51
|
Edsall C, Khan ZM, Mancia L, Hall S, Mustafa W, Johnsen E, Klibanov AL, Durmaz YY, Vlaisavljevich E. Bubble Cloud Behavior and Ablation Capacity for Histotripsy Generated from Intrinsic or Artificial Cavitation Nuclei. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:620-639. [PMID: 33309443 PMCID: PMC8514340 DOI: 10.1016/j.ultrasmedbio.2020.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
The study described here examined the effects of cavitation nuclei characteristics on histotripsy. High-speed optical imaging was used to compare bubble cloud behavior and ablation capacity for histotripsy generated from intrinsic and artificial cavitation nuclei (gas-filled microbubbles, fluid-filled nanocones). Results showed a significant decrease in the cavitation threshold for microbubbles and nanocones compared with intrinsic-nuclei controls, with predictable and well-defined bubble clouds generated in all cases. Red blood cell experiments showed complete ablations for intrinsic and nanocone phantoms, but only partial ablation in microbubble phantoms. Results also revealed a lower rate of ablation in artificial-nuclei phantoms because of reduced bubble expansion (and corresponding decreases in stress and strain). Overall, this study demonstrates the potential of using artificial nuclei to reduce the histotripsy cavitation threshold while highlighting differences in the bubble cloud behavior and ablation capacity that need to be considered in the future development of these approaches.
Collapse
Affiliation(s)
- Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
| | - Zerin Mahzabin Khan
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Hall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Waleed Mustafa
- Department of Biomedical Engineering, Istanbul Medipol University, Beykoz/İstanbul, Turkey
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander L Klibanov
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Yasemin Yuksel Durmaz
- Department of Biomedical Engineering, Istanbul Medipol University, Beykoz/İstanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Beykoz/İstanbul, Turkey
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA; ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
52
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
53
|
Worlikar T, Mendiratta-Lala M, Vlaisavljevich E, Hubbard R, Shi J, Hall TL, Cho CS, Lee FT, Greve J, Xu Z. Effects of Histotripsy on Local Tumor Progression in an in vivo Orthotopic Rodent Liver Tumor Model. BME FRONTIERS 2020; 2020. [PMID: 34327513 PMCID: PMC8318009 DOI: 10.34133/2020/9830304] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective and Impact Statement This is the first longitudinal study investigating the effects of histotripsy on local tumor progression in an in vivo orthotopic, immunocompetent rat hepatocellular carcinoma (HCC) model. Introduction Histotripsy is the first noninvasive, nonionizing, nonthermal, mechanical ablation technique using ultrasound to generate acoustic cavitation to liquefy the target tissue into acellular debris with millimeter accuracy. Previously, histotripsy has demonstrated in vivo ablation of noncancerous liver tissue. Methods N1-S1 HCC tumors were generated in the livers of immunocompetent rats (n = 6, control; n = 15, treatment). Real-time ultrasound-guided histotripsy was applied to ablate either 100% tumor volume + up to 2mm margin (n = 9, complete treatment) or 50-75% tumor volume (n = 6, partial treatment) by delivering 1-2 cycle histotripsy pulses at 100 Hz PRF (pulse repetition frequency) with p - ≥30MPa using a custom 1MHz transducer. Rats were monitored weekly using MRI (magnetic resonance imaging) for 3 months or until tumors reached ~25mm. Results MRI revealed effective post-histotripsy reduction of tumor burden with near-complete resorption of the ablated tumor in 14/15 (93.3%) treated rats. Histopathology showed <5mm shrunken, non-tumoral, fibrous tissue at the treatment site at 3 months. Rats with increased tumor burden (3/6 control and 1 partial treatment) were euthanized early by 2-4 weeks. In 3 other controls, histology revealed fibrous tissue at original tumor site at 3 months. There was no evidence of histotripsy-induced off-target tissue injury. Conclusion Complete and partial histotripsy ablation resulted in effective tumor removal for 14/15 rats, with no evidence of local tumor progression or recurrence.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Ryan Hubbard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Surgery, VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Joan Greve
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
54
|
Mancia L, Rodriguez M, Sukovich J, Xu Z, Johnsen E. Single–bubble dynamics in histotripsy and high–amplitude ultrasound: Modeling and validation. ACTA ACUST UNITED AC 2020; 65:225014. [DOI: 10.1088/1361-6560/abb02b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Qu S, Worlikar T, Felsted AE, Ganguly A, Beems MV, Hubbard R, Pepple AL, Kevelin AA, Garavaglia H, Dib J, Toma M, Huang H, Tsung A, Xu Z, Cho CS. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2019-000200. [PMID: 31940590 PMCID: PMC7057529 DOI: 10.1136/jitc-2019-000200] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2019] [Indexed: 01/05/2023] Open
Abstract
Background Developing the ability to use tumor-directed therapies to trigger potentially therapeutic immune responses against cancer antigens remains a high priority for cancer immunotherapy. We hypothesized that histotripsy, a novel non-invasive, non-thermal ablation modality that uses ultrasound-generated acoustic cavitation to disrupt tissues, could engender adaptive immune responses to tumor antigens. Methods Immunocompetent C57BL/6 mice inoculated with flank melanoma or hepatocellular carcinoma tumors were treated with histotripsy, thermal ablation, radiation therapy, or cytotoxic T lymphocyte-associated protein-4 (CTLA-4) blockade checkpoint inhibition. Lymphocyte responses were measured using flow cytometric and immunohistochemical analyses. The impact of histotripsy on abscopal immune responses was assessed in mice bearing bilateral tumors, or unilateral tumors with pulmonary tumors established via tail vein injection. Results Histotripsy ablation of subcutaneous murine melanoma tumors stimulated potent local intratumoral infiltration of innate and adaptive immune cell populations. The magnitude of this immunostimulation was stronger than that seen with tumor irradiation or thermal ablation. Histotripsy also promoted abscopal immune responses at untreated tumor sites and inhibited growth of pulmonary metastases. Histotripsy was capable of releasing tumor antigens with retained immunogenicity, and this immunostimulatory effect was associated with calreticulin translocation to the cellular membrane and local and systemic release of high mobility group box protein 1. Histotripsy ablation potentiated the efficacy of checkpoint inhibition immunotherapy in murine models of melanoma and hepatocellular carcinoma. Conclusions These preclinical observations suggest that non-invasive histotripsy ablation can be used to stimulate tumor-specific immune responses capable of magnifying the impact of checkpoint inhibition immunotherapy.
