetic modification and transcription factor binding to OCRs highlights the cis and trans regulation of differentially expressed genes in ear and tassel controlling inflorescence architecture. We further systematically map chromatin interactions at high-resolution in corresponding tissues using in situ digestion-ligation-only Hi-C (DLO Hi-C). The extensive chromatin loops connecting OCRs and genes provide a 3D view on cis- and trans-regulatory modules responsible for ear- and tassel-specific gene expression. We find that intergenic SNPs tend to locate in distal OCRs, and our chromatin interaction maps provide a potential mechanism for trait-associated intergenic SNPs that may contribute to phenotypic variation by influencing target gene expression through chromatin loops. CONCLUSIONS Our comprehensive epigenome annotations and 3D genome maps serve as valuable resource and provide a deep understanding of the complex regulatory mechanisms of genes underlying developmental and morphological diversities between maize ear and tassel.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Changxiong Ke
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lulu Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
65
|
Romera-Branchat M, Severing E, Pocard C, Ohr H, Vincent C, Née G, Martinez-Gallegos R, Jang S, Andrés F, Madrigal P, Coupland G. Functional Divergence of the Arabidopsis Florigen-Interacting bZIP Transcription Factors FD and FDP. Cell Rep 2020; 31:107717. [PMID: 32492426 PMCID: PMC7273178 DOI: 10.1016/j.celrep.2020.107717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 01/18/2023] Open
Abstract
Flowering of many plant species depends on interactions between basic leucine zipper (bZIP) transcription factors and systemically transported florigen proteins. Members of the genus Arabidopsis contain two of these bZIPs, FD and FDP, which we show have largely complementary expression patterns in shoot apices before and during flowering. CRISPR-Cas9-induced null mutants for FDP flower slightly earlier than wild-type, whereas fd mutants are late flowering. Identical G-box sequences are enriched at FD and FDP binding sites, but only FD binds to genes involved in flowering and only fd alters their transcription. However, both proteins bind to genes involved in responses to the phytohormone abscisic acid (ABA), which controls developmental and stress responses. Many of these genes are differentially expressed in both fd and fdp mutant seedlings, which also show reduced ABA sensitivity. Thus, florigen-interacting bZIPs have distinct functions in flowering dependent on their expression patterns and, at earlier stages in development, play common roles in phytohormone signaling.
Collapse
Affiliation(s)
- Maida Romera-Branchat
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Edouard Severing
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Chloé Pocard
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Hyonhwa Ohr
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Coral Vincent
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Guillaume Née
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48143 Münster, Germany
| | | | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Pedro Madrigal
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
66
|
Integrative analysis of reference epigenomes in 20 rice varieties. Nat Commun 2020; 11:2658. [PMID: 32461553 PMCID: PMC7253419 DOI: 10.1038/s41467-020-16457-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Epigenomic modifications are instrumental for transcriptional regulation, but comprehensive reference epigenomes remain unexplored in rice. Here, we develop an enhanced chromatin immunoprecipitation (eChIP) approach for plants, and generate genome-wide profiling of five histone modifications and RNA polymerase II occupancy with it. By integrating chromatin accessibility, DNA methylation, and transcriptome datasets, we construct comprehensive epigenome landscapes across various tissues in 20 representative rice varieties. Approximately 81.8% of rice genomes are annotated with different epigenomic properties. Refinement of promoter regions using open chromatin and H3K4me3-marked regions provides insight into transcriptional regulation. We identify extensive enhancer-like promoters with potential enhancer function on transcriptional regulation through chromatin interactions. Active and repressive histone modifications and the predicted enhancers vary largely across tissues, whereas inactive chromatin states are relatively stable. Together, these datasets constitute a valuable resource for functional element annotation in rice and indicate the central role of epigenomic information in understanding transcriptional regulation.
Collapse
|
67
|
Lu Y, Zhou DX, Zhao Y. Understanding epigenomics based on the rice model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1345-1363. [PMID: 31897514 DOI: 10.1007/s00122-019-03518-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
The purpose of this paper provides a comprehensive overview of the recent researches on rice epigenomics, including DNA methylation, histone modifications, noncoding RNAs, and three-dimensional genomics. The challenges and perspectives for future research in rice are discussed. Rice as a model plant for epigenomic studies has much progressed current understanding of epigenetics in plants. Recent results on rice epigenome profiling and three-dimensional chromatin structure studies reveal specific features and implication in gene regulation during rice plant development and adaptation to environmental changes. Results on rice chromatin regulator functions shed light on mechanisms of establishment, recognition, and resetting of epigenomic information in plants. Cloning of several rice epialleles associated with important agronomic traits highlights importance of epigenomic variation in rice plant growth, fitness, and yield. In this review, we summarize and analyze recent advances in rice epigenomics and discuss challenges and directions for future research in the field.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University Paris-Saclay, 91405, Orsay, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
68
|
UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize. PLoS Genet 2020; 16:e1008764. [PMID: 32330129 PMCID: PMC7202667 DOI: 10.1371/journal.pgen.1008764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/06/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancers are cis-acting DNA segments with the ability to increase target gene expression. They show high sensitivity to DNase and contain specific DNA elements in an open chromatin state that allows the binding of transcription factors (TFs). While numerous enhancers are annotated in the maize genome, few have been characterized genetically. KERNEL ROW NUMBER4 (KRN4), an intergenic quantitative trait locus for kernel row number, is assumed to be a cis-regulatory element of UNBRANCHED3 (UB3), a key inflorescence gene. However, the mechanism by which KRN4 controls UB3 expression remains unclear. Here, we found that KRN4 exhibits an open chromatin state, harboring sequences that showed high enhancer activity toward the 35S and UB3 promoters. KRN4 is bound by UB2-centered transcription complexes and interacts with the UB3 promoter by three duplex interactions to affect UB3 expression. Sequence variation at KRN4 enhances ub2 and ub3 mutant ear fasciation. Therefore, we suggest that KRN4 functions as a distal enhancer of the UB3 promoter via chromatin interactions and recruitment of UB2-centered transcription complexes for the fine-tuning of UB3 expression in meristems of ear inflorescences. These results provide evidence that an intergenic region helps to finely tune gene expression, providing a new perspective on the genetic control of quantitative traits.
