51
|
Spatial structure of the fibril-forming SEM1(86–107) peptide in a complex with dodecylphosphocholine micelles. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Akgül Ö, Lucarini E, Mannelli LDC, Ghelardini C, D'Ambrosio K, Buonanno M, Monti SM, De Simone G, Angeli A, Supuran CT, Carta F. Sultam based Carbonic Anhydrase VII inhibitors for the management of neuropathic pain. Eur J Med Chem 2022; 227:113956. [PMID: 34731762 DOI: 10.1016/j.ejmech.2021.113956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
We report a series of compounds 1-17 derived from the antiepileptic drug Sulthiame (SLT) from which both the benzenesulfonamide and the sultam moiety were retained. All compounds were tested in vitro for their inhibition activity against the human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) I, II, VII, IX and XII isoforms. Among the series, derivatives 1 and 11 showed great enhancement of both inhibition potency and selectivity towards the hCA VII isoform, when compared to the reference SLT drug. The binding mode of 11 within the hCA VII active site was deciphered by means of X-ray crystallography and revealed the sultam moiety being exposed to the rim of the active site. In vivo experiments on a model of neuropathic pain induced by oxaliplatin clearly showed 11 being an effective pain relieving agent and therefore worth of further exploitation towards the validation of the hCA VII as new target for the management of neuropathies.
Collapse
Affiliation(s)
- Özlem Akgül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, İzmir, Turkey
| | - Elena Lucarini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Katia D'Ambrosio
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
53
|
Joosten RP, Nicholls RA, Agirre J. Towards Consistency in Geometry Restraints for Carbohydrates in the Pyranose form: Modern Dictionary Generators Reviewed. Curr Med Chem 2022; 29:1193-1207. [PMID: 34477506 PMCID: PMC7612510 DOI: 10.2174/0929867328666210902140754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/23/2022]
Abstract
Macromolecular restrained refinement is nowadays the most used method for improving the agreement between an atomic structural model and experimental data. Restraint dictionaries, a key tool behind the success of the method, allow fine-tuning geometric properties such as distances and angles between atoms beyond simplistic expectations. Dictionary generators can provide restraint target estimates derived from different sources, from fully theoretical to experimental and any combination in between. Carbohydrates are stereochemically complex biomolecules and, in their pyranose form, have clear conformational preferences. As such, they pose unique problems to dictionary generators and in the course of this study, require special attention from software developers. Functional differences between restraint generators will be discussed, as well as the process of achieving consistent results with different software designs. The study will conclude a set of practical considerations, as well as recommendations for the generation of new restraint dictionaries, using the improved software alternatives discussed.
Collapse
Affiliation(s)
| | | | - Jon Agirre
- Address correspondence to this author at the York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD, England; Tel: +44 (0) 1904 32 8252;, E-mail:
| |
Collapse
|
54
|
Laura Darriba M, Castro CP, Coria LM, Bruno L, Laura Cerutti M, Otero LH, Chemes LB, Rasia RM, Klinke S, Cassataro J, Pasquevich KA. A disordered region retains the full protease inhibitor activity and the capacity to induce CD8+ T cells in vivo of the oral vaccine adjuvant U-Omp19. Comput Struct Biotechnol J 2022; 20:5098-5114. [PMID: 36187929 PMCID: PMC9486555 DOI: 10.1016/j.csbj.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- M. Laura Darriba
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Lorena M. Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Laura Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - M. Laura Cerutti
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Lucía B. Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Rodolfo M. Rasia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Karina A. Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
- Corresponding author.
| |
Collapse
|
55
|
Machine learning to estimate the local quality of protein crystal structures. Sci Rep 2021; 11:23599. [PMID: 34880321 PMCID: PMC8654820 DOI: 10.1038/s41598-021-02948-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Low-resolution electron density maps can pose a major obstacle in the determination and use of protein structures. Herein, we describe a novel method, called quality assessment based on an electron density map (QAEmap), which evaluates local protein structures determined by X-ray crystallography and could be applied to correct structural errors using low-resolution maps. QAEmap uses a three-dimensional deep convolutional neural network with electron density maps and their corresponding coordinates as input and predicts the correlation between the local structure and putative high-resolution experimental electron density map. This correlation could be used as a metric to modify the structure. Further, we propose that this method may be applied to evaluate ligand binding, which can be difficult to determine at low resolution.
Collapse
|
56
|
Wada N, Kageyama K, Jung Y, Mitsuhashi T, Fujita M. Solvent Effects in the Crystalline Sponge Method: Importance of Co-solvents for Ordering Absorbed Guests. Org Lett 2021; 23:9288-9291. [PMID: 34806896 DOI: 10.1021/acs.orglett.1c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the crystalline sponge method, the crucial step for ordering the absorbed guest is soaking of the guest into the pores of the crystalline sponge. Here, we find that the choice of solvent is particularly important for smooth guest soaking and ordering. Moderately polar solvents, such as ketones and esters, which we have previously avoided for the guest-soaking process, efficiently promote diffusion and guest ordering by filling the gaps in the pores through co-crystallization with the guests. Using this modified protocol, we successfully demonstrate the structural analysis of various steroids.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ko Kageyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Youngcheol Jung
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takaaki Mitsuhashi
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
57
|
Roversi P, Tronrud DE. Ten things I `hate' about refinement. Acta Crystallogr D Struct Biol 2021; 77:1497-1515. [PMID: 34866607 PMCID: PMC8647177 DOI: 10.1107/s2059798321011700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 12/05/2022] Open
Abstract
Macromolecular refinement is an optimization process that aims to produce the most likely macromolecular structural model in the light of experimental data. As such, macromolecular refinement is one of the most complex optimization problems in wide use. Macromolecular refinement programs have to deal with the complex relationship between the parameters of the atomic model and the experimental data, as well as a large number of types of prior knowledge about chemical structure. This paper draws attention to areas of unfinished business in the field of macromolecular refinement. In it, we describe ten refinement topics that we think deserve attention and discuss directions leading to macromolecular refinement software that would make the best use of modern computer resources to meet the needs of structural biologists of the twenty-first century.
Collapse
Affiliation(s)
- Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA–CNR Unit of Milano, Via Bassini 15, I-20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, United Kingdom
| | - Dale E. Tronrud
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
58
|
Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, Klinke S, Defelipe LA, Sánchez-Lamas M, Battocchio G, Conforte V, Vojnov AA, Chavas LMG, Goldbaum FA, Mroginski MA, Rinaldi J, Bonomi HR. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. SCIENCE ADVANCES 2021; 7:eabh1097. [PMID: 34818032 PMCID: PMC8612531 DOI: 10.1126/sciadv.abh1097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light–absorbing) and Pfr (far-red light–absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/β-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Germán L. Rosano
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario, UEM-IBR, CONICET, Bv. 27 de Febrero (S2000EZP), Rosario, Argentina
| | - Serena Sirigu
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85 (22607), Hamburg, Germany
| | - Maximiliano Sánchez-Lamas
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giovanni Battocchio
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Valeria Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Leonard M. G. Chavas
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
59
|
Wang JQ, Cui Q, Lei ZN, Teng QX, Ji N, Lin L, Liu Z, Chen ZS. Insights on the structure-function relationship of human multidrug resistance protein 7 (MRP7/ABCC10) from molecular dynamics simulations and docking studies. MedComm (Beijing) 2021; 2:221-235. [PMID: 34766143 PMCID: PMC8491190 DOI: 10.1002/mco2.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters superfamily mediates multidrug resistance in cancer by extruding structurally distinct chemotherapeutic agents, causing failure in chemotherapy. Among the 49 ABC transporters, multidrug resistance protein 7 (MRP7 or ABCC10) is relatively new and has been identified as the efflux pump of multiple anticancer agents including Vinca alkaloids and taxanes. Herein, we construct and validate a homology model for human MRP7 based on the cryo-EM structures of MRP1. Structure-function relationship of MRP7 was obtained from molecular dynamics simulations and docking studies and was in accordance with previous studies of ABC transporters. The motion patterns correlated with efflux mechanism were discussed. Additionally, predicted substrate- and modulator-binding sites of MRP7 were described for the first time, which provided rational insights in understanding the drug binding and functional regulation in MRP7. Our findings will benefit the high-throughput virtual screening and development of MRP7 modulators in the future.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA.,School of Public Health Guangzhou Medical University Guangzhou China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Ning Ji
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Lusheng Lin
- Cell Research Center Shenzhen Bolun Institute of Biotechnology Shenzhen China
| | - Zhijun Liu
- Department of Medical Microbiology Weifang Medical University Weifang China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| |
Collapse
|
60
|
Lee BH, Park SW, Jo S, Kim MK. Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. PLoS One 2021; 16:e0258818. [PMID: 34735476 PMCID: PMC8568156 DOI: 10.1371/journal.pone.0258818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
Large-scale conformational changes are essential for proteins to function properly. Given that these transition events rarely occur, however, it is challenging to comprehend their underlying mechanisms through experimental and theoretical approaches. In this study, we propose a new computational methodology called internal coordinate normal mode-guided elastic network interpolation (ICONGENI) to predict conformational transition pathways in proteins. Its basic approach is to sample intermediate conformations by interpolating the interatomic distance between two end-point conformations with the degrees of freedom constrained by the low-frequency dynamics afforded by normal mode analysis in internal coordinates. For validation of ICONGENI, it is applied to proteins that undergo open-closed transitions, and the simulation results (i.e., simulated transition pathways) are compared with those of another technique, to demonstrate that ICONGENI can explore highly reliable pathways in terms of thermal and chemical stability. Furthermore, we generate an ensemble of transition pathways through ICONGENI and investigate the possibility of using this method to reveal the transition mechanisms even when there are unknown metastable states on rough energy landscapes.
