51
|
Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 2005; 347:183-98. [PMID: 15777618 DOI: 10.1016/j.gene.2004.12.014] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 12/11/2004] [Accepted: 12/16/2004] [Indexed: 11/19/2022]
Abstract
MIKC-type proteins represent a class of MADS-domain transcription factors and are defined by a unique domain structure: in addition to the highly conserved DNA-binding MADS-domain, they have three other domains ('I', 'K' and 'C'), with the keratin-like K-domain being the most highly conserved and characteristic one. The number and functional diversity of MIKC-type proteins increased considerably during land plant evolution, culminating in higher flowering plants, where they dominate the control of reproductive development from early to late stages. We wonder how one special class of proteins became important in the control of essentially all stages of a morphogenetic process. All MADS-domain proteins appear to bind to DNA as homo- or heterodimers and may function as part of ternary transcription factor complexes involving non-MADS-domain proteins. Only MIKC-type proteins, however, generate complex intrafamily interaction networks. These are based on the special potential of MIKC-type proteins to form complexes involving more than two homologous proteins constituting transcriptional regulators. We speculate that the potential to form heteromultimers of homologous proteins was achieved by the acquisition of the K-domain during evolution. There is emerging evidence that organismal complexity arises from progressively more elaborate regulation of gene expression. We hypothesize that combinatorial multimer formation of MIKC-type MADS-domain proteins facilitated an unusually efficient and rapid functional diversification based on gene duplication, sequence divergence and fixation. This 'networking' may have enabled a more sophisticated transcriptional control of target genes which was recruited for controlling increasingly complex and diverse developmental pathways during the rapid origin and diversification of plant reproductive structures. Therefore, MIKC-type proteins may owe their evolutionary 'success' and present-day developmental importance in part to their modular domain structure. Investigating the evolution of MIKC-type genes may thus help to better understand origin and diversification of gene regulatory networks.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, Philosophenweg 12, D-07743 Jena, Germany
| | | | | |
Collapse
|
52
|
Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:393-434. [PMID: 15862102 DOI: 10.1146/annurev.arplant.55.031903.141717] [Citation(s) in RCA: 421] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In flowering plants, male reproductive development requires the formation of the stamen, including the differentiation of anther tissues. Within the anther, male meiosis produces microspores, which further develop into pollen grains, relying on both sporophytic and gametophytic gene functions. The mature pollen is released when the anther dehisces, allowing pollination to occur. Molecular studies have identified a large number of genes that are expressed during stamen and pollen development. Genetic analyses have demonstrated the function of some of these genes in specifying stamen identity, regulating anther cell division and differentiation, controlling male meiosis, supporting pollen development, and promoting anther dehiscence. These genes encode a variety of proteins, including transcriptional regulators, signal transduction proteins, regulators of protein degradation, and enzymes for the biosynthesis of hormones. Although much has been learned in recent decades, much more awaits to be discovered and understood; the future of the study of plant male reproduction remains bright and exciting with the ever-growing tool kits and rapidly expanding information and resources for gene function studies.
Collapse
Affiliation(s)
- Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
53
|
Ruffel S, Caranta C, Palloix A, Lefebvre V, Caboche M, Bendahmane A. Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene 2004; 338:209-16. [PMID: 15315824 DOI: 10.1016/j.gene.2004.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 04/21/2004] [Accepted: 05/17/2004] [Indexed: 11/28/2022]
Abstract
The pvr2 locus in pepper codes for a eukaryotic translation initiation factor 4E (eIF4E) gene that confers resistance to viruses belonging to the potyvirus genus. In this work, we describe the isolation and characterisation of the genomic sequence carrying the pvr2 locus. A Bacterial Artificial Chromosome (BAC) library that consisted of 239,232 clones with an average insert size of 123 kilobases (kb) was constructed from a Capsicum annuum line with the pvr2(+) allele for susceptibility to potato virus Y (PVY) and tobacco etch virus (TEV). Based on a polymerase chain reaction (PCR) screen with single-copy markers, three to seven positive BAC clones per markers were identified, indicating that the BAC library is suitable for pepper genome analysis. To determine the genomic organization of the pepper eIF4E gene, the library was screened with primers designed from the cDNA sequence and four positive BAC clones carrying the pvr2 locus were identified. A 7-kb DNA fragment containing the complete eIF4E gene was sub-cloned from the positive BAC clones and analysed. The eIF4E gene is organised into five exons and four introns and showed a strictly conserved exon/intron structure with eIF4E genes from Arabidopsis thaliana and rice. Moreover, the splice sites between plant exons 1/2 and 2/3 are conserved among eukaryotes including human, Drosophila and yeast. Several potential binding sites for MADS box transcription factors within the 5' flanking region of eIF4E genes from the three plant species were also predicted.