Collapse
Affiliation(s)
- Shibin Qu
- Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Hepatobiliary Surgery, Xijing Hospital, Xian, Shaanxi, China
| | - Tejaswi Worlikar
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E Felsted
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Anutosh Ganguly
- Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Surgery, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Megan V Beems
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan Hubbard
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Joe Dib
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Mariam Toma
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hai Huang
- Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Allan Tsung
- Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Zhen Xu
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Clifford Suhyun Cho
- Surgery, University of Michigan, Ann Arbor, Michigan, USA .,Surgery, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
56
|
Messas E, Rémond MC, Goudot G, Zarka S, Penot R, Mateo P, Kwiecinski W, Escudero DS, Bel A, Ialy-Radio N, Bertrand B, Bruneval P, Marijon E, Spaargaren R, Tanter M, Pernot M. Feasibility and safety of non-invasive ultrasound therapy (NIUT) on an porcine aortic valve. Phys Med Biol 2020; 65:215004. [PMID: 33104523 DOI: 10.1088/1361-6560/aba6d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calcific aortic stenosis (CAS) is associated with advanced age and comorbidities, therefore a non-invasive therapy for it would be beneficial. We previously demonstrated that ultrasound therapy improved calcified bioprosthetic valve function in an open chest model. For translational applications, we tested non-invasive ultrasound therapy (NIUT) transthoracically on swine aortic valves and investigated the need for antithrombotic treatment as a follow-up. Primary objective: feasibility and safety of NIUT. Secondary objectives: occurrence, severity and evolution of side effects during therapy and at 1 month follow-up. The device (Valvosoft, Cardiawave) consisted of an electronically steered multi-element transducer and a 2D echocardiographic probe. Three groups of swine received treatment on aortic valves: NIUT (group 1; n = 10); NIUT and 1 month antithrombotic treatment (group 2; n = 5); sham group (group 3; n = 4). Feasibility was successfully reached in all treated swine (n = 15) and no life-threatening arrhythmia were detected. Non-sustained ventricular tachycardia occurred during the procedure in seven swine. Decrease or interruption of NIUT ended arrhythmia. Histopathology revealed no valve or surrounding tissue damage and echocardiography revealed no valvular dysfunction. Only one animal had side effects [right ventricle (RV) dilatation], but the RV normalized after therapy cessation with no sequelae at follow-up. No disturbance in biological markers nor valve thrombosis were observed at follow-up. Antithrombotic treatment did not demonstrate any advantage. Survival at 30 d was 100%. We demonstrated, in vivo, the feasibility and safety of transthoracic NIUT on aortic valves in a swine model without serious adverse events. We expect this first-time transthoracic delivery of NIUT to pave the way towards a new non-invasive approach to valve softening in human CAS to restore valve function.
Collapse
Affiliation(s)
- Emmanuel Messas
- Cardio-Vascular Departement, Hôpital Européen Georges Pompidou, Université of Paris, UMR 970, Paris, France. French Research Consortium STOP-AS, supported by the French Government, managed by the National Research Agency (ANR) under the program 'Investissements d'Avenir' with the reference ANR-16-RHUS-003, Rouen, France. These authors contributed equally to this work. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Holmes HR, Haywood M, Hutchison R, Zhang Q, Edsall C, Hall TL, Baisch D, Holliday J, Vlaisavljevich E. Focused ultrasound extraction (FUSE) for the rapid extraction of DNA from tissue matrices. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hal R. Holmes
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
- Conservation X Labs Seattle WA USA
| | - Morgan Haywood
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Qian Zhang
- Department of Forest Resources and Environmental Conservation Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Connor Edsall
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Timothy L. Hall
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Jason Holliday
- Department of Forest Resources and Environmental Conservation Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
- Center for Engineered Health, Virginia Tech Institute for Critical Technology and Applied Science Blacksburg VA USA
| |
Collapse
|
58
|
Sukovich JR, Macoskey JJ, Lundt JE, Gerhardson TI, Hall TL, Xu Z. Real-Time Transcranial Histotripsy Treatment Localization and Mapping Using Acoustic Cavitation Emission Feedback. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1178-1191. [PMID: 31976885 PMCID: PMC7398266 DOI: 10.1109/tuffc.2020.2967586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cavitation events generated during histotripsy therapy generate large acoustic cavitation emission (ACE) signals that can be detected through the skull. This article investigates the feasibility of using these ACE signals, acquired using the elements of a 500-kHz, 256-element hemispherical histotripsy transducer as receivers, to localize and map the cavitation activity in real time through the human skullcap during transcranial histotripsy therapy. The locations of the generated cavitation events predicted using the ACE feedback signals in this study were found to be accurate to within <1.5 mm of the centers of masses detected by optical imaging and found to lie to within the measured volumes of the generated cavitation events in >~80 % of cases. Localization results were observed to be biased in the prefocal direction of the histotripsy array and toward its transverse origin but were only weakly affected by focal steering location. The choice of skullcap and treatment pulse repetition frequency (PRF) were both observed to affect the accuracy of the localization results in the low PRF regime (1-10 Hz), but the localization accuracy was seen to stabilize at higher PRFs (≥10 Hz). Tests of the localization algorithm in vitro, for treatment delivered to a bovine brain sample mounted within the skullcap, revealed good agreement between the ACE feedback-generated treatment map and the morphological characteristics of the treated volume of the brain sample. Localization during experiments was achieved in real time for pulses delivered at rates up to 70 Hz, but benchmark tests indicate that the localization algorithm is scalable, indicating that higher rates are possible with more powerful hardware. The results of this article demonstrate the feasibility of using ACE feedback signals to localize and map transcranially generated cavitation events during histotripsy. Such capability has the potential to greatly simplify transcranial histotripsy treatments, as it may provide a non-MRI-based method for monitoring and localizing transcranial histotripsy treatments in real time.