Collapse
|
69
|
Lambing C, Tock AJ, Topp SD, Choi K, Kuo PC, Zhao X, Osman K, Higgins JD, Franklin FCH, Henderson IR. Interacting Genomic Landscapes of REC8-Cohesin, Chromatin, and Meiotic Recombination in Arabidopsis. THE PLANT CELL 2020; 32:1218-1239. [PMID: 32024691 PMCID: PMC7145502 DOI: 10.1105/tpc.19.00866] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/03/2020] [Indexed: 05/20/2023]
Abstract
Meiosis recombines genetic variation and influences eukaryote genome evolution. During meiosis, DNA double-strand breaks (DSBs) enter interhomolog repair to yield crossovers and noncrossovers. DSB repair occurs as replicated sister chromatids are connected to a polymerized axis. Cohesin rings containing the REC8 kleisin subunit bind sister chromatids and anchor chromosomes to the axis. Here, we report the genomic landscape of REC8 using chromatin immunoprecipitation sequencing (ChIP-seq) in Arabidopsis (Arabidopsis thaliana). REC8 associates with regions of high nucleosome occupancy in multiple chromatin states, including histone methylation at H3K4 (expressed genes), H3K27 (silent genes), and H3K9 (silent transposons). REC8 enrichment is associated with suppression of meiotic DSBs and crossovers at the chromosome and fine scales. As REC8 enrichment is greatest in transposon-dense heterochromatin, we repeated ChIP-seq in kyp suvh5 suvh6 H3K9me2 mutants. Surprisingly, REC8 enrichment is maintained in kyp suvh5 suvh6 heterochromatin and no defects in centromeric cohesion were observed. REC8 occupancy within genes anti-correlates with transcription and is reduced in COPIA transposons that reactivate expression in kyp suvh5 suvh6 Abnormal axis structures form in rec8 that recruit DSB-associated protein foci and undergo synapsis, which is followed by chromosome fragmentation. Therefore, REC8 occupancy correlates with multiple chromatin states and is required to organize meiotic chromosome architecture and interhomolog recombination.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Stephanie D Topp
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pallas C Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
70
|
Pontvianne F, Liu C. Chromatin domains in space and their functional implications. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:1-10. [PMID: 31881292 DOI: 10.1016/j.pbi.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 05/19/2023]
Abstract
Genome organization displays functional compartmentalization. Many factors, including epigenetic modifications, transcription factors, chromatin remodelers, and RNAs, shape chromatin domains and the three-dimensional genome organization. Various types of chromatin domains with distinct epigenetic and spatial features exhibit different transcriptional activities. As part of the efforts to better understand plant functional genomics, over the past a few years, spatial distribution patterns of plant chromatin domains have been brought to light. In this review, we discuss chromatin domains associated with the nuclear periphery and the nucleolus, as well as chromatin domains staying in proximity and showing physical interactions. The functional implication of these domains is discussed, with a particular focus on the transcriptional regulation and replication timing. Finally, from a biophysical point of view, we discuss potential roles of liquid-liquid phase separation in plant nuclei in the genesis and maintenance of spatial chromatin domains.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France; UPVD, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France.
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany.
| |
Collapse
|
71
|
Jones DM, Vandepoele K. Identification and evolution of gene regulatory networks: insights from comparative studies in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:42-48. [PMID: 32062128 DOI: 10.1016/j.pbi.2019.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 05/04/2023]
Abstract
The availability of genome sequences, genome-wide assays of transcription factor binding, and accessible chromatin maps have unveiled gene regulatory landscapes in plants. This understanding has ushered in comparative gene regulatory network studies that assess network rewiring between species, across time, and between biological tissues. Comparisons of cis-regulatory elements across the plant kingdom have uncovered examples of conserved sequences, but also of divergence, indicating that selective pressures can vary in different plant families. Transcription factor duplication, followed by spatiotemporal expression divergence of the duplicates, also appears to be a key mechanism of network evolution. Here, we review recent literature describing the regulation of gene expression in plants, and how comparative studies provide insights into how these regulatory interactions change and lead to gene regulatory network rewiring.
Collapse
Affiliation(s)
- D Marc Jones
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
72
|
Yan S, Chen N, Huang Z, Li D, Zhi J, Yu B, Liu X, Cao B, Qiu Z. Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. THE NEW PHYTOLOGIST 2020; 225:2048-2063. [PMID: 31625612 DOI: 10.1111/nph.16272] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/13/2019] [Indexed: 05/20/2023]
Abstract
Anthocyanin fruit (Aft) and atroviolacea (atv) were characterized in wild tomato and can enhance anthocyanin content in tomato fruit. However, the gene underlying the Aft locus and the mechanism by which Aft and atv act remain largely unknown. In this study, the Aft locus was fine-mapped to an approximately 145-kb interval on chromosome 10, excluding SlAN2 (Solyc10g086250), SlANT1 (Solyc10g086260) and SlANT1-like (Solyc10g086270), which have previously been suggested as candidates. Thus, the R2R3-MYB transcription factor SlAN2-like (Solyc10g086290) was considered the best candidate gene for Aft. The CRISPR/Cas9-mediated SlAN2-like mutants show a much lower accumulation of anthocyanins associated with the downregulation of multiple anthocyanin-related genes compared to the wild-type tomato, indicating that SlAN2-like is responsible for the Aft phenotype. The repressive function of SlMYBATV also was confirmed through the CRISPR/Cas9 approach. A yeast-two-hybrid assay revealed that SlMYBATV interacts with the bHLH protein SlJAF13. Furthermore, yeast-one-hybrid and dual-luciferase transient expression assays showed that Aft directly binds to the SlMYBATV promoter and activates its expression. The results herein provide candidate genes to enhance anthocyanin content in tomato fruit. This research also provides insight into a mechanism involving the Aft-SlMYBATV pathway that fine-tunes anthocyanin accumulation in tomato fruit.