Collapse
Affiliation(s)
- Sandrine Ruffel
- INRA, Plant Genomics Research Unit, 2 rue G. Cremieux, CP 5708, F-91057 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
54
|
Jack T. Molecular and genetic mechanisms of floral control. THE PLANT CELL 2004; 16 Suppl:S1-S17. [PMID: 15020744 DOI: 10.1105/tpc.017038.s2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Thomas Jack
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
55
|
Affiliation(s)
- Thomas Jack
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
56
|
Abstract
Transcription factors (TFs) play important roles in plant development and its response to the environment. A variety of reverse genetics tools have been developed to study TF function, the two most commonly used ones being knockout and overexpression. Because of the unique characteristics and modes of action of TFs, the overexpression strategy has been particularly effective in revealing TF function. Thus, a number of overexpression-based methodologies - constitutive expression, tissue-specific expression, chemically inducible expression and overexpression of modified TFs - have been developed and are used in the analysis of TF function.
Collapse
Affiliation(s)
- James Z Zhang
- Mendel Biotechnology, 21375 Cabot Blvd, Hayward, California 94545, USA.
| |
Collapse
|
57
|
Hong RL, Hamaguchi L, Busch MA, Weigel D. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. THE PLANT CELL 2003; 15:1296-309. [PMID: 12782724 PMCID: PMC156367 DOI: 10.1105/tpc.009548] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 04/15/2003] [Indexed: 05/17/2023]
Abstract
In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3-kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae species, several other motifs, but not the LFY and WUS binding sites identified previously, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for the activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection but also demonstrate that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.
Collapse
Affiliation(s)
- Ray L Hong
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
58
|
Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:47-59. [PMID: 12943540 DOI: 10.1046/j.0960-7412.2003.01473.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
MADS genes in plants encode key developmental regulators of vegetative and reproductive development. The majority of well-characterized plant MADS proteins contain two conserved domains, the DNA-binding MADS domain and the K domain. The K domain is predicted to form three amphipathic alpha-helices referred to as K1, K2, and K3. In this report, we define amino acids and subdomains important for heterodimerization between the two Arabidopsis floral organ identity MADS proteins APETALA3 (AP3) and PISTILLATA (PI). Analysis of mutants defective in dimerization demonstrates that K1, K2 and the region between K1 and K2 are critical for the strength of AP3/PI dimerization. The majority of the critical amino acids are hydrophobic indicating that the K domain mediates AP3/PI interaction primarily through hydrophobic interactions. Specially, K1 of AP3 and PI resembles a leucine zipper motif. Most mutants defective in AP3/PI heterodimerization in yeast exhibit partial floral organ identity function in transgenic Arabidopsis. Our results also indicate that the motif containing Asn-98 and specific charged residues in K1 (Glu-97 in PI and Arg-102 in AP3) are important for both the strength and specificity of AP3/PI heterodimer formation.
Collapse
Affiliation(s)
- Yingzhen Yang
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
59
|
Yu H, Yang SH, Goh CJ. Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. PLANT MOLECULAR BIOLOGY 2002; 49:225-37. [PMID: 11999377 DOI: 10.1023/a:1014958118852] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The orchid floral homeotic gene, DOMADSI, is a marker gene specifically expressed in the transitional shoot apical meristem during floral transition in Dendrobium Madame Thong-In. DOMADSI is not detectable in vegetative tissues except a weak expression in the stem. Its transcript is uniformly localized in both of the inflorescence meristem and floral primordia, and later expressed in almost all of the floral organs. We isolated and sequenced a 3.5 kb DOMADSI promoter fragment upstream of the transcription start site, demonstrating the location of several putative DNA-binding sites, through which MADS-box and class I knox genes may modulate the DOMADSI expression. To gain insight into the molecular basis of the regulation of DOMADS1, deletion analysis of the DOMADSI::beta-glucuronidase (GUS) gene fusions was performed by means of the stable orchid transformation systems. The study shows that the full-length upstream promoter sequence confers the same spatial and temporal GUS staining pattern as that of the distribution of DOMADSI RNA during orchid development. We also identified the distinct cis-acting regulatory regions required for the control of DOMADS1 expression in vegetative and reproductive tissues, as well as the shoot apical meristem during floral transition.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Amino Acid Sequence
- Base Sequence
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Homeodomain Proteins/genetics
- Molecular Sequence Data
- Orchidaceae/genetics
- Orchidaceae/growth & development
- Plant Proteins/genetics
- Plant Structures/genetics
- Plant Structures/growth & development
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/physiology
- Sequence Analysis, DNA
- Sequence Deletion
Collapse
Affiliation(s)
- Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Kent Ridge
| | | | | |
Collapse
|
60
|
Riechmann JL. Transcriptional regulation: a genomic overview. THE ARABIDOPSIS BOOK 2002; 1:e0085. [PMID: 22303220 PMCID: PMC3243377 DOI: 10.1199/tab.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription.
Collapse
Affiliation(s)
- José Luis Riechmann
- Mendel Biotechnology, 21375 Cabot Blvd., Hayward, CA 94545, USA
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
| |
Collapse
|
61
|
Gamboa A, Paéz-Valencia J, Acevedo GF, Vázquez-Moreno L, Alvarez-Buylla RE. Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem Biophys Res Commun 2001; 288:1018-26. [PMID: 11689012 DOI: 10.1006/bbrc.2001.5875] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We are interested in identifying potential protein interactors of MADS domain transcription factors during Arabidopsis thaliana flower development. We based our biochemical search on a conserved motif in the MADS domain that includes putative phosphatase and phosphorylation sites that may mediate protein interactions. An affinity column with this motif and a few surrounding hypervariable amino acids derived from the AGAMOUS sequence was prepared and used to isolate potential interactors from floral crude extracts. Only two proteins were specifically bound to the affinity column. The first corresponds to a carpel specific storage protein, VSP1, that presents acid phosphatase activity, and the second is a novel leucine-rich repeat protein that we have named FLOR1. Coimmunoprecipitation, two-hybrid yeast, and affinity column assays show that the FLOR1-VSP1 complex interacts with AGAMOUS and that this transcription factor directly interacts with FLOR1. This is the first assay to show an interaction between plant MADS domain factors and non-MADS proteins.