Collapse
Affiliation(s)
- Byung Ho Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Soon Woo Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Soojin Jo
- Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon, South Korea
| | - Moon Ki Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, South Korea
- * E-mail:
| |
Collapse
|
61
|
Shafat Z, Hamza A, Deeba F, Parvez MK, Parveen S. Molecular insights into the Y-domain of hepatitis E virus using computational analyses. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:76. [DOI: 10.1186/s43088-021-00154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/03/2021] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Hepatitis E virus (HEV) of the family Hepeviridae is a major causative agent of acute hepatitis in developing countries. The Y-domain is derived from multi-domain non-structural polyprotein encoded by open reading frame 1 (ORF1). Previous studies have demonstrated the essentiality of Y-domain sequences in HEV life cycle; however, its function remains completely unexplored. The following study was thus conceptualized to examine the detailed computational investigation for the putative Y-domain to estimate its phylogenetic assessment, physiochemical properties, structural and functional characteristics using in silico analyses.
Results
The phylogenetic assessment of Y-domain with a vast range of hosts indicated that the protein was very well conserved throughout the course of evolution. The Y-domain was found to be unstable, hydrophilic and basic in nature with high thermostability value. Structural analysis of Y-domain revealed mixed α/β structural fold of the protein having higher percentage of alpha-helices. The three-dimensional (3D) protein model generated through homology modelling revealed the presence of clefts, tunnels and pore. Gene ontology analysis predicted Y-domain protein’s involvement in several binding and catalytic activities as well as significant biological processes. Mutations in the conserved amino acids of the Y-domain suggested that it may stabilize or de-stabilize the protein structure that might affect its structure–function relationship.
Conclusions
This theoretical study will facilitate towards deciphering the role of unexplored Y-domain, thereby providing better understanding towards the pathogenesis of HEV infection.
Collapse
|
62
|
Zhang H, Cheng N, Li Z, Bai L, Fang C, Li Y, Zhang W, Dong X, Jiang M, Liang Y, Zhang S, Mi J, Zhu J, Zhang Y, Chen SJ, Zhao Y, Weng XQ, Hu W, Chen Z, Huang J, Meng G. DNA crosslinking and recombination-activating genes 1/2 (RAG1/2) are required for oncogenic splicing in acute lymphoblastic leukemia. Cancer Commun (Lond) 2021; 41:1116-1136. [PMID: 34699692 PMCID: PMC8626599 DOI: 10.1002/cac2.12234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Background Abnormal alternative splicing is frequently associated with carcinogenesis. In B‐cell acute lymphoblastic leukemia (B‐ALL), double homeobox 4 fused with immunoglobulin heavy chain (DUX4/IGH) can lead to the aberrant production of E‐26 transformation‐specific family related gene abnormal transcript (ERGalt) and other splicing variants. However, the molecular mechanism underpinning this process remains elusive. Here, we aimed to know how DUX4/IGH triggers abnormal splicing in leukemia. Methods The differential intron retention analysis was conducted to identify novel DUX4/IGH‐driven splicing in B‐ALL patients. X‐ray crystallography, small angle X‐ray scattering (SAXS), and analytical ultracentrifugation were used to investigate how DUX4/IGH recognize double DUX4 responsive element (DRE)‐DRE sites. The ERGalt biogenesis and B‐cell differentiation assays were performed to characterize the DUX4/IGH crosslinking activity. To check whether recombination‐activating gene 1/2 (RAG1/2) was required for DUX4/IGH‐driven splicing, the proximity ligation assay, co‐immunoprecipitation, mammalian two hybrid characterizations, in vitro RAG1/2 cleavage, and shRNA knock‐down assays were performed. Results We reported previously unrecognized intron retention events in C‐type lectin domain family 12, member A abnormal transcript (CLEC12Aalt) and chromosome 6 open reading frame 89 abnormal transcript (C6orf89alt), where also harbored repetitive DRE‐DRE sites. Supportively, X‐ray crystallography and SAXS characterization revealed that DUX4 homeobox domain (HD)1‐HD2 might dimerize into a dumbbell‐shape trans configuration to crosslink two adjacent DRE sites. Impaired DUX4/IGH‐mediated crosslinking abolishes ERGalt, CLEC12Aalt, and C6orf89alt biogenesis, resulting in marked alleviation of its inhibitory effect on B‐cell differentiation. Furthermore, we also observed a rare RAG1/2‐mediated recombination signal sequence‐like DNA edition in DUX4/IGH target genes. Supportively, shRNA knock‐down of RAG1/2 in leukemic Reh cells consistently impaired the biogenesis of ERGalt, CLEC12Aalt, and C6orf89alt. Conclusions All these results suggest that DUX4/IGH‐driven DNA crosslinking is required for RAG1/2 recruitment onto the double tandem DRE‐DRE sites, catalyzing V(D)J‐like recombination and oncogenic splicing in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Nuo Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Zhihui Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Ling Bai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, P. R. China
| | - Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuwen Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Weina Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Xue Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yang Liang
- Department of Hematologic Oncology, State key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jianqing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Weiguo Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, P. R. China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, P. R. China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| |
Collapse
|
63
|
Rodrigues CF, Borges PT, Scocozza MF, Silva D, Taborda A, Brissos V, Frazão C, Martins LO. Loops around the Heme Pocket Have a Critical Role in the Function and Stability of BsDyP from Bacillus subtilis. Int J Mol Sci 2021; 22:ijms221910862. [PMID: 34639208 PMCID: PMC8509576 DOI: 10.3390/ijms221910862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme’s overall stability by 2 kcal mol−1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Magali F. Scocozza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET—Universidad de Buenos Aires, Buenos Aires 148EHA, Argentina;
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
- Correspondence:
| |
Collapse
|
64
|
Malliavin TE. Tandem domain structure determination based on a systematic enumeration of conformations. Sci Rep 2021; 11:16925. [PMID: 34413388 PMCID: PMC8376923 DOI: 10.1038/s41598-021-96370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Protein structure determination is undergoing a change of perspective due to the larger importance taken in biology by the disordered regions of biomolecules. In such cases, the convergence criterion is more difficult to set up and the size of the conformational space is a obstacle to exhaustive exploration. A pipeline is proposed here to exhaustively sample protein conformations using backbone angle limits obtained by nuclear magnetic resonance (NMR), and then to determine the populations of conformations. The pipeline is applied to a tandem domain of the protein whirlin. An original approach, derived from a reformulation of the Distance Geometry Problem is used to enumerate the conformations of the linker connecting the two domains. Specifically designed procedure then permit to assemble the domains to the linker conformations and to optimize the tandem domain conformations with respect to two sets of NMR measurements: residual dipolar couplings and paramagnetic resonance enhancements. The relative populations of optimized conformations are finally determined by fitting small angle X-ray scattering (SAXS) data. The most populated conformation of the tandem domain is a semi-closed one, fully closed and more extended conformations being in minority, in agreement with previous observations. The SAXS and NMR data show different influences on the determination of populations.
Collapse
Affiliation(s)
- Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur, UMR 3528, CNRS, Paris, France.