Collapse
Affiliation(s)
- Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Na Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zejun Huang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Dongjing Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Zhi
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory of New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
73
|
Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, Jiang J. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol 2020; 21:24. [PMID: 32014062 PMCID: PMC6996174 DOI: 10.1186/s13059-020-1927-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Regulation of transcription depends on interactions between cis-regulatory elements (CREs) and regulatory proteins. Active CREs are imbedded in open chromatin that are accessible to nucleases. Several techniques, including DNase-seq, which is based on nuclease DNase I, and ATAC-seq, which is based on transposase Tn5, have been widely used to identify genomic regions associated with open chromatin. These techniques have played a key role in dissecting the regulatory networks in gene expression in both animal and plant species. RESULTS We develop a technique, named MNase hypersensitivity sequencing (MH-seq), to identify genomic regions associated with open chromatin in Arabidopsis thaliana. Genomic regions enriched with MH-seq reads are referred as MNase hypersensitive sites (MHSs). MHSs overlap with the majority (~ 90%) of the open chromatin identified previously by DNase-seq and ATAC-seq. Surprisingly, 22% MHSs are not covered by DNase-seq or ATAC-seq reads, which are referred to "specific MHSs" (sMHSs). sMHSs tend to be located away from promoters, and a substantial portion of sMHSs are derived from transposable elements. Most interestingly, genomic regions containing sMHSs are enriched with epigenetic marks, including H3K27me3 and DNA methylation. In addition, sMHSs show a number of distinct characteristics including association with transcriptional repressors. Thus, sMHSs span distinct classes of open chromatin that may not be accessible to DNase I or Tn5. We hypothesize that the small size of the MNase enzyme relative to DNase I or Tn5 allows its access to relatively more condensed chromatin domains. CONCLUSION MNase can be used to identify open chromatin regions that are not accessible to DNase I or Tn5. Thus, MH-seq provides an important tool to identify and catalog all classes of open chromatin in plants.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China.
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
74
|
Cuevas HE, Prom LK. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. BMC Genomics 2020; 21:88. [PMID: 31992189 PMCID: PMC6988227 DOI: 10.1186/s12864-020-6489-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) sorghum core collection contains 3011 accessions randomly selected from 77 countries. Genomic and phenotypic characterization of this core collection is necessary to encourage and facilitate its utilization in breeding programs and to improve conservation efforts. In this study, we examined the genome sequences of 318 accessions belonging to the NPGS Sudan sorghum core set, and characterized their agronomic traits and anthracnose resistance response. Results We identified 183,144 single nucleotide polymorphisms (SNPs) located within or in proximity of 25,124 annotated genes using the genotyping-by-sequencing (GBS) approach. The core collection was genetically highly diverse, with an average pairwise genetic distance of 0.76 among accessions. Population structure and cluster analysis revealed five ancestral populations within the Sudan core set, with moderate to high level of genetic differentiation. In total, 171 accessions (54%) were assigned to one of these populations, which covered 96% of the total genomic variation. Genome scan based on Tajima’s D values revealed two populations under balancing selection. Phenotypic analysis showed differences in agronomic traits among the populations, suggesting that these populations belong to different ecogeographical regions. A total of 55 accessions were resistant to anthracnose; these accessions could represent multiple resistance sources. Genome-wide association study based on fixed and random model Circulating Probability (farmCPU) identified genomic regions associated with plant height, flowering time, panicle length and diameter, and anthracnose resistance response. Integrated analysis of the Sudan core set and sorghum association panel indicated that a large portion of the genetic variation in the Sudan core set might be present in breeding programs but remains unexploited within some clusters of accessions. Conclusions The NPGS Sudan core collection comprises genetically and phenotypically diverse germplasm with multiple anthracnose resistance sources. Population genomic analysis could be used to improve screening efforts and identify the most valuable germplasm for breeding programs. The new GBS data set generated in this study represents a novel genomic resource for plant breeders interested in mining the genetic diversity of the NPGS sorghum collection.
Collapse
Affiliation(s)
- Hugo E Cuevas
- USDA-ARS, Tropical Agriculture Research Station, 2200 Pedro Albizu Campos Avenue, Mayaguez, 00680, Puerto Rico
| | - Louis K Prom
- USDA-ARS, Southern Plains Agriculture Research Center, College Station, TX, 77845, USA.
| |
Collapse
|
75
|
Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ. The prevalence, evolution and chromatin signatures of plant regulatory elements. NATURE PLANTS 2019; 5:1250-1259. [PMID: 31740772 DOI: 10.1038/s41477-019-0548-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/09/2019] [Indexed: 05/03/2023]
Abstract
Chromatin accessibility and modification is a hallmark of regulatory DNA, the study of which led to the discovery of cis-regulatory elements (CREs). Here, we characterize chromatin accessibility, histone modifications and sequence conservation in 13 plant species. We identified thousands of putative CREs and revealed that distal CREs are prevalent in plants, especially in species with large and complex genomes. The majority of distal CREs have been moved away from their target genes by transposable-element (TE) proliferation, but a substantial number of distal CREs also seem to be created by TEs. Finally, plant distal CREs are associated with three major types of chromatin signatures that are distinct from metazoans. Taken together, these results suggest that CREs are prevalent in plants, highly dynamic during evolution and function through distinct chromatin pathways to regulate gene expression.