Collapse
|
59
|
Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med 2020; 9:850-866. [PMID: 32157802 PMCID: PMC7381806 DOI: 10.1002/sctm.19-0391] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a popular platform for cell‐based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano‐transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self‐renewal and differentiation, and to tissues‐of‐interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC‐based therapies, including low‐intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC‐based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Waldo Concepcion
- Department of Surgery, Stanford University, Palo Alto, California
| | - Jeremy J Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| |
Collapse
|
60
|
Gerhardson T, Sukovich JR, Chaudhary N, Chenevert TL, Ives K, Hall TL, Camelo-Piragua S, Xu Z, Pandey AS. Histotripsy Clot Liquefaction in a Porcine Intracerebral Hemorrhage Model. Neurosurgery 2020; 86:429-436. [PMID: 30924501 PMCID: PMC7308653 DOI: 10.1093/neuros/nyz089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is characterized by a 30-d mortality rate of 40% and significant disability for those who survive. OBJECTIVE To investigate the initial safety concerns of histotripsy mediated clot liquefaction and aspiration in a porcine ICH model. Histotripsy is a noninvasive, focused ultrasound technique that generates cavitation to mechanically fractionate tissue. Histotripsy has the potential to liquefy clot in the brain and facilitate minimally invasive aspiration. METHODS About 1.75-mL clots were formed in the frontal lobe of the brain (n = 18; n = 6/group). The centers of the clots were liquefied with histotripsy 48 h after formation, and the content was either evacuated or left within the brain. A control group was left untreated. Pigs underwent magnetic resonance imaging (MRI) 7 to 8 d after clot formation and were subsequently euthanized. Neurological behavior was assessed throughout. Histological analysis was performed on harvested brains. A subset of pigs underwent acute analysis (≤6 h). RESULTS Histotripsy was able to liquefy the center of clots without direct damage to the perihematomal brain tissue. An average volume of 0.9 ± 0.5 mL was drained after histotripsy treatment. All groups showed mild ischemia and gliosis in the perihematomal region; however, there were no deaths or signs of neurological dysfunction in any groups. CONCLUSION This study presents the first analysis of histotripsy-based liquefaction of ICH in vivo. Histotripsy safely liquefies clots without significant additional damage to the perihematomal region. The liquefied content of the clot can be easily evacuated, and the undrained clot has no effect on pig survival or neurological behavior.
Collapse
Affiliation(s)
- Tyler Gerhardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | | - Kim Ives
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
61
|
Adams C. HIFU Power Monitoring Using Combined Instantaneous Current and Voltage Measurement. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:239-247. [PMID: 31514135 PMCID: PMC7030945 DOI: 10.1109/tuffc.2019.2941185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During high-intensity focused ultrasound (HIFU) therapy, it is important that the electrical power delivered to the transducer is monitored to avoid underexposure or overexposure, ensure patient safety, and to protect the transducer itself. Due to ease of measurement, the transducer's potential difference may be as an indicator of power delivery. However, even when a transducer's complex impedance is well characterized at small amplitudes and matching networks are used, voltage-only (VO) monitoring cannot account for the presence of drive waveform distortion, changes to the acoustic path, or damage to the transducer. In this study, combined current and voltage (CCV) is proposed as a magnetic resonance imaging (MRI)-compatible, miniature alternative to bidirectional power couplers, which is compatible with switched amplifiers. For CCV power measurement, current probe data were multiplied by the voltage waveform and integrated in the frequency domain. Transducer efficiency was taken into account to predict acoustic power. The technique was validated with a radiation force balance (RFB). When using a typical HIFU transducer and amplifier, VO predictions and acoustic power had a maximum difference of 20%. However, under the same conditions, CCV only had a maximum difference of 5%. The technique was applied to several lesioning experiments and it was shown that when VO was used as a control between two amplifiers, there was up to a 38% difference in lesion area. This greatly reduced to a maximum of 5% once CCV was used instead. These results demonstrate that CCV can accurately predict real-time electrical power delivery, leading to safer HIFU treatments.
Collapse
Affiliation(s)
- Chris Adams
- Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
62
|
Bigelow TA, Thomas CL, Wu H. Scan Parameter Optimization for Histotripsy Treatment of S. Aureus Biofilms on Surgical Mesh. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:341-349. [PMID: 31634828 PMCID: PMC7039400 DOI: 10.1109/tuffc.2019.2948305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a critical need to develop new noninvasive therapies to treat bacteria biofilms. Previous studies have demonstrated the effectiveness of cavitation-based ultrasound histotripsy to destroy these biofilms. In this study, the dependence of biofilm destruction on multiple scan parameters was assessed by conducting exposures at different scan speeds (0.3-1.4 beamwidths/s), step sizes (0.25-0.5 beamwidths), and the number of passes of the focus across the mesh (2-6). For each of the exposure conditions, the number of colony-forming units (CFUs) remaining on the mesh was quantified. A regression analysis was then conducted, revealing that the scan speed was the most critical parameter for biofilm destruction. Reducing the number of passes and the scan speed should allow for more efficient biofilm destruction in the future, reducing the treatment time.