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, USR 3756, CNRS, Paris, France.
| |
Collapse
|
65
|
Andersson I, Carlsson GH, Hasse D. Structural Analysis of Strigolactone-Related Gene Products. Methods Mol Biol 2021; 2309:245-257. [PMID: 34028692 DOI: 10.1007/978-1-0716-1429-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural knowledge of biological macromolecules is essential for understanding their function and for modifying that function by engineering. Protein crystallography is a powerful method for elucidating molecular structures of proteins, but it is essential that the investigator has a basic knowledge of good practices and of the major pitfalls in the technique. Here we describe issues specific for the case of structural studies of strigolactone (SL) receptor structure and function, and in particular the difficulties associated with capturing complexes of SL receptors with the SL hormone ligand in the crystal.
Collapse
Affiliation(s)
- Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden. .,Arctic University of Norway, Tromsø, Norway. .,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Gunilla H Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
66
|
Caldararu O, Ekberg V, Logan DT, Oksanen E, Ryde U. Exploring ligand dynamics in protein crystal structures with ensemble refinement. Acta Crystallogr D Struct Biol 2021; 77:1099-1115. [PMID: 34342282 PMCID: PMC8329865 DOI: 10.1107/s2059798321006513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Understanding the dynamics of ligands bound to proteins is an important task in medicinal chemistry and drug design. However, the dominant technique for determining protein-ligand structures, X-ray crystallography, does not fully account for dynamics and cannot accurately describe the movements of ligands in protein binding sites. In this article, an alternative method, ensemble refinement, is used on six protein-ligand complexes with the aim of understanding the conformational diversity of ligands in protein crystal structures. The results show that ensemble refinement sometimes indicates that the flexibility of parts of the ligand and some protein side chains is larger than that which can be described by a single conformation and atomic displacement parameters. However, since the electron-density maps are comparable and Rfree values are slightly increased, the original crystal structure is still a better model from a statistical point of view. On the other hand, it is shown that molecular-dynamics simulations and automatic generation of alternative conformations in crystallographic refinement confirm that the flexibility of these groups is larger than is observed in standard refinement. Moreover, the flexible groups in ensemble refinement coincide with groups that give high atomic displacement parameters or non-unity occupancy if optimized in standard refinement. Therefore, the conformational diversity indicated by ensemble refinement seems to be qualitatively correct, indicating that ensemble refinement can be an important complement to standard crystallographic refinement as a tool to discover which parts of crystal structures may show extensive flexibility and therefore are poorly described by a single conformation. However, the diversity of the ensembles is often exaggerated (probably partly owing to the rather poor force field employed) and the ensembles should not be trusted in detail.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Vilhelm Ekberg
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- European Spallation Source Consortium ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
67
|
Nicholls RA, Wojdyr M, Joosten RP, Catapano L, Long F, Fischer M, Emsley P, Murshudov GN. The missing link: covalent linkages in structural models. Acta Crystallogr D Struct Biol 2021; 77:727-745. [PMID: 34076588 PMCID: PMC8171067 DOI: 10.1107/s2059798321003934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
68
|
Nicholls RA, Joosten RP, Long F, Wojdyr M, Lebedev A, Krissinel E, Catapano L, Fischer M, Emsley P, Murshudov GN. Modelling covalent linkages in CCP4. Acta Crystallogr D Struct Biol 2021; 77:712-726. [PMID: 34076587 PMCID: PMC8171069 DOI: 10.1107/s2059798321001753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Andrey Lebedev
- CCP4, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Eugene Krissinel
- CCP4, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
69
|
Bergmann J, Oksanen E, Ryde U. Critical evaluation of a crystal structure of nitrogenase with bound N 2 ligands. J Biol Inorg Chem 2021; 26:341-353. [PMID: 33713183 PMCID: PMC8068654 DOI: 10.1007/s00775-021-01858-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Recently, a 1.83 Å crystallographic structure of nitrogenase was suggested to show N2-derived ligands at three sites in the catalytic FeMo cluster, replacing the three [Formula: see text] bridging sulfide ligands (two in one subunit and the third in the other subunit) (Kang et al. in Science 368: 1381-1385, 2020). Naturally, such a structure is sensational, having strong bearings on the reaction mechanism of the enzyme. Therefore, it is highly important to ensure that the interpretation of the structure is correct. Here, we use standard crystallographic refinement and quantum refinement to evaluate the structure. We show that the original crystallographic raw data are strongly anisotropic, with a much lower resolution in certain directions than others. This, together with the questionable use of anisotropic B factors, give atoms an elongated shape, which may look like diatomic atoms. In terms of standard electron-density maps and real-space Z scores, a resting-state structure with no dissociated sulfide ligands fits the raw data better than the interpretation suggested by the crystallographers. The anomalous electron density at 7100 eV is weaker for the putative N2 ligands, but not lower than for several of the [Formula: see text] bridging sulfide ions and not lower than what can be expected from a statistical analysis of the densities. Therefore, we find no convincing evidence for any N2 binding to the FeMo cluster. Instead, a standard resting state without any dissociated ligands seems to be the most likely interpretation of the structure. Likewise, we find no support that the homocitrate ligand should show monodentate binding.
Collapse
Affiliation(s)
- Justin Bergmann
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Esko Oksanen
- European Spallation Source ESS ERIC, Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
70
|
Alphonse S, Banerjee A, Dantuluri S, Shuman S, Ghose R. NMR solution structures of Runella slithyformis RNA 2'-phosphotransferase Tpt1 provide insights into NAD+ binding and specificity. Nucleic Acids Res 2021; 49:9607-9624. [PMID: 33880546 PMCID: PMC8464070 DOI: 10.1093/nar/gkab241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
71
|
Goc G, Balci S, Yorke BA, Pearson AR, Yuzugullu Karakus Y. Probing the role of Val228 on the catalytic activity of Scytalidium catalase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140662. [PMID: 33887466 DOI: 10.1016/j.bbapap.2021.140662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
Scytalidium catalase is a homotetramer including heme d in each subunit. Its primary function is the dismutation of H2O2 to water and oxygen, but it is also able to oxidase various small organic compounds including catechol and phenol. The crystal structure of Scytalidium catalase reveals the presence of three linked channels providing access to the exterior like other catalases reported so far. The function of these channels has been extensively studied, revealing the possible routes for substrate flow and product release. In this report, we have focussed on the semi-conserved residue Val228, located near to the vinyl groups of the heme at the opening of the lateral channel. Its replacement with Ala, Ser, Gly, Cys, Phe and Ile were tested. We observed a significant decrease in catalytic efficiency in all mutants with the exception of a remarkable increase in oxidase activity when Val228 was mutated to either Ala, Gly or Ser. The reduced catalytic efficiencies are characterized in terms of the restriction of hydrogen peroxide as electron acceptor in the active centre resulting from the opening of lateral channel inlet by introducing the smaller side chain residues. On the other hand, the increased oxidase activity is explained by allowing the suitable electron donor to approach more closely to the heme. The crystal structures of V228C and V228I were determined at 1.41 and 1.47 Å resolution, respectively. The lateral channels of the V228C and V228I presented a broadly identical chain of arranged waters to that observed for wild-type enzyme.
Collapse
Affiliation(s)
- Gunce Goc
- Department of Biology, Kocaeli University, Umuttepe, Kocaeli 41380, Turkey
| | - Sinem Balci
- Department of Biology, Kocaeli University, Umuttepe, Kocaeli 41380, Turkey
| | - Briony A Yorke
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford West Yorkshire BD7 1DP, UK
| | - Arwen R Pearson
- The Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, 22761, Germany
| | | |
Collapse
|
72
|
Conforte V, Otero LH, Toum L, Sirigu S, Antelo GT, Rinaldi J, Foscaldi S, Klinke S, Chavas LMG, Vojnov AA, Goldbaum FA, Malamud F, Bonomi HR. Pr-favoured variants of the bacteriophytochrome from the plant pathogen Xanthomonas campestris hint on light regulation of virulence-associated mechanisms. FEBS J 2021; 288:5986-6002. [PMID: 33864705 DOI: 10.1111/febs.15883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Red/far-red light-sensing bacteriophytochrome photoreceptor (BphP) pathways play key roles in bacterial physiology and ecology. These bilin-binding proteins photoswitch between two states, Pr (red absorbing) and Pfr (far-red absorbing). The isomerization of the chromophore and the downstream structural changes result in the light signal transduction. The agricultural pathogen Xanthomonas campestris pv. campestris (Xcc) code for a single bathy-like type BphP (XccBphP), previously shown to negatively regulate several light-mediated biological processes involved in virulence. Here, we generated three different full-length variants with single amino acid changes within its GAF domain that affect the XccBphP photocycle favouring its Pr state: L193Q, L193N and D199A. While D199A recombinant protein locks XccBphP in a Pr-like state, L193Q and L193N exhibit a significant enrichment of the Pr form in thermal equilibrium. The X-ray crystal structures of the three variants were solved, resembling the wild-type protein in the Pr state. Finally, we studied the effects of altering the XccBphP photocycle on the exopolysaccharide xanthan production and stomatal aperture assays as readouts of its bacterial signalling pathway. Null-mutant complementation assays show that the photoactive Pr-favoured XccBphP variants L193Q and L193N tend to negatively regulate xanthan production in vivo. In addition, our results indicate that strains expressing these variants also promote stomatal apertures in challenged plant epidermal peels, compared to wild-type Xcc. The findings presented in this work provide new evidence on the Pr state of XccBphP as a negative regulator of the virulence-associated mechanisms by light in Xcc.