Collapse
Affiliation(s)
- Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
76
|
Wang HLV, Chekanova JA. Novel mRNAs 3' end-associated cis-regulatory elements with epigenomic signatures of mammalian enhancers in the Arabidopsis genome. RNA (NEW YORK, N.Y.) 2019; 25:1242-1258. [PMID: 31311821 PMCID: PMC6800480 DOI: 10.1261/rna.071209.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The precise spatial and temporal control of gene expression requires the coordinated action of genomic cis-regulatory elements (CREs), including transcriptional enhancers. However, our knowledge of enhancers in plants remains rudimentary and only a few plant enhancers have been experimentally defined. Here, we screened the Arabidopsis thaliana genome and identified >1900 unique candidate CREs that carry the genomic signatures of mammalian enhancers. These were termed putative enhancer-like elements (PEs). Nearly all PEs are intragenic and, unexpectedly, most associate with the 3' ends of protein-coding genes. PEs are hotspots for transcription factor binding and harbor motifs resembling cleavage/polyadenylation signals, potentially coupling 3' end processing to the transcriptional regulation of other genes. Hi-C data showed that 24% of PEs are located at regions that can interact intrachromosomally with other protein-coding genes and, surprisingly, many of these target genes interact with PEs through their 3' UTRs. Examination of the genomes of 1135 sequenced Arabidopsis accessions showed that PEs are conserved. Our findings suggest that the identified PEs may serve as transcriptional enhancers and sites for mRNA 3' end processing, and constitute a novel group of CREs in Arabidopsis.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Julia A Chekanova
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|
77
|
Yu X, Martin PGP, Michaels SD. BORDER proteins protect expression of neighboring genes by promoting 3' Pol II pausing in plants. Nat Commun 2019; 10:4359. [PMID: 31554790 PMCID: PMC6761125 DOI: 10.1038/s41467-019-12328-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Ensuring that one gene's transcription does not inappropriately affect the expression of its neighbors is a fundamental challenge to gene regulation in a genomic context. In plants, which lack homologs of animal insulator proteins, the mechanisms that prevent transcriptional interference are not well understood. Here we show that BORDER proteins are enriched in intergenic regions and prevent interference between closely spaced genes on the same strand by promoting the 3' pausing of RNA polymerase II at the upstream gene. In the absence of BORDER proteins, 3' pausing associated with the upstream gene is reduced and shifts into the promoter region of the downstream gene. This is consistent with a model in which BORDER proteins inhibit transcriptional interference by preventing RNA polymerase from intruding into the promoters of downstream genes.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA
| | - Pascal G P Martin
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.,Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Scott D Michaels
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
78
|
Zhang H, Zheng R, Wang Y, Zhang Y, Hong P, Fang Y, Li G, Fang Y. The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res 2019; 47:7857-7869. [PMID: 31184697 PMCID: PMC6736098 DOI: 10.1093/nar/gkz511] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autopolyploidy is widespread in higher plants and important for agricultural yield and quality. However, the effects of genome duplication on the chromatin organization and transcriptional regulation are largely unknown in plants. Using High-throughput Chromosome Conformation Capture (Hi-C), we showed that autotetraploid Arabidopsis presented more inter-chromosomal interactions and fewer short-range chromatin interactions compared with its diploid progenitor. In addition, genome duplication contributed to the switching of some loose and compact structure domains with altered H3K4me3 and H3K27me3 histone modification status. 539 genes were identified with altered transcriptions and chromatin interactions in autotetraploid Arabidopsis. Especially, we found that genome duplication changed chromatin looping and H3K27me3 histone modification in Flowering Locus C. We propose that genome doubling modulates the transcription genome-wide by changed chromatin interactions and at the specific locus by altered chromatin loops and histone modifications.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
79
|
Brown K, Takawira LT, O'Neill MM, Mizrachi E, Myburg AA, Hussey SG. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis. THE NEW PHYTOLOGIST 2019; 223:1937-1951. [PMID: 31063599 DOI: 10.1111/nph.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 05/03/2023]
Abstract
Accessible chromatin changes dynamically during development and harbours functional regulatory regions which are poorly understood in the context of wood development. We explored the importance of accessible chromatin in Eucalyptus grandis in immature xylem generally, and MYB transcription factor-mediated transcriptional programmes specifically. We identified biologically reproducible DNase I Hypersensitive Sites (DHSs) and assessed their functional significance in immature xylem through their associations with gene expression, epigenomic data and DNA sequence conservation. We identified in vitro DNA binding sites for six secondary cell wall-associated Eucalyptus MYB (EgrMYB) transcription factors using DAP-seq, reconstructed protein-DNA networks of predicted targets based on binding sites within or outside DHSs and assessed biological enrichment of these networks with published datasets. 25 319 identified immature xylem DHSs were associated with increased transcription and significantly enriched for various epigenetic signatures (H3K4me3, H3K27me3, RNA pol II), conserved noncoding sequences and depleted single nucleotide variants. Predicted networks built from EgrMYB binding sites located in accessible chromatin were significantly enriched for systems biology datasets relevant to wood formation, whereas those occurring in inaccessible chromatin were not. Our study demonstrates that DHSs in E. grandis immature xylem, most of which are intergenic, are of functional significance to gene regulation in this tissue.
Collapse
Affiliation(s)
- Katrien Brown
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Lazarus T Takawira
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Marja M O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Steven G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| |
Collapse
|
80
|
Li Z, Wang M, Lin K, Xie Y, Guo J, Ye L, Zhuang Y, Teng W, Ran X, Tong Y, Xue Y, Zhang W, Zhang Y. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol 2019; 20:139. [PMID: 31307500 PMCID: PMC6628505 DOI: 10.1186/s13059-019-1746-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies. RESULTS In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors. CONCLUSIONS We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.
Collapse
Affiliation(s)
- Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 Jiangsu China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingyu Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- Henan University, School of Life Science, Kaifeng, 457000 Henan China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongbiao Xue
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 Jiangsu China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
81
|
Wu Z, Tang J, Zhuo J, Tian Y, Zhao F, Li Z, Yan Y, Yang R. Chromatin Signature and Transcription Factor Binding Provide a Predictive Basis for Understanding Plant Gene Expression. PLANT & CELL PHYSIOLOGY 2019; 60:1471-1486. [PMID: 31038680 DOI: 10.1093/pcp/pcz051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Chromatin accessibility and post-transcriptional histone modifications play important roles in gene expression regulation. However, little is known about the joint effect of multiple chromatin modifications on the gene expression level in plants, despite that the regulatory roles of individual histone marks such as H3K4me3 in gene expression have been well-documented. By using machine-learning methods, we systematically performed gene expression level prediction based on multiple chromatin modifications data in Arabidopsis and rice. We found that as few as four histone modifications were sufficient to yield good prediction performance, and H3K4me3 and H3K36me3 being the top two predictors with known functions related to transcriptional initiation and elongation, respectively. We demonstrated that the predictive powers differed between protein-coding and non-coding genes as well as between CpG-enriched and CpG-depleted genes. We also showed that the predictive model trained in one tissue or species could be applied to another tissue or species, suggesting shared underlying mechanisms. More interestingly, the gene expression levels of conserved orthologs are easier to predict than the species-specific genes. In addition, chromatin state of distal enhancers was moderately correlated to gene expression but was dispensable if given the chromatin features of the proximal regions of genes. We further extended the analysis to transcription factor (TF) binding data. Strikingly, the combinatorial effects of only a few TFs were roughly fit to gene expression levels in Arabidopsis. Overall, by using quantitative modeling, we provide a comprehensive and unbiased perspective on the epigenetic and TF-mediated regulation of gene expression in plants.