Collapse
|
63
|
Sukovich JR, Cain CA, Pandey AS, Chaudhary N, Camelo-Piragua S, Allen SP, Hall TL, Snell J, Xu Z, Cannata JM, Teofilovic D, Bertolina JA, Kassell N, Xu Z. In vivo histotripsy brain treatment. J Neurosurg 2019; 131:1331-1338. [PMID: 30485186 PMCID: PMC6925659 DOI: 10.3171/2018.4.jns172652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Histotripsy is an ultrasound-based treatment modality relying on the generation of targeted cavitation bubble clouds, which mechanically fractionate tissue. The purpose of the current study was to investigate the in vivo feasibility, including dosage requirements and safety, of generating well-confined destructive lesions within the porcine brain utilizing histotripsy technology. METHODS Following a craniectomy to open an acoustic window to the brain, histotripsy pulses were delivered to generate lesions in the porcine cortex. Large lesions with a major dimension of up to 1 cm were generated to demonstrate the efficacy of histotripsy lesioning in the brain. Gyrus-confined lesions were generated at different applied dosages and under ultrasound imaging guidance to ensure that they were accurately targeted and contained within individual gyri. Clinical evaluation as well as MRI and histological outcomes were assessed in the acute (≤ 6 hours) and subacute (≤ 72 hours) phases of recovery. RESULTS Histotripsy was able to generate lesions with a major dimension of up to 1 cm in the cortex. Histotripsy lesions were seen to be well demarcated with sharp boundaries between treated and untreated tissues, with histological evidence of injuries extending ≤ 200 µm from their boundaries in all cases. In animals with lesions confined to the gyrus, no major hemorrhage or other complications resulting from treatment were observed. At 72 hours, MRI revealed minimal to no edema and no radiographic evidence of inflammatory changes in the perilesional area. Histological evaluation revealed the histotripsy lesions to be similar to subacute infarcts. CONCLUSIONS Histotripsy can be used to generate sharply defined lesions of arbitrary shapes and sizes in the swine cortex. Lesions confined to within the gyri did not lead to significant hemorrhage or edema responses at the treatment site in the acute or subacute time intervals.
Collapse
Affiliation(s)
- Jonathan R. Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Charles A. Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aditya S. Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | | - Steven P. Allen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, Virginia
- University of Virginia, Department of Neurosurgery, Charlottesville, Virginia
| | - Zhiyuan Xu
- University of Virginia, Department of Neurosurgery, Charlottesville, Virginia
| | | | | | | | - Neal Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
64
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
65
|
Li Y, Hall TL, Xu Z, Cain CA. Enhanced Shock Scattering Histotripsy With Pseudomonopolar Ultrasound Pulses. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1185-1197. [PMID: 30990430 PMCID: PMC6659739 DOI: 10.1109/tuffc.2019.2911289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Shock scattering histotripsy involves a complex interaction between positive and negative phases of an acoustic burst to initiate a robust cavitation bubble cloud. To more precisely study these effects and optimize shock scattering histotripsy therapy, we constructed a frequency compounding transducer to generate pseudomonopolar ultrasound pulses. The transducer consisted of 113 individual piezoelectric elements with various resonant frequencies (250 kHz, 500 kHz, 750 kHz, 1 MHz, 1.5 MHz, 2 MHz, and 3 MHz). For each resonant frequency, an extremely short pulse could be generated. Pseudomonopolar peak positive pulses were generated by aligning the principal peak positive pressures of individual frequency components temporally, so that they added constructively, and destructive interference occurred outside the peak-positive-overlapped temporal window. After inverting the polarity of the excitation signals, pseudomonopolar peak negative pulses were generated similarly by aligning principal peak negative pressures. Decoupling the positive and negative acoustic phases could have significant advantages for therapeutic applications enhancing precision and avoiding cavitation at tissue interfaces by using mostly positive pressure pulses. For example, we show that 16 shock scattering bubble clouds can be generated using only peak positive pulses following a single peak negative pulse that initiates a pressure release "seed cloud" from which the first shock front is "scattered." Subsequent positive only pulses result in a precise elongated lesion within red blood cell phantoms.
Collapse
|
66
|
de Andrade MO, Haqshenas SR, Pahk KJ, Saffari N. The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation. ULTRASONICS SONOCHEMISTRY 2019; 55:262-272. [PMID: 30952547 DOI: 10.1016/j.ultsonch.2019.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A phenomenological implementation of Classical Nucleation Theory (CNT) is employed to investigate the connection between high intensity focused ultrasound (HIFU) pressure and temperature fields with the energetic requirements of bubble nucleation. As a case study, boiling histotripsy in tissue-mimicking phantoms is modelled. The physics of key components in the implementation of CNT in HIFU conditions such as the derivation of nucleation pressure thresholds and approximations regarding the surface tension of the liquid are reviewed and discussed. Simulations show that the acoustic pressure is the ultimate trigger for millisecond bubble nucleation in boiling histotripsy, however, HIFU heat deposition facilitates nucleation by lowering nucleation pressure thresholds. Nucleation thus occurs preferentially at the regions of highest heat deposition within the HIFU field. This implies that bubble nucleation subsequent to millisecond HIFU heat deposition can take place at temperatures below 100 °C as long as the focal HIFU peak negative pressure exceeds the temperature-dependent nucleation threshold. It is also found that the magnitude of nucleation pressure thresholds decreases with decreasing frequencies. Overall, results indicate that it is not possible to separate thermal and mechanical effects of HIFU in the nucleation of bubbles for timescales of a few milliseconds. This methodology provides a promising framework for studying time and space dependencies of the energetics of bubble nucleation within a HIFU field.