Collapse
Affiliation(s)
- Valeria Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Autónoma de Buenos Aires, Argentina
| | - Lisandro Horacio Otero
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laila Toum
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Autónoma de Buenos Aires, Argentina
| | - Serena Sirigu
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette, France
| | - Giuliano Tomás Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonard Michel Gabriel Chavas
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette, France.,Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Autónoma de Buenos Aires, Argentina
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Malamud
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Luján, Buenos Aires, Argentina
| | - Hernán Ruy Bonomi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
73
|
van Zundert GCP, Moriarty NW, Sobolev OV, Adams PD, Borrelli KW. Macromolecular refinement of X-ray and cryoelectron microscopy structures with Phenix/OPLS3e for improved structure and ligand quality. Structure 2021; 29:913-921.e4. [PMID: 33823127 DOI: 10.1016/j.str.2021.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
With the advent of the resolution revolution in cryoelectron microscopy (cryo-EM), low-resolution refinement is common, and likewise increases the need for a reliable force field. Here, we report on the incorporation of the OPLS3e force field with the VSGB2.1 solvation model in the structure determination package Phenix. Our results show significantly improved structure quality and reduced ligand strain at lower resolution for X-ray refinement. For refinement of cryo-EM-based structures, we find comparable quality structures, goodness-of-fit, and reduced ligand strain. We also show how structure quality and ligand strain are related to the map-model cross-correlation as a function of data weight, and how that can detect overfitting. Signs of overfitting are found in over half of our cryo-EM dataset, which can be remedied by a re-refinement at a lower data weight. Finally, a start-to-end script for refining structures with Phenix/OPLS3e is available in the Schrödinger 2020-3 distribution.
Collapse
Affiliation(s)
| | - Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Oleg V Sobolev
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul D Adams
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
74
|
Cheng N, Zhang H, Zhang S, Ma X, Meng G. Crystal structure of the GTP-binding protein-like domain of AGAP1. Acta Crystallogr F Struct Biol Commun 2021; 77:105-112. [PMID: 33830075 PMCID: PMC8034428 DOI: 10.1107/s2053230x21003150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
AGAP1 is often considered to regulate membrane trafficking, protein transport and actin cytoskeleton dynamics. Recent studies have shown that aberrant expression of AGAP1 is associated with many diseases, including neurodevelopmental disorders and acute lymphoblastic leukemia. It has been proposed that the GTP-binding protein-like domain (GLD) is involved in the binding of cofactors and thus regulates the catalytic activity of AGAP1. To obtain a better understanding of the pathogenic mechanism underpinning AGAP1-related diseases, it is essential to obtain structural information. Here, the GLD (residues 70-235) of AGAP1 was overexpressed in Escherichia coli BL21 (DE3) cells. Affinity and gel-filtration chromatography were used to obtain AGAP1GLD with high purity for crystallization. Using the hanging-drop vapor-diffusion method with the protein at a final concentration of 20 mg ml-1, AGAP1GLD protein crystals of suitable size were obtained. The crystals were found to diffract to 3.0 Å resolution and belonged to space group I4, with unit-cell parameters a = 100.39, b = 100.39, c = 48.08 Å. The structure of AGAP1GLD exhibits the highly conserved functional G1-G5 loops and is generally similar to other characterized ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), implying an analogous function to Arf GAPs. Additionally, this study indicates that AGAP1 could be classified as a type of NTPase, the activity of which might be regulated by protein partners or by its other domains. Taken together, these results provide insight into the regulatory mechanisms of AGAP1 in cell signaling.
Collapse
Affiliation(s)
- Nuo Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Hao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| |
Collapse
|
75
|
Santi S, Bisello A, Cardena R, Tomelleri S, Schiesari R, Biondi B, Crisma M, Formaggio F. Flat, C α,β -Didehydroalanine Foldamers with Ferrocene Pendants: Assessing the Role of α-Peptide Dipolar Moments. Chempluschem 2021; 86:723-730. [PMID: 33825347 DOI: 10.1002/cplu.202100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Indexed: 12/28/2022]
Abstract
The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, Cα,β -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.05 -helix, both in solution and in the crystal state (X-ray diffraction). Cyclic voltammetry measurements agree with the adoption of the 2.05 -helix, characterized by a negligible dipole moment. Thus, elongated α-peptide stretches of this type are insulators rather than charge conductors, the latter being constituted by peptide α-helices. Also, our homo-tetrapeptide has a N-to-C length of about 18.2 Å, almost double than that (9.7 Å) of an α-helical α-tetrapeptide.
Collapse
Affiliation(s)
- Saverio Santi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Annalisa Bisello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Roberta Cardena
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Silvia Tomelleri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Renato Schiesari
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
76
|
Zhang GJ, Xie TY, Zhou XG, Wang LJ, Hu J. Protein Structure Prediction Using Population-Based Algorithm Guided by Information Entropy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:697-707. [PMID: 31180869 DOI: 10.1109/tcbb.2019.2921958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ab initio protein structure prediction is one of the most challenging problems in computational biology. Multistage algorithms are widely used in ab initio protein structure prediction. The different computational costs of a multistage algorithm for different proteins are important to be considered. In this study, a population-based algorithm guided by information entropy (PAIE), which includes exploration and exploitation stages, is proposed for protein structure prediction. In PAIE, an entropy-based stage switch strategy is designed to switch from the exploration stage to the exploitation stage. Torsion angle statistical information is also deduced from the first stage and employed to enhance the exploitation in the second stage. Results indicate that an improvement in the performance of protein structure prediction in a benchmark of 30 proteins and 17 other free modeling targets in CASP.
Collapse
|
77
|
Beckers M, Mann D, Sachse C. Structural interpretation of cryo-EM image reconstructions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:26-36. [PMID: 32735944 DOI: 10.1016/j.pbiomolbio.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The productivity of single-particle cryo-EM as a structure determination method has rapidly increased as many novel biological structures are being elucidated. The ultimate result of the cryo-EM experiment is an atomic model that should faithfully represent the computed image reconstruction. Although the principal approach of atomic model building and refinement from maps resembles that of the X-ray crystallographic methods, there are important differences due to the unique properties resulting from the 3D image reconstructions. In this review, we discuss the practiced work-flow from the cryo-EM image reconstruction to the atomic model. We give an overview of (i) resolution determination methods in cryo-EM including local and directional resolution variation, (ii) cryo-EM map contrast optimization including complementary map types that can help in identifying ambiguous density features, (iii) atomic model building and (iv) refinement in various resolution regimes including (v) their validation and (vi) discuss differences between X-ray and cryo-EM maps. Based on the methods originally developed for X-ray crystallography, the path from 3D image reconstruction to atomic coordinates has become an integral and important part of the cryo-EM structure determination work-flow that routinely delivers atomic models.
Collapse
Affiliation(s)
- Maximilian Beckers
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany; Candidate for Joint PhD Degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany; Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany; Chemistry Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
78
|
De Simone G, Bua S, Supuran CT, Alterio V. Benzyl alcohol inhibits carbonic anhydrases by anchoring to the zinc coordinated water molecule. Biochem Biophys Res Commun 2021; 548:217-221. [PMID: 33647799 DOI: 10.1016/j.bbrc.2021.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Up to date alcohols have been scarcely investigated as carbonic anhydrase (CA) inhibitors. To get more insights into the CA inhibition properties of this class of molecules, in this paper, by means of inhibition assays and X-ray crystallographic studies we report a detailed characterization of the CA inhibition properties and the binding mode to human CA II of benzyl alcohol. Results show that, although possessing a very simple scaffold, this molecule acts as a micromolar CA II inhibitor, which anchors to the enzyme active site by means of an H-bond interaction with the zinc bound solvent molecule. Taken together our results clearly indicate primary alcohols as a class of CA inhibitors that deserve to be more investigated.