Collapse
Affiliation(s)
- Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Junjie Zhuo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhan Tian
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Feiyang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaohong Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
82
|
Zeng Z, Zhang W, Marand AP, Zhu B, Buell CR, Jiang J. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol 2019; 20:123. [PMID: 31208436 PMCID: PMC6580510 DOI: 10.1186/s13059-019-1731-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cold stress can greatly affect plant growth and development. Plants have developed special systems to respond to and tolerate cold stress. While plant scientists have discovered numerous genes involved in responses to cold stress, few studies have been dedicated to investigation of genome-wide chromatin dynamics induced by cold or other abiotic stresses. RESULTS Genomic regions containing active cis-regulatory DNA elements can be identified as DNase I hypersensitive sites (DHSs). We develop high-resolution DHS maps in potato (Solanum tuberosum) using chromatin isolated from tubers stored under room (22 °C) and cold (4 °C) conditions. We find that cold stress induces a large number of DHSs enriched in genic regions which are frequently associated with differential gene expression in response to temperature variation. Surprisingly, active genes show enhanced chromatin accessibility upon cold stress. A large number of active genes in cold-stored tubers are associated with the bivalent H3K4me3-H3K27me3 mark in gene body regions. Interestingly, upregulated genes associated with the bivalent mark are involved in stress response, whereas downregulated genes with the bivalent mark are involved in developmental processes. In addition, we observe that the bivalent mark-associated genes are more accessible than others upon cold stress. CONCLUSIONS Collectively, our results suggest that cold stress induces enhanced chromatin accessibility and bivalent histone modifications of active genes. We hypothesize that in cold-stored tubers, the bivalent H3K4me3-H3K27me3 mark represents a distinct chromatin environment with greater accessibility, which may facilitate the access of regulatory proteins required for gene upregulation or downregulation in response to cold stress.
Collapse
Affiliation(s)
- Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China
| | - Alexandre P Marand
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
83
|
Global Quantitative Mapping of Enhancers in Rice by STARR-seq. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:140-153. [PMID: 31201999 PMCID: PMC6624190 DOI: 10.1016/j.gpb.2018.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
Enhancers activate transcription in a distance-, orientation-, and position-independent manner, which makes them difficult to be identified. Self-transcribing active regulatory region sequencing (STARR-seq) measures the enhancer activity of millions of DNA fragments in parallel. Here we used STARR-seq to generate a quantitative global map of rice enhancers. Most enhancers were mapped within genes, especially at the 5′ untranslated regions (5′UTR) and in coding sequences. Enhancers were also frequently mapped proximal to silent and lowly-expressed genes in transposable element (TE)-rich regions. Analysis of the epigenetic features of enhancers at their endogenous loci revealed that most enhancers do not co-localize with DNase I hypersensitive sites (DHSs) and lack the enhancer mark of histone modification H3K4me1. Clustering analysis of enhancers according to their epigenetic marks revealed that about 40% of identified enhancers carried one or more epigenetic marks. Repressive H3K27me3 was frequently enriched with positive marks, H3K4me3 and/or H3K27ac, which together label enhancers. Intergenic enhancers were also predicted based on the location of DHS regions relative to genes, which overlap poorly with STARR-seq enhancers. In summary, we quantitatively identified enhancers by functional analysis in the genome of rice, an important model plant. This work provides a valuable resource for further mechanistic studies in different biological contexts.
Collapse
|
84
|
Wang H, Li S, Li Y, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang XJ, Li C, Zhao J. MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling. NATURE PLANTS 2019; 5:616-625. [PMID: 31182849 DOI: 10.1038/s41477-019-0441-449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/08/2019] [Indexed: 05/26/2023]
Abstract
The lipid-derived hormone jasmonate (JA) regulates plant immunity and adaptive growth by triggering a genome-wide transcriptional programme. In Arabidopsis thaliana, JA-triggered transcriptional programming is largely orchestrated by the master transcription factor MYC2. The function of MYC2 is dependent on its physical interaction with the MED25 subunit of the Mediator transcriptional co-activator complex. Here we report the identification of JA enhancers (JAEs) through profiling the occupancy pattern of MYC2 and MED25. JA regulates the dynamic chromatin looping between JAEs and their promoters in a MED25-dependent manner, while MYC2 auto-regulates itself through JAEs. Interestingly, the JAE of the MYC2 locus (named ME2) positively regulates MYC2 expression during short-term JA responses but negatively regulates it during constant JA responses. We demonstrate that new gene editing tools open up new avenues to elucidate the in vivo function of enhancers. Our work provides a paradigm for functional study of plant enhancers in the regulation of specific physiological processes.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan'an Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiran Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Yunhao Wang
- Key Laboratory of Genetics Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruoxi Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetics Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
85
|
Wang H, Li S, Li Y, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang XJ, Li C, Zhao J. MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling. NATURE PLANTS 2019; 5:616-625. [PMID: 31182849 DOI: 10.1038/s41477-019-0441-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
The lipid-derived hormone jasmonate (JA) regulates plant immunity and adaptive growth by triggering a genome-wide transcriptional programme. In Arabidopsis thaliana, JA-triggered transcriptional programming is largely orchestrated by the master transcription factor MYC2. The function of MYC2 is dependent on its physical interaction with the MED25 subunit of the Mediator transcriptional co-activator complex. Here we report the identification of JA enhancers (JAEs) through profiling the occupancy pattern of MYC2 and MED25. JA regulates the dynamic chromatin looping between JAEs and their promoters in a MED25-dependent manner, while MYC2 auto-regulates itself through JAEs. Interestingly, the JAE of the MYC2 locus (named ME2) positively regulates MYC2 expression during short-term JA responses but negatively regulates it during constant JA responses. We demonstrate that new gene editing tools open up new avenues to elucidate the in vivo function of enhancers. Our work provides a paradigm for functional study of plant enhancers in the regulation of specific physiological processes.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan'an Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiran Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Yunhao Wang
- Key Laboratory of Genetics Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruoxi Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetics Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
86
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|
87
|
Yan W, Chen D, Schumacher J, Durantini D, Engelhorn J, Chen M, Carles CC, Kaufmann K. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis. Nat Commun 2019; 10:1705. [PMID: 30979870 PMCID: PMC6461659 DOI: 10.1038/s41467-019-09513-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Enhancers are critical for developmental stage-specific gene expression, but their dynamic regulation in plants remains poorly understood. Here we compare genome-wide localization of H3K27ac, chromatin accessibility and transcriptomic changes during flower development in Arabidopsis. H3K27ac prevalently marks promoter-proximal regions, suggesting that H3K27ac is not a hallmark for enhancers in Arabidopsis. We provide computational and experimental evidence to confirm that distal DNase І hypersensitive sites are predictive of enhancers. The predicted enhancers are highly stage-specific across flower development, significantly associated with SNPs for flowering-related phenotypes, and conserved across crucifer species. Through the integration of genome-wide transcription factor (TF) binding datasets, we find that floral master regulators and stage-specific TFs are largely enriched at developmentally dynamic enhancers. Finally, we show that enhancer clusters and intronic enhancers significantly associate with stage-specific gene regulation by floral master TFs. Our study provides insights into the functional flexibility of enhancers during plant development, as well as hints to annotate plant enhancers. Enhancer elements can control spatial and temporal patterns of gene expression. Here the authors profile chromatin accessibility, histone modifications and gene expression during Arabidopsis flower development providing evidence for sets of distal enhancers acting in a highly stage-specific manner.