Collapse
Affiliation(s)
| | - Seyyed Reza Haqshenas
- UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nader Saffari
- UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
67
|
Longo KC, Knott EA, Watson RF, Swietlik JF, Vlaisavljevich E, Smolock AR, Xu Z, Cho CS, Mao L, Lee FT, Ziemlewicz TJ. Robotically Assisted Sonic Therapy (RAST) for Noninvasive Hepatic Ablation in a Porcine Model: Mitigation of Body Wall Damage with a Modified Pulse Sequence. Cardiovasc Intervent Radiol 2019; 42:1016-1023. [PMID: 31041527 PMCID: PMC7456499 DOI: 10.1007/s00270-019-02215-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/31/2019] [Indexed: 01/17/2023]
Abstract
PURPOSE Robotically assisted sonic therapy (RAST) is a nonthermal, noninvasive ablation method based on histotripsy. Prior animal studies have demonstrated the ability to create hepatic ablation zones at the focal point of an ultrasound therapy transducer; however, these treatments resulted in thermal damage to the body wall within the path of ultrasound energy delivery. The purpose of this study was to evaluate the efficacy and safety of a pulse sequence intended to mitigate prefocal body wall injury. MATERIALS AND METHODS Healthy swine (n = 6) underwent hepatic RAST (VortxRx software version 1.0.1.3, HistoSonics, Ann Arbor MI) in the right hepatic lobe. A 3.0 cm spherical ablation zone was prescribed for each. Following treatment, animals underwent MRI which was utilized for ablation zone measurement, evaluation of prefocal injury, and assessment of complications. Each animal was euthanized, underwent necropsy, and the tissue was processed for histopathologic analysis of the ablation zone and any other sites concerning for injury. RESULTS No prefocal injury was identified by MRI or necropsy in the body wall or tissues overlying the liver. Ablation zones demonstrated uniform cell destruction, were nearly spherical (sphericity index = 0.988), and corresponded closely to the prescribed size (3.0 × 3.1 × 3.4 cm, p = 0.70, 0.36, and 0.01, respectively). Ablation zones were associated with portal vein (n = 3, one occlusive) and hepatic vein thrombosis (n = 4, one occlusive); however, bile ducts remained patent within ablation zones (n = 2). CONCLUSIONS Hepatic RAST performed with a modified ultrasound pulse sequence in a porcine model can mitigate prefocal body wall injuries while maintaining treatment efficacy. Further study of hepatic RAST appears warranted, particularly in tumor models.
Collapse
Affiliation(s)
- Katherine C Longo
- Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Ave, Madison, WI, 53705, USA.
| | - Emily A Knott
- Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Ave, Madison, WI, 53705, USA
| | - Rao F Watson
- Department of Pathology, University of Wisconsin, Madison, USA
| | - John F Swietlik
- Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Ave, Madison, WI, 53705, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, USA
| | - Amanda R Smolock
- Division of Interventional Radiology, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Ave, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA
- Department of Urology, University of Wisconsin, Madison, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
68
|
Khirallah J, Schmieley R, Demirel E, Rehman TU, Howell J, Durmaz YY, Vlaisavljevich E. Nanoparticle-mediated histotripsy (NMH) using perfluorohexane ‘nanocones’. ACTA ACUST UNITED AC 2019; 64:125018. [DOI: 10.1088/1361-6560/ab207e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
69
|
Liu NN, Khoo BC, Zhang AM. Study on the structure and behaviour of cavitation bubbles generated in a high-intensity focused ultrasound (HIFU) field. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:70. [PMID: 31165267 DOI: 10.1140/epje/i2019-11833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, structures and behaviours of acoustic cavitation bubbles induced by a high-intensity focused ultrasound (HIFU) transducer, operating at its resonance frequency of 250kHz, are experimentally explored with corresponding observations captured by a high-speed video camera system. The experiments were conducted in an open-top Perspex water tank with deionized water, and illumination was provided by a LED spotlight which is placed beside the water tank throughout the whole experiment. Experimental results show that the structure of ultrasonically generated bubbles forms in a conical shape with several concentric bubble rings above the transducer. The distance between the adjacent rings with equal spacing as determined by the driving frequency of the HIFU transducer is experimentally measured and compared with the theoretical value. Then, the distribution of acoustic pressure in the acoustically driven liquid is further studied to investigate the behaviours of cavitation bubbles generated in a HIFU field. Additionally, the analysis of Bjerknes forces on the bubble surface which are induced by the gradient of acoustic pressure and the adjacent oscillating bubbles is quantitatively carried out, and the radius and velocity of a typical larger bubble are measured to characterize the behaviours of ultrasonically induced bubbles. Particularly, the physical phenomena of large bubbles including the coalescence, attraction or repulsion between adjacent bubbles, as well as the jumping of an acoustic bubble from the lower concentric ring level to the higher level, are analysed. The moving trajectory of the bubble is next obtained, and some conclusions are summarized to provide a greater understanding of the complex behaviours of the ultrasonically generated bubbles.
Collapse
Affiliation(s)
- N -N Liu
- College of Shipbuilding Engineering, Harbin Engineering University, 145, Nantong Street, 150001, Harbin, China
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - B -C Khoo
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - A -M Zhang
- College of Shipbuilding Engineering, Harbin Engineering University, 145, Nantong Street, 150001, Harbin, China.
| |
Collapse
|
70
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
71
|
Abstract
This comprehensive review updates the advances in extracorporeal lithotripsy, including improvements in external shockwave lithotripsy and innovations in ultrasound based lithotripsy, such as burst wave lithotripsy, ultrasonic propulsion, and histotripsy. Advances in endoscopic technology and training have changed the surgical approach to nephrolithiasis; however, improvements and innovations in extracorporeal lithotripsy maintain its status as an excellent option in appropriately selected patients.
Collapse
Affiliation(s)
- Tim Large
- Department of Urology, Indiana University, Methodist Hospital, 1801 Senate Boulevard, Suite 220, Indianapolis, IN 46202, USA
| | - Amy E Krambeck
- Department of Urology, Indiana University, Methodist Hospital, 1801 Senate Boulevard, Suite 220, Indianapolis, IN 46202, USA.
| |
Collapse
|
72
|
Patel A, Schoen SJ, Arvanitis CD. Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping. IEEE Trans Biomed Eng 2018; 66:10.1109/TBME.2018.2882337. [PMID: 30475706 PMCID: PMC6690816 DOI: 10.1109/tbme.2018.2882337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultrasonically actuated microbubble oscillations hold great promise for minimally invasive therapeutic interventions. While several preclinical studies have demonstrated the potential of this technology, real-time methods to control the amplitude and type of microbubble oscillations (stable vs inertial acoustic cavitation) and ensure that cavitation occurs within the targeted region are needed for their successful translation to the clinic. In this paper, we propose a real-time nonlinear state controller that uses specific frequency bands of the microbubble acoustic emissions (harmonic, ultra-harmonic, etc.) to control cavitation activity (observer states). To attain both spatial and temporal control of cavitation activity with high signal to noise ratio, we implement a controller using fast frequency-selective passive acoustic mapping (PAM) based on the angular spectrum approach. The controller includes safety states based on the recorded broadband signal level and is able to reduce sensing inaccuracies with the inclusion of multiple frequency bands. In its simplest implementation the controller uses the peak intensity of the passive acoustic maps, reconstructed using the 3rd harmonic (4.896 × 0.019 MHz) of the excitation frequency. Our results show that the proposed real-time nonlinear state controller based on PAM is able to reach the targeted level of observer state (harmonic emissions) in less than 6 seconds and remain within 10 % of tolerance for the duration of the experiment (45 seconds). Similar response was observed using the acoustic emissions from single element passive cavitation detection, albeit with higher susceptibility to background noise and lack of spatial information. Importantly, the proposed PAM-based controller was able to control cavitation activity with spatial selectivity when cavitation existed simultaneously in multiple regions. The robustness of the controller is demonstrated using a range of controller parameters, multiple observer states concurrently (harmonic, ultra-harmonic, and broadband), noise levels (°6 to 12 dB SNR), and bubble concentrations (0.3 to 180 × 103 bubbles per microliter). More research in this direction under preclinical and clinical conditions is warranted.