Collapse
Affiliation(s)
| | - Silvia Bua
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
79
|
Iron uptake and transport by the carboxymycobactin-mycobactin siderophore machinery of Mycobacterium tuberculosis is dependent on the iron-regulated protein HupB. Biometals 2021; 34:511-528. [PMID: 33609202 DOI: 10.1007/s10534-021-00292-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Iron-starved Mycobacterium tuberculosis utilises the carboxymycobactin-mycobactin siderophore machinery to acquire iron. These two siderophores have high affinity for ferric iron and can withdraw the metal ion from insoluble iron hydroxides and iron-binding proteins. We first reported HupB, a multi-functional mycobacterial protein to be associated with iron acquisition in M. tuberculosis. This 28 kDa cell wall protein, up regulated upon iron limitation functions as a transcriptional activator of mycobactin biosynthesis and is essential for the pathogen to survive inside macrophages. The focus of this study is to understand the role of HupB in iron uptake and transport by the carboxmycobactin-mycobactin siderophore machinery in M. tuberculosis. Experimental approaches included radiolabelled iron uptake studies by viable organisms and protein-ligand binding studies using the purified HupB and the two siderophores. Uptake of 55Fe-carboxymycobactin by wild type M. tuberculosis (WT M.tb.H37Rv) and not by the hupB KO mutant (M.tb.ΔhupB) showed that HupB is necessary for the uptake of ferri-carboxymycobactin. Additionally, the radiolabel recovery was high in HupB-incorporated liposomes upon addition of the labelled siderophore. Bioinformatic and experimental studies using spectrofluorimetry, CD analysis and surface plasmon resonance not only confirmed the binding of HupB with ferri-carboxymycobactin and ferri-mycobactin but also with free iron. In conclusion, HupB is established as a ferri- carboxymycobactin receptor and by virtue of its property to bind ferric iron, functions as a transporter of the ferric iron from the extracellular siderophore to mycobactin within the cell envelope.
Collapse
|
80
|
Nunes LO, Munhoz VHO, Sousa AA, de Souza KR, Santos TL, Bemquerer MP, Ferreira DEC, de Magalhães MTQ, Resende JM, Alcântara AFC, Aisenbrey C, Veloso DP, Bechinger B, Verly RM. High-resolution structural profile of hylaseptin-4: Aggregation, membrane topology and pH dependence of overall membrane binding process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183581. [PMID: 33556358 DOI: 10.1016/j.bbamem.2021.183581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Hylaseptin-4 (HSP-4, GIGDILKNLAKAAGKAALHAVGESL-NH2) is an antimicrobial peptide originally isolated from Hypsiboas punctatus tree frog. The peptide has been chemically synthetized for structural investigations by CD and NMR spectroscopies. CD experiments reveal the high helical content of HSP-4 in biomimetic media. Interestingly, the aggregation process seems to occur at high peptide concentrations either in aqueous solution or in presence of biomimetic membranes, indicating an increase in the propensity of the peptide for adopting a helical conformation. High-resolution NMR structures determined in presence of DPC-d38 micelles show a highly ordered α-helix from amino acid residues I2 to S24 and a smooth bend near G14. A large separation between hydrophobic and hydrophilic residues occurs up to the A16 residue, from which a shift in the amphipathicity is noticed. Oriented solid-state NMR spectroscopy show a roughly parallel orientation of the helical structure along the POPC lipid bilayer surface, with an insertion of the hydrophobic N-terminus into the bilayer core. Moreover, a noticeable pH dependence of the aggregation process in both aqueous and in biomimetic membrane environments is attributed to a single histidine residue (H19). The protonation degree of the imidazole side-chain might help in modulating the peptide-peptide or peptide-lipid interactions. Finally, molecular dynamics simulations confirm the orientation and preferential helical conformation and in addition, show that HSP-4 tends to self-aggregate in order to stabilize its active conformation in aqueous or phospholipid bilayer environments.
Collapse
Affiliation(s)
- L O Nunes
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - V H O Munhoz
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - A A Sousa
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - K R de Souza
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - T L Santos
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - M P Bemquerer
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final), P.O. Box 02372, Brasília, DF, Brazil
| | - D E C Ferreira
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil; Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Laboratório de Biofísica de Macromoléculas Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - J M Resende
- Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - A F C Alcântara
- Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - C Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - D P Veloso
- Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - B Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France; Institut Universitaire de France (IUF), France
| | - R M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil.
| |
Collapse
|
81
|
Richbourg NR, Wancura M, Gilchrist AE, Toubbeh S, Harley BAC, Cosgriff-Hernandez E, Peppas NA. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. SCIENCE ADVANCES 2021; 7:eabe3245. [PMID: 33579714 PMCID: PMC7880590 DOI: 10.1126/sciadv.abe3245] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
Hydrogel physical properties are tuned by altering synthesis conditions such as initial polymer concentration and polymer-cross-linker stoichiometric ratios. Traditionally, differences in hydrogel synthesis schemes, such as end-linked poly(ethylene glycol) diacrylate hydrogels and cross-linked poly(vinyl alcohol) hydrogels, limit structural comparison between hydrogels. In this study, we use generalized synthesis variables for hydrogels that emphasize how changes in formulation affect the resulting network structure. We identify two independent linear correlations between these synthesis variables and swelling behavior. Analysis through recently updated swollen polymer network models suggests that synthesis-swelling correlations can be used to make a priori predictions of the stiffness and solute diffusivity characteristics of synthetic hydrogels. The same experiments and analyses performed on methacrylamide-modified gelatin hydrogels demonstrate that complex biopolymer structures disrupt the linear synthesis-swelling correlations. These studies provide insight into the control of hydrogel physical properties through structural design and can be used to implement and optimize biomedically relevant hydrogels.
Collapse
Affiliation(s)
- N R Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas, Austin, TX 78712, USA
| | - M Wancura
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
| | - A E Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - S Toubbeh
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | - B A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - E Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | - N A Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
- Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX 78712, USA
- Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
82
|
Tronrud DE, Karplus PA. A complete Fourier-synthesis-based backbone-conformation-dependent library for proteins. Acta Crystallogr D Struct Biol 2021; 77:249-266. [DOI: 10.1107/s2059798320016344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/16/2020] [Indexed: 11/10/2022] Open
Abstract
While broadening the applicability of (φ/ψ)-dependent target values for the bond angles in the peptide backbone, sequence/conformation categories with too few residues to analyze via previous methods were encountered. Here, a method of describing a conformation-dependent library (CDL) using two-dimensional Fourier coefficients is reported where the number of coefficients for individual categories is determined via complete cross-validation. Sample sizes are increased further by selective blending of categories with similar patterns of conformational dependence. An additional advantage of the Fourier-synthesis-based CDL is that it uses continuous functions and has no artifactual steps near the edges of populated regions of φ/ψ space. A set of libraries for the seven main-chain bond angles, along with the ω and ζ angles, was created based on a set of Fourier analyses of 48 368 residues selected from high-resolution models in the wwPDB. This new library encompasses both trans- and cis-peptide bonds and outperforms currently used discrete CDLs.
Collapse
|
83
|
Zhang X, Forster MC, Nimerovsky E, Movellan KT, Andreas LB. Transferred-Rotational-Echo Double Resonance. J Phys Chem A 2021; 125:754-769. [PMID: 33464081 PMCID: PMC7884007 DOI: 10.1021/acs.jpca.0c09033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Internuclear distance determination is the foundation for NMR-based structure calculation. However, high-precision distance measurement is a laborious process requiring lengthy data acquisitions due to the large set of multidimensional spectra needed at different mixing times. This prevents application to large or challenging molecular systems. Here, we present a new approach, transferred-rotational-echo double resonance (TREDOR), a heteronuclear transfer method in which we simultaneously detect both starting and transferred signals in a single spectrum. This co-acquisition is used to compensate for coherence decay, resulting in accurate and precise distance determination by a single parameter fit using a single spectrum recorded at an ideal mixing time. We showcase TREDOR with the microcrystalline SH3 protein using 3D spectra to resolve resonances. By combining the measured N-C and H-C distances, we calculate the structure of SH3, which converges to the correct fold, with a root-mean-square deviation of 2.1 Å compared to a reference X-ray structure. The TREDOR data used in the structure calculation were acquired in only 4 days on a 600 MHz instrument. This is achieved due to the more than 2-fold time saving afforded by co-acquisition of additional information and demonstrates TREDOR as a fast and straightforward method for determining structures via magic-angle spinning NMR.