Collapse
MESH Headings
- AGAMOUS Protein, Arabidopsis/chemistry
- AGAMOUS Protein, Arabidopsis/genetics
- AGAMOUS Protein, Arabidopsis/metabolism
- Acid Phosphatase/chemistry
- Acid Phosphatase/genetics
- Acid Phosphatase/isolation & purification
- Acid Phosphatase/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Arabidopsis/chemistry
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/isolation & purification
- Arabidopsis Proteins/metabolism
- Base Sequence
- Blotting, Western
- Carrier Proteins/chemistry
- Carrier Proteins/isolation & purification
- Carrier Proteins/metabolism
- Chromatography, Affinity
- Cloning, Molecular
- Endopeptidases/chemistry
- Endopeptidases/isolation & purification
- Endopeptidases/metabolism
- Leucine/metabolism
- Macromolecular Substances
- Membrane Proteins/chemistry
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Organ Specificity
- Plant Structures/chemistry
- Plant Structures/genetics
- Plant Structures/growth & development
- Plant Structures/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Alignment
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- A Gamboa
- Laboratorio de Genética Molecular y Evolución, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, México DF, 04510, México
| | | | | | | | | |
Collapse
|
62
|
Abstract
Over the past decade, the ABC model of flower development has been widely promulgated. However, correct flower-organ development requires not only the ABC genes but also the SEPALLATA genes. When the SEPALLATA genes are expressed together with the ABC genes, both vegetative and cauline leaves are converted to floral organs. Most of the ABC genes and all three SEPALLATA genes encode MADS transcription factors, which bind to DNA as dimers. Here, amendments to the ABC model are considered that incorporate both the SEPALLATA genes and the ability of MADS proteins to form higher-order complexes.
Collapse
Affiliation(s)
- T Jack
- Dept Biological Sciences, Dartmouth College, 03755, Hanover, NH, USA.
| |
Collapse
|
63
|
Deyholos MK, Sieburth LE. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. THE PLANT CELL 2000; 12:1799-810. [PMID: 11041877 PMCID: PMC149120 DOI: 10.1105/tpc.12.10.1799] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2000] [Accepted: 07/25/2000] [Indexed: 05/18/2023]
Abstract
We analyzed the 4-kb intragenic control region of the AGAMOUS (AG) gene to gain insight into the mechanisms controlling its expression during early flower development. We identified three major expression patterns conferred by 19 AG::reporter gene constructs: the normal AG pattern, a stamen-specific pattern, and a predominantly carpel pattern. To determine whether these three expression patterns were under negative control by APETALA2 (AP2) or LEUNIG (LUG), we analyzed beta-glucuronidase staining patterns in Arabidopsis plants homozygous for strong ap2 and lug mutations. Our results indicated that the stamen-specific pattern was independent of AP2 but dependent on LUG; conversely, the carpel-specific pattern was independent of LUG but dependent on AP2. These results lead to a model of control of AG expression such that expression in each of the two inner whorls is under independent positive and negative control.
Collapse
Affiliation(s)
- M K Deyholos
- Biology Department, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | |
Collapse
|
64
|
Deyholos MK, Sieburth LE. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. THE PLANT CELL 2000. [PMID: 11041877 DOI: 10.2307/3871193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We analyzed the 4-kb intragenic control region of the AGAMOUS (AG) gene to gain insight into the mechanisms controlling its expression during early flower development. We identified three major expression patterns conferred by 19 AG::reporter gene constructs: the normal AG pattern, a stamen-specific pattern, and a predominantly carpel pattern. To determine whether these three expression patterns were under negative control by APETALA2 (AP2) or LEUNIG (LUG), we analyzed beta-glucuronidase staining patterns in Arabidopsis plants homozygous for strong ap2 and lug mutations. Our results indicated that the stamen-specific pattern was independent of AP2 but dependent on LUG; conversely, the carpel-specific pattern was independent of LUG but dependent on AP2. These results lead to a model of control of AG expression such that expression in each of the two inner whorls is under independent positive and negative control.
Collapse
Affiliation(s)
- M K Deyholos
- Biology Department, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | |
Collapse
|
65
|
Zhang X, Li Q, Li X, Bai S, Lu W. Molecular cloning and expression analysis of HAG1 in the floral organs of Hyacinthus orientalis L. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2000; 43:395-401. [PMID: 18726343 DOI: 10.1007/bf02879304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/1999] [Indexed: 05/26/2023]
Abstract
HAG1 gene was isolated from the floral organs of Hyacinthus orientalis L. by using RT-PCR. Sequence analysis showed that this gene was homologous to AGAMOUS. Northern hybridization indicated that HAG1 was specifically expressed in floral organs using 3' end of HAG1 as a probe. Further, transcript of this gene was not detected in differentiating tepals induced by lower concentration of hormones, however, it was detected in differentiating stemans by higher concentration of hormones in vitro. It is possible that there is a close relationship between the concentration of hormones, homeotic genes and identities of floral organs.