Collapse
Affiliation(s)
- Arpit Patel
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Scott J. Schoen
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Costas D. Arvanitis
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
73
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
74
|
Alavi Tamaddoni H, Duryea AP, Vlaisavljevich E, Xu Z, Hall TL. Acoustic Methods for Increasing the Cavitation Initiation Pressure Threshold. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2012-2019. [PMID: 30176587 PMCID: PMC6486826 DOI: 10.1109/tuffc.2018.2867793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Histotripsy is a tissue ablation method that utilizes focused, high-amplitude ultrasound to generate a cavitation bubble cloud that mechanically fractionates tissue. Effective histotripsy depends on the initiation, control, and maintenance of cavitation bubble clouds in the targeted area. In this study, we hypothesized that a low-pressure acoustic pulse sequence applied before and/or during histotripsy therapy would increase the cavitation initiation pressure threshold and the growth of cavitation bubble clouds. This technique could shrink or "sharpen" the focal zone during histotripsy to produce more precise and well-defined lesions with minimal collateral damage. It may also be a way to actively protect the soft tissue from cavitation damage during lithotripsy by increasing the pressure threshold for bubble cloud initiation. We applied these low-amplitude acoustic pulse sequences before and during histotripsy treatments with the pulse repetition frequency of 1 and 100 Hz, in three different mediums: water, tissue phantom agarose gel, and bovine liver in vitro. Acoustic backscatter signals and optical imaging were used to detect and monitor the initiation, maintenance, and growth of the resulting cavitation bubble cloud. The results demonstrated that the use of low-amplitude acoustic pulse sequences could increase the cavitation pressure amplitude threshold by 20% in the targeted area.
Collapse
Affiliation(s)
| | | | | | - Zhen Xu
- University of Michigan, Ann Arbor
| | | |
Collapse
|
75
|
Macoskey JJ, Hall TL, Sukovich JR, Choi SW, Ives K, Johnsen E, Cain CA, Xu Z. Soft-Tissue Aberration Correction for Histotripsy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2073-2085. [PMID: 30281443 PMCID: PMC6277030 DOI: 10.1109/tuffc.2018.2872727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Acoustic aberrations caused by natural heterogeneities of biological soft tissue are a substantial problem for histotripsy, a therapeutic ultrasound technique that uses acoustic cavitation to mechanically fractionate and destroy unwanted target tissue without damaging surrounding tissue. These aberrations, primarily caused by sound speed variations, result in severe defocusing of histotripsy pulses, thereby decreasing treatment efficacy. The gold standard for aberration correction (AC) is to place a hydrophone at the desired focal location to directly measure phase aberrations, which is a method that is infeasible in vivo. We hypothesized that the acoustic cavitation emission (ACE) shockwaves from the initial expansion of inertially cavitating microbubbles generated by histotripsy can be used as a point source for AC. In this study, a 500-kHz, 112-element histotripsy phased array capable of transmitting and receiving ultrasound on all channels was used to acquire ACE shockwaves. These shockwaves were first characterized optically and acoustically. It was found that the shockwave pressure increases significantly as the source changes from a single bubble to a dense cavitation cloud. The first arrival of the shockwave received by the histotripsy array was from the outer-most cavitation bubbles located closest to the histotripsy array. Hydrophone and ACE AC methods were then tested on ex vivo porcine abdominal tissue samples. Without AC, the focal pressure is reduced by 49.7% through the abdominal tissue. The hydrophone AC approach recovered 55.5% of the lost pressure. Using the ACE AC method, over 20% of the lost pressure was recovered, and the array power required to induce cavitation was reduced by approximately 31.5% compared to without AC. These results supported our hypothesis that the ACE shockwaves coupled with a histotripsy array with transmit and receive capability can be used for AC for histotripsy through soft tissue.
Collapse
|
76
|
Li Y, Wang R, Lu M, Zhang L, Liu Y, Han D, Wang X, Geng Y, Wan M. Histotripsy Using Fundamental and Second Harmonic Superposition Combined with Hundred-Microsecond Ultrasound Pulses. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2089-2104. [PMID: 30054023 DOI: 10.1016/j.ultrasmedbio.2018.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/23/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
A novel histotripsy approach based on fundamental and second harmonic superposition and incorporating hundred-microsecond-long pulses and two-stage pulse protocol is proposed in this study to rapidly generate mechanically homogenized lesions. Two pulse stages were applied: stage 1, pulses with a pulse duration of 500-600 μs and pulse repetition frequency of 100 Hz, and stage 2, multiple periods, each composed of multiple pulses with the same pulse duration and pulse repetition frequency as those in stage 1, but with an off-time of 600 ms between periods. A custom-designed 1.1/2.2-MHz two-element confocal-annular array, with an f-number of 0.69, and lateral and axial full width at half-maximum pressure dimensions of approximately 1.0 and 6.0 mm, was used. The peak positive/negative pressures at the focus were +22/-7 MPa for 1.1 MHz and +56/-14 MPa with shock wave for 2.2 MHz. To investigate the feasibility of this approach, experiments were designed and performed in tissue-mimicking polyacrylamide gel phantoms with bovine serum albumin and in ex vivo porcine tissues. Cavitation and boiling activities were observed through high-speed photography, and the corresponding acoustic emissions were recorded through passive cavitation detection. Ex vivo experimental results revealed that complete tissue homogeneous regions with regular long tear shape and typical dimensions of 5.80 ± 0.19 mm in axial and 2.20 ± 0.26 mm in lateral were successfully generated in porcine kidney samples. The hematoxylin and eosin staining evidenced that the lesions were thoroughly homogenized and sharply demarcated from untreated regions. These results indicated that the histotripsy approach using fundamental and second harmonic superposition combined with hundred-microsecond pulses and two-stage pulse protocol can efficiently obtain a mechanical disruption of soft tissues with spatial precision, and this approach may have the potential to be developed as a useful tool for precise tumor treatment.