Collapse
Affiliation(s)
| | | | - Evgeny Nimerovsky
- NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Kumar Tekwani Movellan
- NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Loren B. Andreas
- NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
84
|
Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021; 26:549. [PMID: 33494451 PMCID: PMC7865249 DOI: 10.3390/molecules26030549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
HupZ is an expected heme degrading enzyme in the heme acquisition and utilization pathway in Group A Streptococcus. The isolated HupZ protein containing a C-terminal V5-His6 tag exhibits a weak heme degradation activity. Here, we revisited and characterized the HupZ-V5-His6 protein via biochemical, mutagenesis, protein quaternary structure, UV-vis, EPR, and resonance Raman spectroscopies. The results show that the ferric heme-protein complex did not display an expected ferric EPR signal and that heme binding to HupZ triggered the formation of higher oligomeric states. We found that heme binding to HupZ was an O2-dependent process. The single histidine residue in the HupZ sequence, His111, did not bind to the ferric heme, nor was it involved with the weak heme-degradation activity. Our results do not favor the heme oxygenase assignment because of the slow binding of heme and the newly discovered association of the weak heme degradation activity with the His6-tag. Altogether, the data suggest that the protein binds heme by its His6-tag, resulting in a heme-induced higher-order oligomeric structure and heme stacking. This work emphasizes the importance of considering exogenous tags when interpreting experimental observations during the study of heme utilization proteins.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Tapiwa Chiura
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Ankita J. Sachla
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Francis Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Piotr J. Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
85
|
Teplukhin AV. MONTE CARLO CALCULATION OF THERMODYNAMIC AND STRUCTURAL CHARACTERISTICS OF LIQUID HYDROCARBONS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s002247662101008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3-A versatile homology modelling toolbox. PLoS Comput Biol 2021; 17:e1008667. [PMID: 33507980 PMCID: PMC7872268 DOI: 10.1371/journal.pcbi.1008667] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/09/2021] [Accepted: 01/03/2021] [Indexed: 11/18/2022] Open
Abstract
Computational methods for protein structure modelling are routinely used to complement experimental structure determination, thus they help to address a broad spectrum of scientific questions in biomedical research. The most accurate methods today are based on homology modelling, i.e. detecting a homologue to the desired target sequence that can be used as a template for modelling. Here we present a versatile open source homology modelling toolbox as foundation for flexible and computationally efficient modelling workflows. ProMod3 is a fully scriptable software platform that can perform all steps required to generate a protein model by homology. Its modular design aims at fast prototyping of novel algorithms and implementing flexible modelling pipelines. Common modelling tasks, such as loop modelling, sidechain modelling or generating a full protein model by homology, are provided as production ready pipelines, forming the starting point for own developments and enhancements. ProMod3 is the central software component of the widely used SWISS-MODEL web-server.
Collapse
Affiliation(s)
- Gabriel Studer
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Stefan Bienert
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marco Biasini
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niklaus Johner
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
87
|
Brzezinski D, Kowiel M, Cooper DR, Cymborowski M, Grabowski M, Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Rupp B, Jaskolski M, Minor W. Covid-19.bioreproducibility.org: A web resource for SARS-CoV-2-related structural models. Protein Sci 2021; 30:115-124. [PMID: 32981130 PMCID: PMC7537053 DOI: 10.1002/pro.3959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has triggered numerous scientific activities aimed at understanding the SARS-CoV-2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X-ray, cryo-EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert-verified information about SARS-CoV-2-related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.
Collapse
Affiliation(s)
- Dariusz Brzezinski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - David R. Cooper
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Marek Grabowski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer InstituteFrederickMarylandUSA
| | - Zbigniew Dauter
- Macromolecular Crystallography Laboratory, National Cancer InstituteFrederickMarylandUSA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
| | - Bernhard Rupp
- k.‐k. HofkristallamtSan DiegoCaliforniaUSA
- Institute of Genetic EpidemiologyMedical University InnsbruckSchöpfstr. 41InnsbruckTyrol6020Austria
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
| | - Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
88
|
Yang Y, Borel T, de Azambuja F, Johnson D, Sorrentino JP, Udokwu C, Davis I, Liu A, Altman RA. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway. J Med Chem 2020; 64:797-811. [PMID: 33369426 DOI: 10.1021/acs.jmedchem.0c01762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the kynurenine pathway for tryptophan degradation, an unstable metabolic intermediate, α-amino-β-carboxymuconate-ε-semialdehyde (ACMS), can nonenzymatically cyclize to form quinolinic acid, the precursor for de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+). In a competing reaction, ACMS is decarboxylated by ACMS decarboxylase (ACMSD) for further metabolism and energy production. Therefore, the inhibition of ACMSD increases NAD+ levels. In this study, an Food and Drug Administration (FDA)-approved drug, diflunisal, was found to competitively inhibit ACMSD. The complex structure of ACMSD with diflunisal revealed a previously unknown ligand-binding mode and was consistent with the results of inhibition assays, as well as a structure-activity relationship (SAR) study. Moreover, two synthesized diflunisal derivatives showed half-maximal inhibitory concentration (IC50) values 1 order of magnitude better than diflunisal at 1.32 ± 0.07 μM (22) and 3.10 ± 0.11 μM (20), respectively. The results suggest that diflunisal derivatives have the potential to modulate NAD+ levels. The ligand-binding mode revealed here provides a new direction for developing inhibitors of ACMSD.
Collapse
Affiliation(s)
- Yu Yang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Timothy Borel
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | | | - David Johnson
- Computational Chemical Biology Core and Molecular Graphics and Modeling Laboratory, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Chinedum Udokwu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
89
|
Bomediano Camillo LDM, Ferreira GC, Duran AFA, da Silva FRS, Garcia W, Scott AL, Sasaki SD. Structural modelling and thermostability of a serine protease inhibitor belonging to the Kunitz-BPTI family from the Rhipicephalus microplus tick. Biochimie 2020; 181:226-233. [PMID: 33359560 DOI: 10.1016/j.biochi.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
rBmTI-A is a recombinant serine protease inhibitor that belongs to the Kunitz-BPTI family and that was cloned from Rhipicephalus microplus tick. rBmTI-A has inhibitory activities on bovine trypsin, human plasma kallikrein, human neutrophil elastase and plasmin with dissociation constants in nM range. It is characterized by two inhibitory domains and each domain presents six cysteines that form three disulfide bonds, which contribute to the high stability of its structure. Previous studies suggest that serine protease inhibitor rBmTI-A has a protective potential against pulmonary emphysema in mice and anti-inflammatory potential. Besides that, rBmTI-A presented a potent inhibitory activity against in vitro vessel formation. In this study, the tertiary structure of rBmTI-A was modeled. The structure stabilization was evaluated by molecular dynamics analysis. Circular dichroism spectroscopy data corroborated the secondary structure found by the homology modelling. Also, in circular dichroism data it was shown a thermostability of rBmTI-A until approximately 70 °C, corroborated by inhibitory assays toward trypsin.