Collapse
Affiliation(s)
- X Zhang
- Shandong Agricultural University, Taian, China.
| | | | | | | | | |
Collapse
|
66
|
Yu H, Goh CJ. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. PLANT PHYSIOLOGY 2000; 123:1325-36. [PMID: 10938351 PMCID: PMC59091 DOI: 10.1104/pp.123.4.1325] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2000] [Accepted: 04/14/2000] [Indexed: 05/18/2023]
Abstract
Gene expressions associated with in vitro floral transition in an orchid hybrid (Dendrobium grex Madame Thong-In) were investigated by differential display. One clone, orchid transitional growth related gene 7 (otg7), encoding a new MADS-box gene, was identified to be specifically expressed in the transitional shoot apical meristem (TSAM). Using this clone as a probe, three orchid MADS-box genes, DOMADS1, DOMADS2, and DOMADS3, were subsequently isolated from the TSAM cDNA library. Phylogenetic analyses show that DOMADS1 and DOMADS2 are new members of the AGL2 subfamily and SQUA subfamily, respectively. DOMADS3 contains the signature amino acids as with the members in the independent OSMADS1 subfamily separated from the AGL2 subfamily. All three of the DOMADS genes were expressed in the TSAM during floral transition and later in mature flowers. DOMADS1 RNA was uniformly expressed in both of the inflorescence meristem and the floral primordium and later localized in all of the floral organs. DOMADS2 showed a novel expression pattern that has not been previously characterized for any other MADS-box genes. DOMADS2 transcript was expressed early in the 6-week-old vegetative shoot apical meristem in which the obvious morphological change to floral development had yet to occur. It was expressed throughout the process of floral transition and later in the columns of mature flowers. The onset of DOMADS3 transcription was in the early TSAM at the stage before the differentiation of the first flower primordium. Later, DOMADS3 transcript was only detectable in the pedicel tissues. Our results suggest that the DOMADS genes play important roles in the process of floral transition.
Collapse
Affiliation(s)
- H Yu
- Plant Growth and Development Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | | |
Collapse
|
67
|
Svensson ME, Johannesson H, Engström P. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Gene 2000; 253:31-43. [PMID: 10925200 DOI: 10.1016/s0378-1119(00)00243-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription factors encoded by the large MADS-box gene family have important developmental functions in angiosperms, the flowering plants. Mutations in certain MADS-box genes are known to cause homeotic alterations in floral organ identity, and the establishment of floral organ identity is the most well-studied developmental process in which MADS-box genes are known to function. Our interest is in the potential connection between the duplication history of this gene family and the evolutionary origin of the structures that the different MADS-box genes developmentally regulate in plants. Previous studies have demonstrated that the origin of the MADS-box genes that control floral organ identity predate the evolutionary origin of the flower itself, since gymnosperms have genes that are orthologous to angiosperm floral homeotic MADS-box genes, whereas ferns appear to lack such genes. Here we report on the isolation of a MADS-box gene from Lycopodium annotinum, which belongs to the clubmosses, the phylogenetic sister group to other vascular plants. The gene, LAMB1, in the sporophyte is expressed exclusively in the reproductive structure, the strobilus, during sporogenesis. LAMB1 is similar to other plant MADS-box genes in that it contains a MADS-box as well as a second conserved element, a K-box. However, it differs in length and in exon/intron structure in the region between the MADS- and K-box, and also in the length and structure of the C-terminal region. A phylogenetic analysis indicates that LAMB1 is not closely related to other plant-type MADS-box genes, and may represent one of the basal branches in the phylogenetic tree of plant MADS-box genes.
Collapse
Affiliation(s)
- M E Svensson
- Evolutionary Biology Centre, Department of Physiological Botany, Uppsala University, Villavägen 6, S-752 36, Uppsala, Sweden
| | | | | |
Collapse
|
68
|
|
69
|
Affiliation(s)
- M W Frohlich
- University of Michigan, Ann Arbor, MI 48109-1057, USA.
| |
Collapse
|
70
|
Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:247-57. [PMID: 10336605 DOI: 10.1046/j.1432-1327.1999.00349.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A typical plant transcription factor contains, with few exceptions, a DNA-binding region, an oligomerization site, a transcription-regulation domain, and a nuclear localization signal. Most transcription factors exhibit only one type of DNA-binding and oligomerization domain, occasionally in multiple copies, but some contain two distinct types. DNA-binding regions are normally adjacent to or overlap with oligomerization sites, and their combined tertiary structure determines critical aspects of transcription factor activity. Pairs of nuclear localization signals exist in several transcription factors, and basic amino acid residues play essential roles in their function, a property also true for DNA-binding domains. Multigene families encode transcription factors, with members either dispersed in the genome or clustered on the same chromosome. Distribution and sequence analyses suggest that transcription factor families evolved via gene duplication, exon capture, translocation, and mutation. The expression of transcription factor genes in plants is regulated at transcriptional and post-transcriptional levels, while the activity of their protein products is modulated post-translationally. The purpose of this review is to describe the domain structure of plant transcription factors, and to relate this information to processes that control the synthesis and action of these proteins.