Collapse
Affiliation(s)
- Yujiao Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Linglu Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yanshan Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dan Han
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yizhe Geng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
77
|
Shi A, Xu Z, Lundt J, Tamaddoni HA, Worlikar T, Hall TL. Integrated Histotripsy and Bubble Coalescence Transducer for Rapid Tissue Ablation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1822-1831. [PMID: 30040636 PMCID: PMC6205265 DOI: 10.1109/tuffc.2018.2858546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Residual bubbles produced after collapse of a cavitation cloud provide cavitation nuclei for subsequent cavitation events, causing cavitation to occur repeatedly at the same discrete set of sites. This effect, referred to as cavitation memory, limits the efficiency of histotripsy soft tissue fractionation. Besides passively mitigating cavitation memory by using a low pulse repetition frequency (~1 Hz), an active strategy was developed by our group. In this strategy, low-amplitude ultrasound sequences were used to stimulate coalescence of residual bubbles. The goal of this work is to remove cavitation memory and achieve rapid, homogeneous lesion formation using a single phased array transducer. A 1-MHz integrated histotripsy and bubble coalescing (BC) transducer system with a specialized electronic driving system was built in house. High-amplitude ( MPa) histotripsy pulses and subsequent low-amplitude (~1-2 MPa) BC sequences were applied to a red blood cell tissue-mimicking phantom at a single focal site. Significant reduction of the cavitation memory effect and increase in the fractionation rate were observed by introducing BC sequence. Effects of BC pulsing parameters were further studied. The optimal BC parameters were then utilized to homogenize a mm2 region at high rate.
Collapse
|
78
|
Abstract
From basic studies in understanding the role of signaling pathways to therapeutic applications in engineering new cellular functions, efficient and safe techniques to monitor and modulate molecular targets from cells to organs have been extensively developed. The developmental advancement of engineering devices such as microscope and ultrasonic transducers allows us to investigate biological processes at different scales. Synthetic biology has further emerged recently as a powerful platform for the development of new diagnostic and therapeutic molecular tools. The synergetic amalgamation between engineering tools and synthetic biology has rapidly become a new front in the field of bioengineering and biotechnology. In this review, ultrasound and its generated mechanical perturbation are introduced to serve as a non-invasive engineering approach and, integrated with synthetic biology, to remotely control signaling and genetic activities for the guidance of cellular functions deep inside tissue with high spatiotemporal resolutions. This ultrasound-based approach together with synthetic biology has been applied in immunotherapy, neuroscience, and gene delivery, paving the way for the development of next-generation therapeutic tools.
Collapse
Affiliation(s)
- Yijia Pan
- Department of Bioengineering, University of California, San Diego
| | - Sangpil Yoon
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
- Department of Biomedical Engineering, University of Southern California
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego
| |
Collapse
|
79
|
Worlikar T, Vlaisavljevich E, Gerhardson T, Greve J, Wan S, Kuruvilla S, Lundt J, Ives K, Hall T, Welling TH, Lee F, Xu Z. Histotripsy for Non-Invasive Ablation of Hepatocellular Carcinoma (HCC) Tumor in a Subcutaneous Xenograft Murine Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:6064-6067. [PMID: 30441719 DOI: 10.1109/embc.2018.8513650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histotripsy fractionates tissue through a mechanical, non-invasive ultrasonic ablation process that precisely controls acoustic cavitation while utilizing real-time ultrasound (US) imaging guidance. This study investigates the potential, feasibility and tumor volume reduction effects of histotripsy for liver cancer ablation in a subcutaneous in vivo murine Hepatocellular Carcinoma (HCC) model. Hep3B tumors were generated in the right flanks of 14 NSG and 7 NOD-SCID mice. The mice were grouped as follows: A (acute, NSG with n=9 treatment and n=1 control), B (chronic, NSG with n=2 treatment and n=2 control) and C (chronic NODSCID, with n=6 treatment and n=1 control). Treatment was performed when the tumor diameters reached >5 mm. 1-2 cycle histotripsy pulses at 100 Hz PRF (p- >30 MPa) were delivered using a custom built 1 MHz therapy transducer attached to a motorized positioner, which scanned the transducer focus to traverse the targeted tumor volume, guided by real-time US imaging. Tumor ablation effectiveness was assessed by obtaining T1, T2 and T2* weighted MR images. Post euthanasia, treated tumor, brain, and lung tissue samples were harvested for histology. Histology of acute group A showed fractionation of targeted region with a sharp boundary separating it from untreated tissue. Groups B and C demonstrated effective tumor volume reduction post treatment on MRI as the homogenate and edema were resorbed within 23 weeks. However, as the tumor was subcutaneous, it was not possible to set adequate treatment margin and since the mice were immune-compromised, residual viable tumor cells eventually developed into tumor regrowth at 3-9 weeks after histotripsy. Groups B and C showed no signs of metastasis in the lung and brain. Our study successfully demonstrated the potential of histotripsy for non-invasive HCC ablation in a subcutaneous murine model. Additional work is ongoing to study the response of histotripsy in immune-competent orthotopic liver tumor models.