Collapse
Affiliation(s)
- Wenhao Yan
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
| | - Julia Schumacher
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Diego Durantini
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.,Ernst Benary Samenzucht GmbH, Friedrich-Benary-Weg, 134346, Hann, Muenden, Germany
| | - Julia Engelhorn
- Université Grenoble Alpes (UGA), CNRS, CEA, INRA, IRIG-LPCV, 38000 Grenoble, France, 38000, Grenoble, France.,Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany/Institute for Molecular Physiology, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cristel C Carles
- Université Grenoble Alpes (UGA), CNRS, CEA, INRA, IRIG-LPCV, 38000 Grenoble, France, 38000, Grenoble, France
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
88
|
Oh DH, Dassanayake M. Landscape of gene transposition-duplication within the Brassicaceae family. DNA Res 2019; 26:21-36. [PMID: 30380026 PMCID: PMC6379040 DOI: 10.1093/dnares/dsy035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 11/12/2022] Open
Abstract
We developed the CLfinder-OrthNet pipeline that detects co-linearity among multiple closely related genomes, finds orthologous gene groups, and encodes the evolutionary history of each orthologue group into a representative network (OrthNet). Using a search based on network topology, we identified 1,394 OrthNets that included gene transposition-duplication (tr-d) events, out of 17,432 identified in six Brassicaceae genomes. Occurrences of tr-d shared by subsets of Brassicaceae genomes mirrored the divergence times between the genomes and their repeat contents. The majority of tr-d events resulted in truncated open reading frames (ORFs) in the duplicated loci. However, the duplicates with complete ORFs were significantly more frequent than expected from random events. These were derived from older tr-d events and had a higher chance of being expressed. We also found an enrichment of tr-d events with complete loss of intergenic sequence conservation between the original and duplicated loci. Finally, we identified tr-d events uniquely found in two extremophytes among the six Brassicaceae genomes, including tr-d of SALT TOLERANCE 32 and ZINC TRANSPORTER 3 that relate to their adaptive evolution. CLfinder-OrthNet provides a flexible toolkit to compare gene order, visualize evolutionary paths among orthologues as networks, and identify gene loci that share an evolutionary history.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
89
|
Lin Y, Meng F, Fang C, Zhu B, Jiang J. Rapid validation of transcriptional enhancers using agrobacterium-mediated transient assay. PLANT METHODS 2019; 15:21. [PMID: 30873216 PMCID: PMC6402126 DOI: 10.1186/s13007-019-0407-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/28/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Enhancers are one of the most important classes of cis-regulatory elements (CREs) and play key roles in regulation of transcription in higher eukaryotes. Enhancers are difficult to identify because they lack positional constraints relative to their cognate genes. Excitingly, several recent studies showed that plant enhancers can be predicted based on their distinct features associated with open chromatin. However, experimental validation is necessary to confirm the predicted enhancer function. RESULTS We developed a rapid enhancer validation system based on Nicotiana benthamiana. A set of 12 intergenic and intronic enhancers, identified in Arabidopsis thaliana, were cloned into a vector containing a minimal 35S promoter and a luciferase reporter gene, and were then infiltrated into N. benthamiana leaves mediated by agrobacterium. The enhancer activity of each candidate was quantitatively assayed based on bioluminescence measurement. The data from this luciferase-based validation was correlated with previous data derived from transgenic assays in A. thaliana. In addition, the relative strength of different enhancers for driving the reporter gene can be quantitatively compared. We demonstrate that this system can also be used to map the functional activity of a candidate enhancer under different environmental conditions. CONCLUSIONS In summary, we developed a rapid and efficient plant enhancer validation system based on a luciferase reporter and N. benthamiana-based leaf agroinfiltration. This system can be used for initial screening of leaf-specific enhancers and for validating candidate leaf enhancers from dicot species. It can potentially be used to examine the activity of candidate enhancers under different environmental conditions.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030 China
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101 China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
90
|
Ren Q, Zhong Z, Wang Y, You Q, Li Q, Yuan M, He Y, Qi C, Tang X, Zheng X, Zhang T, Qi Y, Zhang Y. Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing. FRONTIERS IN PLANT SCIENCE 2019; 10:1173. [PMID: 31616455 PMCID: PMC6764340 DOI: 10.3389/fpls.2019.01173] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
CRISPR-Cas systems can be expressed in multiple ways, with different capabilities regarding tissue-specific expression, efficiency, and expression levels. Thus far, three expression strategies have been demonstrated in plants: mixed dual promoter systems, dual Pol II promoter systems, and single transcript unit (STU) systems. We explored a fourth strategy to express CRISPR-Cas9 in the model and crop plant, rice, where a bidirectional promoter (BiP) is used to express Cas9 and single guide RNA (sgRNA) in opposite directions. We first tested an engineered BiP system based on double-mini 35S promoter and an Arabidopsis enhancer, which resulted in 20.7% and 52.9% genome editing efficiencies at two target sites in T0 stable transgenic rice plants. We further improved the BiP system drastically by using a rice endogenous BiP, OsBiP1. The endogenous BiP expression system had higher expression strength and led to 75.9-93.3% genome editing efficiencies in rice T0 generation, when the sgRNAs were processed by either tRNA or Csy4. We provided a proof-of-concept study of applying BiP systems for expressing two-component CRISPR-Cas9 genome editing reagents in rice. Our work could promote future research and adoption of BiP systems for CRISPR-Cas-based genome engineering in plants.