Collapse
Affiliation(s)
| | - Graziele Cristina Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | | | | | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Ana Lígia Scott
- Centro de Matemática, Computação e Cognição. Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil.
| |
Collapse
|
90
|
Huang X, Pearce R, Zhang Y. FASPR: an open-source tool for fast and accurate protein side-chain packing. Bioinformatics 2020; 36:3758-3765. [PMID: 32259206 DOI: 10.1093/bioinformatics/btaa234] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
MOTIVATION Protein structure and function are essentially determined by how the side-chain atoms interact with each other. Thus, accurate protein side-chain packing (PSCP) is a critical step toward protein structure prediction and protein design. Despite the importance of the problem, however, the accuracy and speed of current PSCP programs are still not satisfactory. RESULTS We present FASPR for fast and accurate PSCP by using an optimized scoring function in combination with a deterministic searching algorithm. The performance of FASPR was compared with four state-of-the-art PSCP methods (CISRR, RASP, SCATD and SCWRL4) on both native and non-native protein backbones. For the assessment on native backbones, FASPR achieved a good performance by correctly predicting 69.1% of all the side-chain dihedral angles using a stringent tolerance criterion of 20°, compared favorably with SCWRL4, CISRR, RASP and SCATD which successfully predicted 68.8%, 68.6%, 67.8% and 61.7%, respectively. Additionally, FASPR achieved the highest speed for packing the 379 test protein structures in only 34.3 s, which was significantly faster than the control methods. For the assessment on non-native backbones, FASPR showed an equivalent or better performance on I-TASSER predicted backbones and the backbones perturbed from experimental structures. Detailed analyses showed that the major advantage of FASPR lies in the optimal combination of the dead-end elimination and tree decomposition with a well optimized scoring function, which makes FASPR of practical use for both protein structure modeling and protein design studies. AVAILABILITY AND IMPLEMENTATION The web server, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/FASPR and https://github.com/tommyhuangthu/FASPR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
91
|
Gianotti AR, Klinke S, Ermácora MR. The structure of unliganded sterol carrier protein 2 from Yarrowia lipolytica unveils a mechanism for binding site occlusion. J Struct Biol 2020; 213:107675. [PMID: 33278583 DOI: 10.1016/j.jsb.2020.107675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Isolated or as a part of multidomain proteins, Sterol Carrier Protein 2 (SCP2) exhibits high affinity and broad specificity for different lipidic and hydrophobic compounds. A wealth of structural information on SCP2 domains in all forms of life is currently available; however, many aspects of its ligand binding activity are poorly understood. ylSCP2 is a well-characterized single domain SCP2 from the yeast Yarrowia lipolytica. Herein, we report the X-ray structure of unliganded ylSCP2 refined to 2.0 Å resolution. Comparison with the previously solved liganded ylSCP2 structure unveiled a novel mechanism for binding site occlusion. The liganded ylSCP2 binding site is a large cavity with a volume of more than 800 Å3. In unliganded ylSCP2 the binding site is reduced to about 140 Å3. The obliteration is caused by a swing movement of the C-terminal α helix 5 and a subtle compaction of helices 2-4. Previous pairwise comparisons were between homologous SCP2 domains with a uncertain binding status. The reported unliganded ylSCP2 structure allows for the first time a fully controlled comparative analysis of the conformational effects of ligand occupation dispelling several doubts regarding the architecture of SCP2 binding site.
Collapse
Affiliation(s)
- Alejo R Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina; Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Mario R Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina; Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina.
| |
Collapse
|
92
|
Moriarty NW, Liebschner D, Tronrud DE, Adams PD. Arginine off-kilter: guanidinium is not as planar as restraints denote. Acta Crystallogr D Struct Biol 2020; 76:1159-1166. [PMID: 33263321 PMCID: PMC7709202 DOI: 10.1107/s2059798320013534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
Crystallographic refinement of macromolecular structures relies on stereochemical restraints to mitigate the typically poor data-to-parameter ratio. For proteins, each amino acid has a unique set of geometry restraints which represent stereochemical information such as bond lengths, valence angles, torsion angles, dihedrals and planes. It has been shown that the geometry in refined structures can differ significantly from that present in libraries; for example, it was recently reported that the guanidinium moiety in arginine is not symmetric. In this work, the asymmetry of the Nϵ-Cζ-Nη1 and Nϵ-Cζ-Nη2 valence angles in the guanidinium moiety is confirmed. In addition, it was found that the Cδ atom can deviate significantly (more than 20°) from the guanidinium plane. This requires the relaxation of the planar restraint for the Cδ atom, as it otherwise causes the other atoms in the group to compensate by distorting the guanidinium core plane. A new set of restraints for the arginine side chain have therefore been formulated, and are available in the software package Phenix, that take into account the asymmetry of the group and the planar deviation of the Cδ atom. This is an example of the need to regularly revisit the geometric restraint libraries used in macromolecular refinement so that they reflect the best knowledge of the structural chemistry of their components available at the time.
Collapse
Affiliation(s)
- Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dorothee Liebschner
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dale E Tronrud
- Department of Biochemistry and Biophysics and the Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Paul D Adams
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
93
|
Wang L, Kruse H, Sobolev OV, Moriarty NW, Waller MP, Afonine PV, Biczysko M. Real-space quantum-based refinement for cryo-EM: Q|R#3. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1184-1191. [PMID: 33263324 DOI: 10.1107/s2059798320013194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2020] [Indexed: 11/10/2022]
Abstract
Electron cryo-microscopy (cryo-EM) is rapidly becoming a major competitor to X-ray crystallography, especially for large structures that are difficult or impossible to crystallize. While recent spectacular technological improvements have led to significantly higher resolution three-dimensional reconstructions, the average quality of cryo-EM maps is still at the low-resolution end of the range compared with crystallography. A long-standing challenge for atomic model refinement has been the production of stereochemically meaningful models for this resolution regime. Here, it is demonstrated that including accurate model geometry restraints derived from ab initio quantum-chemical calculations (HF-D3/6-31G) can improve the refinement of an example structure (chain A of PDB entry 3j63). The robustness of the procedure is tested for additional structures with up to 7000 atoms (PDB entry 3a5x and chain C of PDB entry 5fn5) using the less expensive semi-empirical (GFN1-xTB) model. The necessary algorithms enabling real-space quantum refinement have been implemented in the latest version of qr.refine and are described here.
Collapse
Affiliation(s)
- Lum Wang
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Oleg V Sobolev
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark P Waller
- Pending AI Pty Ltd, iAccelerat, Innovation Campus, North Wollongong, NSW 2500, Australia
| | - Pavel V Afonine
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Malgorzata Biczysko
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
94
|
Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, Chaudhari YB, Zhang M, Himmel ME, Decker SR. Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:186. [PMID: 33292448 PMCID: PMC7656694 DOI: 10.1186/s13068-020-01820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.
Collapse
Affiliation(s)
- Venkataramanan Subramanian
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Samuel J Farmer
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kyle T Moore
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Angela Ho
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yogesh B Chaudhari
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Biodiversity and Ecosystem Research, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
95
|
Cao L, Ryde U. Quantum refinement with multiple conformations: application to the P-cluster in nitrogenase. Acta Crystallogr D Struct Biol 2020; 76:1145-1156. [PMID: 33135685 PMCID: PMC7604908 DOI: 10.1107/s2059798320012917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
X-ray crystallography is the main source of atomistic information on the structure of proteins. Normal crystal structures are obtained as a compromise between the X-ray scattering data and a set of empirical restraints that ensure chemically reasonable bond lengths and angles. However, such restraints are not always available or accurate for nonstandard parts of the structure, for example substrates, inhibitors and metal sites. The method of quantum refinement, in which these empirical restraints are replaced by quantum-mechanical (QM) calculations, has previously been suggested for small but interesting parts of the protein. Here, this approach is extended to allow for multiple conformations in the QM region by performing separate QM calculations for each conformation. This approach is shown to work properly and leads to improved structures in terms of electron-density maps and real-space difference density Z-scores. It is also shown that the quality of the structures can be gauged using QM strain energies. The approach, called ComQumX-2QM, is applied to the P-cluster in two different crystal structures of the enzyme nitrogenase, i.e. an Fe8S7Cys6 cluster, used for electron transfer. One structure is at a very high resolution (1.0 Å) and shows a mixture of two different oxidation states, the fully reduced PN state (Fe82+, 20%) and the doubly oxidized P2+ state (80%). In the original crystal structure the coordinates differed for only two iron ions, but here it is shown that the two states also show differences in other atoms of up to 0.7 Å. The second structure is at a more modest resolution, 2.1 Å, and was originally suggested to show only the one-electron oxidized state, P1+. Here, it is shown that it is rather a 50/50% mixture of the P1+ and P2+ states and that many of the Fe-Fe and Fe-S distances in the original structure were quite inaccurate (by up to 0.8 Å). This shows that the new ComQumX-2QM approach can be used to sort out what is actually seen in crystal structures with dual conformations and to give locally improved coordinates.