Collapse
Affiliation(s)
- L Liu
- Department of Biology, University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
71
|
Affiliation(s)
- V F Irish
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
72
|
Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH. Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:51-62. [PMID: 10069067 DOI: 10.1046/j.1365-313x.1999.00351.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used Gerbera hybrida (the cultivated ornamental, gerera) to investigate the molecular basis of flower development in Asteraceae, a family of flowering plants that have heteromorphic flowers and specialized floral organs. Flowers of the same genotype may differ in a number of parameters, including sex expression, symmetry, sympetaly and pigmentation. In order to study the role of organ identity determination in these phenomena we isolated and functionally analysed six MADS box genes from gerbera; these were shown by phylogenetic analysis to be orthologous to well characterized regulatory genes described from Arabidopsis and Antirrhinum. Expression analysis suggests that the two gerbera agamous orthologues, the globosa orthologue and one of the deficiens orthologues may have functional equivalency to their counterparts, participating in the C and B functions, respectively. However, the function of a second deficiens orthologue appears unrelated to the B function, and that of a squamosa orthologue seems distinct from squamosa as well as from the A function. The induction patterns of gerbera MADS box genes conform spatiotemporally to the multi-flowered, head-like inflorescence typical of Asteraceae. Furthermore, gerbera plants transgenic for the newly isolated MADS box genes shed light onto the mechanistic basis for some floral characteristics that are typical for Asteraceae. We can conclude, therefore, that the pappus bristles are sepals highly modified for seed dispersal, and that organ abortion in the female marginal flowers is dependent upon organ identity and not organ position when position is homeotically altered.
Collapse
Affiliation(s)
- D Yu
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
73
|
West AG, Causier BE, Davies B, Sharrocks AD. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res 1998; 26:5277-87. [PMID: 9826749 PMCID: PMC148020 DOI: 10.1093/nar/26.23.5277] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the MADS-box family of transcription factors are found in eukaryotes ranging from yeast to humans. In plants, MADS-box proteins regulate several developmental processes including flower, fruit and root development. We have investigated the DNA-binding mechanisms used by four such proteins in Antirrhinum majus, SQUA, PLE, DEF and GLO. SQUA differs from the characterised mammalian and yeast MADS-box proteins as it can efficiently bind two different classes of DNA-binding site. SQUA induces bending of these binding sites and the sequence of the site plays a role in determining the magnitude of these bends. Similarly, PLE and DEF/GLO induce DNA bending although the direction of the resulting bends differ. Finally, we demonstrate that the MADS-box and I-domains are sufficient for homodimer formation by SQUA. However, the K-box in SQUA can also act as an oligomerisation motif and in the full-length protein, the K-box plays a different role in mediating dimerisation in the context of SQUA homodimers or heterodimers with PLE. Together these results contribute significantly to our understanding of the function of SQUA and other plant MADS-box proteins at the molecular level.
Collapse
Affiliation(s)
- A G West
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
74
|
Abstract
Analyses of petal and stamen development are beginning to illuminate the molecular genetic processes that are required to elaborate these organ types. Floral homeotic genes are required to specify certain organ identities, and these functions also are required throughout organogenesis. These genes, either directly or indirectly, presumably control a wide array of tissue- and cell-type-specific differentiation processes. At least part of this repertoire seems to include the regulation of cell proliferation, coupling the specification of organ identity with changes in growth dynamics in different regions of the developing flower. Furthermore, cells have an enormous amount of developmental plasticity, which means that they have to be able to integrate multiple sources of information as they terminally differentiate. Some of the identified inputs include the position of the cell in the developing organ, the status of gene expression and epigenetic information, and environmental signals. How this information is disseminated between cells is largely unknown. Not only do individual cells need to respond to this information, but fields of cells must coordinate their differentiation to form a functionally complex structure. The challenge that is before us is to understand how this plasticity of response is regulated to give a reproducible and species-specific pattern of differentiated tissues.
Collapse
Affiliation(s)
- V F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
75
|
Tandre K, Svenson M, Svensson ME, Engström P. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:615-23. [PMID: 9778844 DOI: 10.1046/j.1365-313x.1998.00236.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Norway spruce (Picea abies) gene DAL2 shows distinct structural similarities to angiosperm MADS-box genes which act in the control of the development of the sexual organs of the flower. Transcription of DAL2 is restricted to the reproductive organs, the unisexual cones, of Norway spruce. In this paper we show that DAL2 in the compound female cone is exclusively expressed in the developing ovule-bearing organ, the ovuliferous scale. When expressed constitutively in transgenic Arabidopsis the gene causes developmental alterations very similar to those observed in plants ectopically expressing the Arabidopsis gene AGAMOUS and the closely related Brassica napus gene BAG1. These alterations include homeotic transformations of floral organs. On the basis of these data and analysis of the phylogeny of the plant MADS-box gene family, we propose that DAL2 acts to control reproductive organ development in spruce. We also propose that DAL2 shares a common origin with AGAMOUS and related genes from other angiosperms, in an ancestral MADS-box gene that was active in the control of ontogeny of ovule-bearing organs in the unknown last common ancestor of conifers and angiosperms.