Collapse
Affiliation(s)
- Qiurong Ren
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi You
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qian Li
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingzhu Yuan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiyan Qi
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Tao Zhang, ; Yiping Qi, ; Yong Zhang,
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- *Correspondence: Tao Zhang, ; Yiping Qi, ; Yong Zhang,
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- *Correspondence: Tao Zhang, ; Yiping Qi, ; Yong Zhang,
| |
Collapse
|
91
|
Chaudhary S, Khokhar W, Jabre I, Reddy ASN, Byrne LJ, Wilson CM, Syed NH. Alternative Splicing and Protein Diversity: Plants Versus Animals. FRONTIERS IN PLANT SCIENCE 2019; 10:708. [PMID: 31244866 PMCID: PMC6581706 DOI: 10.3389/fpls.2019.00708] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 05/11/2023]
Abstract
Plants, unlike animals, exhibit a very high degree of plasticity in their growth and development and employ diverse strategies to cope with the variations during diurnal cycles and stressful conditions. Plants and animals, despite their remarkable morphological and physiological differences, share many basic cellular processes and regulatory mechanisms. Alternative splicing (AS) is one such gene regulatory mechanism that modulates gene expression in multiple ways. It is now well established that AS is prevalent in all multicellular eukaryotes including plants and humans. Emerging evidence indicates that in plants, as in animals, transcription and splicing are coupled. Here, we reviewed recent evidence in support of co-transcriptional splicing in plants and highlighted similarities and differences between plants and humans. An unsettled question in the field of AS is the extent to which splice isoforms contribute to protein diversity. To take a critical look at this question, we presented a comprehensive summary of the current status of research in this area in both plants and humans, discussed limitations with the currently used approaches and suggested improvements to current methods and alternative approaches. We end with a discussion on the potential role of epigenetic modifications and chromatin state in splicing memory in plants primed with stresses.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Lee J. Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Cornelia M. Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Naeem H. Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
- *Correspondence: Naeem H. Syed,
| |
Collapse
|
92
|
Zhang S, Jiao Z, Liu L, Wang K, Zhong D, Li S, Zhao T, Xu X, Cui X. Enhancer-Promoter Interaction of SELF PRUNING 5G Shapes Photoperiod Adaptation. PLANT PHYSIOLOGY 2018; 178:1631-1642. [PMID: 30305372 PMCID: PMC6288745 DOI: 10.1104/pp.18.01137] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 05/04/2023]
Abstract
Tomato (Solanum lycopersicum) is a major vegetable fruit grown and consumed worldwide. Modern cultivated tomatoes are derived from their wild relative, Solanum pimpinellifolium, a short-day plant that originated from the Andean region of South America. The molecular underpinnings of the regional adaptation and expansion of domesticated tomato remain largely unclear. In this study, we examined flowering time in wild and cultivated tomatoes under both long-day and short-day conditions. Using quantitative trait locus mapping in a recombinant inbred line population, we identified SELF PRUNING 5G (SP5G) as a major locus influencing daylength adaptation in tomato. Genetic diversity analysis revealed that the genomic region harboring SP5G shows signatures of a domestication sweep. We found that a 52-bp sequence within the 3' untranslated region of SP5G is essential for the enhanced expression of this gene, leading to delayed flowering time in tomatoes through a promoter-enhancer interaction that occurs only under long-day conditions. We further demonstrate that the absence of the 52-bp sequence attenuates the promoter-enhancer interaction and reduces SP5G expression in cultivated tomatoes, making their flowering time insensitive to daylength. Our findings demonstrate that cis-regulatory variation at the enhancer region of the SP5G 3' untranslated region confers reduced photoperiodic response in cultivated tomatoes, uncovering a regulatory mechanism that could potentially be used to manipulate flowering time in tomato through novel biotechnological approaches.
Collapse
Affiliation(s)
- Shuaibin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhicheng Jiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ketao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deyi Zhong
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengben Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tingting Zhao
- Northeast Agricultural University, Harbin 150030, China
| | - Xiangyang Xu
- Northeast Agricultural University, Harbin 150030, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
93
|
Fan M, Herburger K, Jensen JK, Zemelis-Durfee S, Brandizzi F, Fry SC, Wilkerson CG. A Trihelix Family Transcription Factor Is Associated with Key Genes in Mixed-Linkage Glucan Accumulation. PLANT PHYSIOLOGY 2018; 178:1207-1221. [PMID: 30224432 PMCID: PMC6236600 DOI: 10.1104/pp.18.00978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 05/17/2023]
Abstract
Mixed-linkage glucan (MLG) is a polysaccharide that is highly abundant in grass endosperm cell walls and present at lower amounts in other tissues. Cellulose synthase-like F (CSLF) and cellulose synthase-like H genes synthesize MLG, but it is unknown if other genes participate in the production and restructuring of MLG. Using Brachypodium distachyon transcriptional profiling data, we identified a B distachyon trihelix family transcription factor (BdTHX1) that is highly coexpressed with the B distachyon CSLF6 gene (BdCSLF6), which suggests that BdTHX1 is involved in the regulation of MLG biosynthesis. To determine the genes regulated by this transcription factor, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) experiments using immature B distachyon seeds and an anti-BdTHX1 polyclonal antibody. The ChIP-seq experiment identified the second intron of BdCSLF6 as one of the most enriched sequences. The binding of BdTHX1 to the BdCSLF6 intron sequence was confirmed using electrophoretic mobility shift assays (EMSA). ChIP-seq also showed that a gene encoding a grass-specific glycoside hydrolase family 16 endotransglucosylase/hydrolase (BdXTH8) is bound by BdTHX1, and the binding was confirmed by EMSA. Radiochemical transglucanase assays showed that BdXTH8 exhibits predominantly MLG:xyloglucan endotransglucosylase activity, a hetero-transglycosylation reaction, and can thus produce MLG-xyloglucan covalent bonds; it also has a lower xyloglucan:xyloglucan endotransglucosylase activity. B distachyon shoots regenerated from transformed calli overexpressing BdTHX1 showed an abnormal arrangement of vascular tissue and seedling-lethal phenotypes. These results indicate that the transcription factor BdTHX1 likely plays an important role in MLG biosynthesis and restructuring by regulating the expression of BdCSLF6 and BdXTH8.