Collapse
Affiliation(s)
- Lili Cao
- Department of Theoretical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
96
|
Cagnoni AJ, Primo ED, Klinke S, Cano ME, Giordano W, Mariño KV, Kovensky J, Goldbaum FA, Uhrig ML, Otero LH. Crystal structures of peanut lectin in the presence of synthetic β-N- and β-S-galactosides disclose evidence for the recognition of different glycomimetic ligands. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1080-1091. [PMID: 33135679 DOI: 10.1107/s2059798320012371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022]
Abstract
Carbohydrate-lectin interactions are involved in important cellular recognition processes, including viral and bacterial infections, inflammation and tumor metastasis. Hence, structural studies of lectin-synthetic glycan complexes are essential for understanding lectin-recognition processes and for the further design of promising chemotherapeutics that interfere with sugar-lectin interactions. Plant lectins are excellent models for the study of the molecular-recognition process. Among them, peanut lectin (PNA) is highly relevant in the field of glycobiology because of its specificity for β-galactosides, showing high affinity towards the Thomsen-Friedenreich antigen, a well known tumor-associated carbohydrate antigen. Given this specificity, PNA is one of the most frequently used molecular probes for the recognition of tumor cell-surface O-glycans. Thus, it has been extensively used in glycobiology for inhibition studies with a variety of β-galactoside and β-lactoside ligands. Here, crystal structures of PNA are reported in complex with six novel synthetic hydrolytically stable β-N- and β-S-galactosides. These complexes disclosed key molecular-binding interactions of the different sugars with PNA at the atomic level, revealing the roles of specific water molecules in protein-ligand recognition. Furthermore, binding-affinity studies by isothermal titration calorimetry showed dissociation-constant values in the micromolar range, as well as a positive multivalency effect in terms of affinity in the case of the divalent compounds. Taken together, this work provides a qualitative structural rationale for the upcoming synthesis of optimized glycoclusters designed for the study of lectin-mediated biological processes. The understanding of the recognition of β-N- and β-S-galactosides by PNA represents a benchmark in protein-carbohydrate interactions since they are novel synthetic ligands that do not belong to the family of O-linked glycosides.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Emiliano D Primo
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, INBIAS-CONICET, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - María E Cano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, INBIAS-CONICET, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A)-CNRS UMR 7378, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens CEDEX, France
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
| | - Lisandro H Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| |
Collapse
|
97
|
Lima ADM, Siqueira AS, Möller MLS, Souza RCD, Cruz JN, Lima ARJ, Silva RCD, Aguiar DCF, Junior JLDSGV, Gonçalves EC. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J Biomol Struct Dyn 2020; 40:1064-1073. [PMID: 32990187 DOI: 10.1080/07391102.2020.1821782] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lectins that bind to HIV envelope glycoprotein can inhibit virus-cell fusion and be used for rational drug design. This paper presents the results of an in silico approach to improve affinity interaction between the cyanobacterial lectin microvirin and its ligand Manα(1-2)Man. Comparative modeling and molecular dynamics tools were used. Additionally, the alanine scanning webserver was used to study the importance of protein residues in the binding site and to guide mutant production. The model obtained presented two homologous domains designated as domains A and B, each consisting of a single strand with triple and antiparallel β-sheets of (β1-β3 and β6-β8). Disulfide bonds between the cysteines (Cys60-Cys80, Cys63-Cys78 and Cys8-Cys24) were also found. The highly conserved binding site, including residues Asn44, Ile45, Asp46, Gln54, Asn55, Glu58, Thr59, Gln81, Thr82 and Met83. The RMSD values of the di-mannose and the interaction site were very stable during the molecular dynamics. Calculations of the occupation time of the hydrogen bonds were made for the residues that showed interaction in the complex lectin and ligand. The residue that contributed most to the interaction with Manα(1-2)Man was Asn55. After validation, the model generated remained stable during the entire simulation. Despite its structural similarity with the template we used, our mutant (Thr82Arg) showed a higher affinity interaction with Manα(1-2)Man. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adonis de Melo Lima
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marina Luiza Saraiva Möller
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Jorddy Neves Cruz
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Alex Ranieri Jerônimo Lima
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Ronaldo Correia da Silva
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
98
|
van der Spoel D. Systematic design of biomolecular force fields. Curr Opin Struct Biol 2020; 67:18-24. [PMID: 32980615 DOI: 10.1016/j.sbi.2020.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Force fields for the study of biomolecules have been developed in a predominantly organic manner by regular updates over half a century. Together with better algorithms and advances in computer technology, force fields have improved to yield more robust predictions. However, there are also indications to suggest that intramolecular energy functions have not become better and that there still is room for improvement. In this review, systematic efforts toward development of novel force fields from scratch are described. This includes an estimate of the complexity of the problem and the prerequisites in the form of data and algorithms. It is suggested that in order to make progress, an effort is needed to standardize reference data and force field validation benchmarks.
Collapse
|
99
|
Barozet A, Molloy K, Vaisset M, Siméon T, Cortés J. A reinforcement-learning-based approach to enhance exhaustive protein loop sampling. Bioinformatics 2020; 36:1099-1106. [PMID: 31504192 DOI: 10.1093/bioinformatics/btz684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Loop portions in proteins are involved in many molecular interaction processes. They often exhibit a high degree of flexibility, which can be essential for their function. However, molecular modeling approaches usually represent loops using a single conformation. Although this conformation may correspond to a (meta-)stable state, it does not always provide a realistic representation. RESULTS In this paper, we propose a method to exhaustively sample the conformational space of protein loops. It exploits structural information encoded in a large library of three-residue fragments, and enforces loop-closure using a closed-form inverse kinematics solver. A novel reinforcement-learning-based approach is applied to accelerate sampling while preserving diversity. The performance of our method is showcased on benchmark datasets involving 9-, 12- and 15-residue loops. In addition, more detailed results presented for streptavidin illustrate the ability of the method to exhaustively sample the conformational space of loops presenting several meta-stable conformations. AVAILABILITY AND IMPLEMENTATION We are developing a software package called MoMA (for Molecular Motion Algorithms), which includes modeling tools and algorithms to sample conformations and transition paths of biomolecules, including the application described in this work. The binaries can be provided upon request and a web application will also be implemented in the short future. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Amélie Barozet
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse 31400, France.,Sanofi Recherche & Développement, Integrated Drug Discovery, Molecular Design Sciences, Vitry-sur-Seine Cedex 94403, France
| | - Kevin Molloy
- Department of Computer Science, Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Marc Vaisset
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse 31400, France
| | - Thierry Siméon
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse 31400, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse 31400, France
| |
Collapse
|
100
|
Hoffmann KM, Goncuian ES, Karimi KL, Amendola CR, Mojab Y, Wood KM, Prussia GA, Nix J, Yamamoto M, Lathan K, Orion IW. Cofactor Complexes of DesD, a Model Enzyme in the Virulence-related NIS Synthetase Family. Biochemistry 2020; 59:3427-3437. [PMID: 32885650 DOI: 10.1021/acs.biochem.9b00899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The understudied nonribosomal-peptide-synthetase-independent siderophore (NIS) synthetase family has been increasingly associated with virulence in bacterial species due to its key role in the synthesis of hydroxamate and carboxylate "stealth" siderophores. We have identified a model family member, DesD, from Streptomyces coelicolor, to structurally characterize using a combination of a wild-type and a Arg306Gln variant in apo, cofactor product AMP-bound, and cofactor reactant ATP-bound complexes. The kinetics in the family has been limited by solubility and reporter assays, so we have developed a label-free kinetics assay utilizing a single-injection isothermal-titration-calorimetry-based method. We report second-order rate constants that are 50 times higher than the previous estimations for DesD. Our Arg306Gln DesD variant was also tested under identical buffer and substrate conditions, and its undetectable activity was confirmed. These are the first reported structures for DesD, and they describe the critical cofactor coordination. This is also the first label-free assay to unambiguously determine the kinetics for an NIS synthetase.
Collapse
Affiliation(s)
- Katherine M Hoffmann
- Department of Chemistry, California Lutheran University, 60 West Olsen Road #3700, Thousand Oaks, California 91360, United States
| | - Eliana S Goncuian
- Department of Chemistry, California Lutheran University, 60 West Olsen Road #3700, Thousand Oaks, California 91360, United States
| | - Kimya L Karimi
- Department of Chemistry, California Lutheran University, 60 West Olsen Road #3700, Thousand Oaks, California 91360, United States
| | - Caroline R Amendola
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258, United States
| | - Yasi Mojab
- Department of Chemistry, California Lutheran University, 60 West Olsen Road #3700, Thousand Oaks, California 91360, United States
| | - Kaitlin M Wood
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258, United States
| | - Gregory A Prussia
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258, United States
| | - Jay Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Margaret Yamamoto
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258, United States
| | - Kiera Lathan
- Department of Chemistry, California Lutheran University, 60 West Olsen Road #3700, Thousand Oaks, California 91360, United States
| | - Iris W Orion
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258, United States
| |
Collapse
|