Collapse
Affiliation(s)
- K Tandre
- Department of Physiological Botany, Uppsala University, Sweden
| | | | | | | |
Collapse
|
76
|
Yi Y, Jack T. An intragenic suppressor of the Arabidopsis floral organ identity mutant apetala3-1 functions by suppressing defects in splicing. THE PLANT CELL 1998; 10:1465-77. [PMID: 9724693 PMCID: PMC144074 DOI: 10.1105/tpc.10.9.1465] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Arabidopsis floral organ identity gene APETALA3 (AP3) specifies the identity of petals and stamens in the flower. In flowers mutant for the temperature-sensitive ap3-1 allele, the petals and stamens are partially converted to sepals and carpels, respectively. ap3-1 contains a single nucleotide change in the AP3 gene that alters both an amino acid in the AP3 protein and the 5' splice consensus site for intron 5. Surprisingly, the Ap3-1 mutant phenotype is not due to the missense mutation but instead is due to defects in splicing; specifically, exon 5 is frequently skipped by the splicing machinery at the restrictive temperature. In a screen for suppressors of ap3-1, we isolated an intragenic suppressor, ap3-11, that functions to suppress the splicing defects of ap3-1. Using a reverse transcriptase-polymerase chain reaction assay, we demonstrate that the percentage of full-length exon 5-containing AP3 RNAs correlates with the phenotype of the flowers in both ap3-1 and ap3-11. Rather surprisingly, the ap3-11 suppressor mutation is located in intron 4. One model explaining the function of ap3-11 is that the ap3-11 suppressor creates a novel branch point sequence that causes exon 5 to be more frequently recognized by the splicing machinery. The identification of such a suppressor strongly suggests that exon-scanning models of intron-exon recognition are operative in plants.
Collapse
Affiliation(s)
- Y Yi
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
77
|
Tobacco floral homeotic gene homologues: partial sequence and expression pattern. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf03182758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Abstract
The majority of flowering plants produce flowers that are "perfect." These flowers are both staminate (with stamens) and pistillate (with one or more carpels). In a small number of species, there is spatial separation of the sexual organs either as monoecy, where the male and female organs are carried on separate flowers on the same plant, or dioecy, where male and female flowers are carried on separate male (staminate) or female (pistillate) individuals. Sex determination systems in plants, leading to unisexuality as monoecy or dioecy, have evolved independently many times. In dioecious plant species, the point of divergence from the hermaphrodite pattern shows wide variation between species, implying that the genetic bases are very different. This review considers monoecious and dioecious flowering plants and focuses on the underlying genetic and molecular mechanisms. We propose that dioecy arises either from monoecy as an environmentally unstable system controlled by plant growth substances or from hermaphroditism where the underlying mechanisms are highly stable and control does not involve plant growth substances.
Collapse
Affiliation(s)
- C Ainsworth
- Plant Molecular Biology Laboratory, Wye College, University of London, Kent, United Kingdom
| | | | | |
Collapse
|
79
|
Riechmann JL, Meyerowitz EM. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol Biol Cell 1997; 8:1243-59. [PMID: 9243505 PMCID: PMC276150 DOI: 10.1091/mbc.8.7.1243] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The MADS domain homeotic proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) combinatorially specify the identity of Arabidopsis floral organs. AP1/AP1, AG/AG, and AP3/PI dimers bind to similar CArG box sequences; thus, differences in DNA-binding specificity among these proteins do not seem to be the origin of their distinct organ identity properties. To assess the overall contribution that specific DNA binding could make to their biological specificity, we have generated chimeric genes in which the amino-terminal half of the MADS domain of AP1, AP3, PI, and AG was substituted by the corresponding sequences of human SRF and MEF2A proteins. In vitro DNA-binding assays reveal that the chimeric proteins acquired the respective, and distinct, DNA-binding specificity of SRF or MEF2A. However, ectopic expression of the chimeric genes reproduces the dominant gain-of-function phenotypes exhibited by plants ectopically expressing the corresponding Arabidopsis wild-type genes. In addition, both the SRF and MEF2 chimeric genes can complement the pertinent ap1-1, ap3-3, pi-1, or ag-3 mutations to a degree similar to that of AP1, AP3, PI, and AG when expressed under the control of the same promoter. These results indicate that determination of floral organ identity by the MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. In addition, the DNA-binding experiments show that either one of the two MADS domains of a dimer can be sufficient to confer a particular DNA-binding specificity to the complex and that sequences outside the amino-terminal basic region of the MADS domain can, in some cases, contribute to the DNA-binding specificity of the proteins.