Collapse
Affiliation(s)
- Mingzhu Fan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Klaus Herburger
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Jacob K Jensen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Øster Søgade 36, 1357 Copenhagen, Denmark
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Curtis G Wilkerson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
94
|
Birkenbihl RP, Kracher B, Ross A, Kramer K, Finkemeier I, Somssich IE. Principles and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:487-502. [PMID: 30044528 DOI: 10.1111/tpj.14043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 05/04/2023]
Abstract
During microbe-associated molecular pattern-triggered immunity more than 5000 Arabidopsis genes are significantly altered in their expression, and the question arises, how such an enormous reprogramming of the transcriptome can be regulated in a safe and robust manner? For the WRKY transcription factors (TFs), which are important regulators of numerous defense responses, it appears that they act in a complex regulatory sub-network rather than in a linear fashion, which would be much more vulnerable to gene function loss either by pathogen-derived effectors or by mutations. In this study we employed RNA-seq, mass spectrometry and chromatin immunoprecipitation-seq to find evidence for and uncover principles and characteristics of this network. Upon flg22-treatment, one can distinguish between two sets of WRKY genes: constitutively expressed and induced WRKY genes. Prior to elicitation the induced WRKY genes appear to be maintained in a repressed state mainly by the constitutively expressed WRKY factors, which themselves appear to be regulated by non-WRKY TFs. Upon elicitation, induced WRKYs rapidly bind to induced WRKY gene promoters and by auto- and cross-regulation build up the regulatory network. Maintenance of this flg22-induced network appears highly robust as removal of three key WRKY factors can be physically and functionally compensated for by other WRKY family members.
Collapse
Affiliation(s)
- Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Annegret Ross
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg10, 50829, Cologne, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg10, 50829, Cologne, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| |
Collapse
|
95
|
Zhao H, Zhang W, Chen L, Wang L, Marand AP, Wu Y, Jiang J. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. PLANT PHYSIOLOGY 2018; 176:2789-2803. [PMID: 29463772 PMCID: PMC5884613 DOI: 10.1104/pp.17.01467] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/09/2018] [Indexed: 05/05/2023]
Abstract
Genomic regions free of nucleosomes, which are hypersensitive to DNase I digestion, are known as DNase I hypersensitive sites (DHSs) and frequently contain cis-regulatory DNA elements. To investigate their prevalence and characteristics in maize (Zea mays), we developed high-resolution genome-wide DHS maps using a modified DNase-seq technique. Maize DHSs exhibit depletion of nucleosomes and low levels of DNA methylation and are enriched with conserved noncoding sequences (CNSs). We developed a protoplast-based transient transformation assay to assess the potential gene expression enhancer and/or promoter functions associated with DHSs, which showed that more than 80% of DHSs overlapping with CNSs showed an enhancer function. Strikingly, nearly 25% of maize DHSs were derived from transposable elements (TEs), including both class I and class II transposons. Interestingly, TE-derived DHSs (teDHSs) homologous to retrotransposons were enriched with sequences related to the intrinsic cis-regulatory elements within the long terminal repeats of retrotransposons. We demonstrate that more than 80% of teDHSs can drive transcription of a reporter gene in protoplast assays. These results reveal the widespread occurrence of TE-derived cis-regulatory sequences and suggest that teDHSs play a major role in transcriptional regulation in maize.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Alexandre P Marand
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
96
|
Lu Z, Ricci WA, Schmitz RJ, Zhang X. Identification of cis-regulatory elements by chromatin structure. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:90-94. [PMID: 29704803 DOI: 10.1016/j.pbi.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/22/2023]
Abstract
The systematic identification of cis-regulatory elements (CREs) in plant genomes is critically important in understanding transcriptional regulation during development and in response to environmental cues. Several genome-wide structure-based methods have been successfully applied to plant genomes in the past few years. Here, we review recent results on the identification and characterization of CREs in multiple plant species and in different biological processes and discuss future applications of chromatin accessibility data to understand the mechanism, function and evolution of transcriptional regulation networks.
Collapse
Affiliation(s)
- Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
97
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
98
|
Maher KA, Bajic M, Kajala K, Reynoso M, Pauluzzi G, West DA, Zumstein K, Woodhouse M, Bubb K, Dorrity MW, Queitsch C, Bailey-Serres J, Sinha N, Brady SM, Deal RB. Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. THE PLANT CELL 2018. [PMID: 29229750 DOI: 10.1101/167932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development.
Collapse
Affiliation(s)
- Kelsey A Maher
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Marko Bajic
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Mauricio Reynoso
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Germain Pauluzzi
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Donnelly A West
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, California 95616
| | - Margaret Woodhouse
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kerry Bubb
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195
| | - Michael W Dorrity
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195
| | - Christine Queitsch
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
99
|
Maher KA, Bajic M, Kajala K, Reynoso M, Pauluzzi G, West DA, Zumstein K, Woodhouse M, Bubb K, Dorrity MW, Queitsch C, Bailey-Serres J, Sinha N, Brady SM, Deal RB. Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. THE PLANT CELL 2018; 30:15-36. [PMID: 29229750 PMCID: PMC5810565 DOI: 10.1105/tpc.17.00581] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/30/2017] [Accepted: 12/06/2017] [Indexed: 05/19/2023]
Abstract
The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development.
Collapse
Affiliation(s)
- Kelsey A Maher
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Marko Bajic
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Mauricio Reynoso
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Germain Pauluzzi
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Donnelly A West
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, California 95616
| | - Margaret Woodhouse
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kerry Bubb
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195
| | - Michael W Dorrity
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195
| | - Christine Queitsch
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
100
|
Daugherty AC, Yeo RW, Buenrostro JD, Greenleaf WJ, Kundaje A, Brunet A. Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans. Genome Res 2017. [PMID: 29141961 DOI: 10.1101/088732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Chromatin accessibility, a crucial component of genome regulation, has primarily been studied in homogeneous and simple systems, such as isolated cell populations or early-development models. Whether chromatin accessibility can be assessed in complex, dynamic systems in vivo with high sensitivity remains largely unexplored. In this study, we use ATAC-seq to identify chromatin accessibility changes in a whole animal, the model organism Caenorhabditis elegans, from embryogenesis to adulthood. Chromatin accessibility changes between developmental stages are highly reproducible, recapitulate histone modification changes, and reveal key regulatory aspects of the epigenomic landscape throughout organismal development. We find that over 5000 distal noncoding regions exhibit dynamic changes in chromatin accessibility between developmental stages and could thereby represent putative enhancers. When tested in vivo, several of these putative enhancers indeed drive novel cell-type- and temporal-specific patterns of expression. Finally, by integrating transcription factor binding motifs in a machine learning framework, we identify EOR-1 as a unique transcription factor that may regulate chromatin dynamics during development. Our study provides a unique resource for C. elegans, a system in which the prevalence and importance of enhancers remains poorly characterized, and demonstrates the power of using whole organism chromatin accessibility to identify novel regulatory regions in complex systems.
Collapse
Affiliation(s)
- Aaron C Daugherty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Jason D Buenrostro
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305, USA
| |
Collapse
|