Collapse
Affiliation(s)
- J L Riechmann
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
80
|
Heard J, Caspi M, Dunn K. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:665-676. [PMID: 9204570 DOI: 10.1094/mpmi.1997.10.5.665] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Unique organs called nodules form on legume roots in response to intracellular infection by soil bacteria in the genus Rhizobium. This study describes a new MADS box gene, nmhC5, which along with nmh7 (J. Heard and K. Dunn, Proc. Natl. Acad. Sci. USA 92:5273-5277, 1995), is expressed in alfalfa (Medicago sativa) root nodules. Together, these genes represent the first putative transcription factors identified in nodules. Expression in a root-derived structure supports the growing sentiment that MADS box proteins have diverse roles in plant development. Comparison of the putative translation product of nmhC5 with those of other reported members of the MADS box family suggests that the overall structure of nmhC5 is conserved. Evolutionary analysis among the MADS box family showed that nmhC5 is orthologous to a root-expressed clone in Arabidopsis thaliana, agl17, and that nmh7 is similar to the floral subfamily with AP3 (DefA)/PI (Glo). Consistent with a prediction of homodimer formation, NMHC5 was shown to bind a CArG consensus sequence in vitro. In contrast, NMH7, which shows structural similarity to MADS box proteins that form heterodimers, did not bind the CArG element in an in vitro DNA-binding assay, suggesting the existence of an unknown dimer partner. The root-derived MADS box genes constitute a novel subfamily of vegetatively expressed MADS box genes. The evolutionary diversity between nmh7 and nmhC5 could represent an overall mechanistic conservation between plant developmental processes or could mean that nmh7 and nmhC5 make fundamentally different contributions to the development of the nodule.
Collapse
Affiliation(s)
- J Heard
- Department of Biology, Boston College, Chestnut Hill, MA 02167, USA
| | | | | |
Collapse
|
81
|
Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 1997; 94:7076-81. [PMID: 9192694 PMCID: PMC21287 DOI: 10.1073/pnas.94.13.7076] [Citation(s) in RCA: 409] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
APETALA2 (AP2) plays an important role in the control of Arabidopsis flower and seed development and encodes a putative transcription factor that is distinguished by a novel DNA binding motif referred to as the AP2 domain. In this study we show that the AP2 domain containing or RAP2 (related to AP2) family of proteins is encoded by a minimum of 12 genes in Arabidopsis. The RAP2 genes encode two classes of proteins, AP2-like and EREBP-like, that are defined by the number of AP2 domains in each polypeptide as well as by two sequence motifs referred to as the YRG and RAYD elements that are located within each AP2 domain. RAP2 genes are differentially expressed in flower, leaf, inflorescence stem, and root. Moreover, the expression of at least three RAP2 genes in vegetative tissues are controlled by AP2. Thus, unlike other floral homeotic genes, AP2 is active during both reproductive and vegetative development.
Collapse
Affiliation(s)
- J K Okamuro
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
82
|
|
83
|
Meisel L, Lam E. Switching of gene expression: analysis of the factors that spatially and temporally regulate plant gene expression. GENETIC ENGINEERING 1997; 19:183-99. [PMID: 9193109 DOI: 10.1007/978-1-4615-5925-2_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this chapter, we have reviewed the present research and understanding of several families of transcription factors in plants. From this information, it appears there is good conservation between the types of transcription factors in plants and animals. However, there are several types of factors which have been isolated in plants that remain to be documented in animals (e.g., HD-Zip and GT). These as well as the presence of two types of TATA-binding proteins (TBPs) in plants suggest that although transcription in eukaryotes is highly conserved, fundamental differences may exist. Despite the differences, the modes of regulating transcription are well conserved. Figure 3 summarizes these modes of regulation. In recent years, the role of chromatin structure as well as subcellular localization have been the focus of a vast amount of research in mammals, Drosophila and yeast. However, very little research in these areas has been done in plants. Isolation of genes such as Curly leaf suggest a conservation of genes that influence the formation of heterochromatin-like structures. Whether or not this gene influences chromatin/heterochromatin structure in plants, however, remains to be tested. The study of nuclear localization of factors such as COP1 and KN1 is now leading to models for regulating nuclear transport as well as intercellular transport of transcription factors. Further study of the inter- and intracellular movement of these and other transcription factors may provide information on new modes of regulating transcription. In addition to understanding the role chromatin structure and subcellular localization of transcription factors may have on transcription initiation, the biological role of many plant transcription factors remains to be identified. Several approaches may be taken to understand the mechanisms by which transcription factors influence biochemical and physiological processes in the plant. These steps include 1) identification of the DNA-binding sites of the factors as well as the promoter regions which contain these sites. Presently, this approach is limiting in that not many non-coding regions have been sequenced and characterized in detail. Furthermore, the presence of a putative binding site within a promoter does not necessarily indicate that the factor will bind to the site in vivo. 2) Analysis of the binding affinity for a particular factor to a binding site in comparison to other related factors, via in vitro competition assays and quantitative titrations. This will provide information on how strongly these factors are binding to the sites, but without knowledge of all the factors present in a single cell it is difficult to recreate the in vivo conditions. 3) Generation of transgenic plants or microinjection of DNA/RNA to express a particular factor ectopically, reduce expression of the factor via antisense expression, and creation of dominant negative mutants by overexpression of key dimerization domains may provide information concerning what biological pathways these factors influence. 4) Isolation of mutations in particular transcription factors has been extremely informative in floral development. However, this approach usually entails isolation of a mutant due to a phenotype and eventual mutated locus. The cloning of the locus may or may not involve a transcription factor. 5) Many plant transcription factors have been isolated via sequence similarity to other previously identified and/or characterized transcription factors. However, the biological role of may of these factors is not known. In addition to ectopic expression of these factors by creating transgenic plants, isolation of a loss-of-function mutation may provide valuable information concerning the role of this factor in vivo. Many loss-of-function mutations in MADS box genes have led to a better understanding of how the MADS domain proteins interact with one another as well as how they influence floral development. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- L Meisel
- AgBio Tech Center, Rutgers, Cook College, New Brunswick, New Jersey 08903-0231, USA
| | | |
Collapse
|
84
|
Perry SE, Nichols KW, Fernandez DE. The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. THE PLANT CELL 1996; 8:1977-89. [PMID: 8953767 PMCID: PMC161328 DOI: 10.1105/tpc.8.11.1977] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Little is known about regulatory factors that act during the earliest stages of plant embryogenesis. The MADS domain protein AGL15 (for AGAMOUS-like) is expressed preferentially during embryogenesis and accumulates during early seed development in monocotyledonous and dicotyledonous flowering plants. AGL15-specific antibodies and immunohistochemistry were used to demonstrate that AGL15 accumulates before fertilization in the cytoplasm in the cells of the egg apparatus and moves into the nucleus during early stages of development in the suspensor, embryo, and endosperms. Relatively high levels of AGL15 are present in the nuclei during embryo morphogenesis and until the seeds start to dry in Brassica, maize, and Arabidopsis. AGL15 is associated with the chromosomes during mitosis, and gel mobility shift assays were used to demonstrate that AGL15 binds DNA in a sequence-specific manner. To assess whether AGL15 is likely to play a role in specifying the seed or embryonic phase of development, AGL15 accumulation was examined in Arabidopsis mutants that prematurely exit embryogenesis. lec1-2 mutants show an embryo-specific loss of AGL15 at the transition stage, suggesting that AGL15 interacts with regulators in the leafy cotyledons pathway.
Collapse
Affiliation(s)
- S E Perry
- Department of Botany, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
85
|
Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J 1996; 15:4330-43. [PMID: 8861961 PMCID: PMC452158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity.
Collapse
Affiliation(s)
- B Davies
- Department of Molecular Plant Genetics, Max-Planck-Institut für Züchtungsforschung, Köln, Germany
| | | | | | | | | |
Collapse
|
86
|
Riechmann JL, Wang M, Meyerowitz EM. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 1996; 24:3134-41. [PMID: 8774892 PMCID: PMC146081 DOI: 10.1093/nar/24.16.3134] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The MADS domain proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) specify the identity of Arabidopsis floral organs. AP1 and AG homocomplexes and AP3-PI heterocomplexes bind to CArG-box sequences. The DNA-binding properties of these complexes were investigated. We find that AP1, AG and AP3-PI are all capable of recognizing the same DNA-binding sites, although with somewhat different affinities. In addition, the three complexes induce similar conformational changes on a CArG-box sequence. Phasing analysis reveals that the induced distortion is DNA bending, oriented toward the minor groove. The molecular dissection of AP1, AP3, PI and AG indicates that the boundaries of the dimerization domains of these proteins vary. The regions required to form a DNA-binding complex include, in addition to the MADS box, the entire L region (which follows the MADS box) and the first putative amphipathic helix of the K box in the case of AP3-PI, while for AP1 and AG only a part of the L region is needed. The similarity of the DNA-binding properties of AP1, AP3-PI and AG is discussed with regard to the biological specificity that these proteins exhibit.
Collapse
Affiliation(s)
- J L Riechmann
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
87
|
McGonigle B, Bouhidel K, Irish VF. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 1996; 10:1812-21. [PMID: 8698240 DOI: 10.1101/gad.10.14.1812] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Arabidopsis APETALA3 (AP3) and PISTILLATA (PI) proteins are thought to act as transcription factors and are required for specifying floral organ identities. To define the nuclear localization signals within these proteins, we generated translational fusions of the coding regions of AP3 and PI to the bacterial uidA gene that encodes beta-glucuronidase (GUS). Transient transformation assays of either the AP3-GUS or PI-GUS fusion protein alone resulted in cytoplasmic localization of GUS activity. However, coexpression of AP3-GUS with PI, or PI-GUS with AP3, resulted in nuclear localization of GUS activity. Stable transformation with these fusion proteins in Arabidopsis showed similar results. The nuclear colocalization signals in AP3 and PI were mapped to the amino-terminal regions of each protein. These observations suggest that the interaction of the AP3 and PI gene products results in the formation of a protein complex that generates or exposes a colocalization signal required to translocate the resulting complex into the nucleus. The colocalization phenomenon that we have described represents a novel mechanism to coordinate the functions of transcription factors within the nucleus.
Collapse
Affiliation(s)
- B McGonigle
- Department of Biology, Osborn Memorial Laboratories, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | |
Collapse
|
88
|
Mizukami Y, Huang H, Tudor M, Hu Y, Ma H. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. THE PLANT CELL 1996; 8:831-45. [PMID: 8672883 PMCID: PMC161142 DOI: 10.1105/tpc.8.5.831] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes.
Collapse
Affiliation(s)
- Y Mizukami
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | |
Collapse
|