Collapse
|
80
|
Han M, Wang N, Guo S, Chang N, Lu S, Wan M. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU. ULTRASONICS SONOCHEMISTRY 2018; 45:78-85. [PMID: 29705328 DOI: 10.1016/j.ultsonch.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Na Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
81
|
Smolock AR, Cristescu MM, Vlaisavljevich E, Gendron-Fitzpatrick A, Green C, Cannata J, Ziemlewicz TJ, Lee FT. Robotically Assisted Sonic Therapy as a Noninvasive Nonthermal Ablation Modality: Proof of Concept in a Porcine Liver Model. Radiology 2018; 287:485-493. [DOI: 10.1148/radiol.2018171544] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amanda R. Smolock
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Mircea M. Cristescu
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Eli Vlaisavljevich
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Annette Gendron-Fitzpatrick
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Chelsey Green
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Jonathan Cannata
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Timothy J. Ziemlewicz
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| | - Fred T. Lee
- From the Department of Radiology (A.R.S., M.M.C., T.J.Z., F.T.L.), Research Animal Resource Center (A.G.F.), Department of Statistics (C.G.), and Department of Biomedical Engineering (F.T.L.), University of Wisconsin, 600 Highland Ave, Madison, Wis 53792; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic and State University, Blacksburg, Va (E.V.); and HistoSonics, Ann Arbor, Mich (E.V., J.C.)
| |
Collapse
|
82
|
Wang M, Zhou Y. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. ULTRASONICS SONOCHEMISTRY 2018; 42:327-338. [PMID: 29429677 DOI: 10.1016/j.ultsonch.2017.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Inertial cavitation thresholds, which are defined as bubble growth by 2-fold from the equilibrium radius, by two types of ultrasonic excitation (at the classical single-frequency mode and dual-frequency mode) were calculated. The effect of the dual-frequency excitation on the inertial cavitation threshold in the different surrounding media (fluid and tissue) was studied, and the paramount parameters (driving frequency, amplitude ratio, phase difference, and frequency ratio) were also optimized to maximize the inertial cavitation. The numerical prediction confirms the previous experimental results that the dual-frequency excitation is capable of reducing the inertial cavitation threshold in comparison to the single-frequency one at the same output power. The dual-frequency excitation at the high frequency (i.e., 3.1 + 3.5 MHz vs. 1.1 + 1.3 MHz) is preferred in this study. The simulation results suggest that the same amplitudes of individual components, zero phase difference, and large frequency difference are beneficial for enhancing the bubble cavitation. Overall, this work may provide a theoretical model for further investigation of dual-frequency excitation and guidance of its applications for a better outcome.
Collapse
Affiliation(s)
- Mingjun Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore; Motor Group, R&D, ASM Pacific Technology Ltd, 3/F, Watson Centre, 16-22 Kung Yip St, Kwai Chung, Hong Kong, PR China.
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore
| |
Collapse
|
83
|
Macoskey JJ, Choi SW, Hall TL, Vlaisavljevich E, Lundt JE, Lee FT, Johnsen E, Cain CA, Xu Z. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation. Phys Med Biol 2018; 63:055013. [PMID: 29424711 DOI: 10.1088/1361-6560/aaae3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2 = 0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.
Collapse
Affiliation(s)
- J J Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhou Y, Wang X. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material. ULTRASONICS 2018; 84:296-309. [PMID: 29182946 DOI: 10.1016/j.ultras.2017.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/13/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Cavitation histotripsy with the short pulse duration (PD) but high pulse repetition frequency (PRF) disintegrates the tissue at a fluid interface. However, longer PD and lower PRF are used in the other focused ultrasound applications, where the acoustic radiation force, streaming, and cavitation are different, and their effects on erosion are unknown. In this study, the erosion at the surface of phantom/ex vivo tissue and the characteristics of induced bubble cloud captured by high-speed photography, passive cavitation detection, and light transmission during histotripsy exposure at varied PDs and PRFs but the same duty cycle were compared. The peak negative pressure of 6.6 MPa at the PD of 20 ms and PRF of 1 Hz began to erode the phantom, which becomes more significant with the increase of peak negative pressure, PD, and interval time between bursts. The increase of the PRF from 1 Hz to 1000 Hz, while the decrease of the PD from 20 ms to 20 μs (duty cycle of 2%) at the same energy was delivered to the gel phantom immersed in the degassed water led to the decrease of erosion volume but a slight increase of the erosion area and smoother surface. Low PRF and long PD produce the significant tissue deformation, acoustic wave refocusing, confinement of bubbles in a conical region, and more bubble dissolution after the collapse for the high acoustic scattering and light transmission signals. In comparison, high PRF and low PD produce a wide distribution of bubbles with only little wave refocusing at the beginning of cavitation histotripsy and high inertial cavitation. Acoustic emission dose has a good correlation with the erosion volume. The erosion on the porcine kidney at the varied PRFs and PDs with the same energy output showed similar trends as those in the phantom but at a slow rate. In summary, the PRF and PD are important parameters for the cavitation histotripsy-induced erosion at the interface of fluid and soft material, and they should be optimized for the best outcome.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Xiaotong Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
85
|
Macoskey JJ, Zhang X, Hall TL, Shi J, Beig SA, Johnsen E, Lee FT, Cain CA, Xu Z. Bubble-Induced Color Doppler Feedback Correlates with Histotripsy-Induced Destruction of Structural Components in Liver Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:602-612. [PMID: 29329687 PMCID: PMC5801099 DOI: 10.1016/j.ultrasmedbio.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 06/01/2023]
Abstract
Bubble-induced color Doppler (BCD) is a histotripsy-therapy monitoring technique that uses Doppler ultrasound to track the motion of residual cavitation nuclei that persist after the collapse of the histotripsy bubble cloud. In this study, BCD is used to monitor tissue fractionation during histotripsy tissue therapy, and the BCD signal is correlated with the destruction of structural and non-structural components identified histologically to further understand how BCD monitors the extent of treatment. A 500-kHz, 112-element phased histotripsy array is used to generate approximately 6- × 6- × 7-mm lesions within ex vivo bovine liver tissue by scanning more than 219 locations with 30-1000 pulses per location. A 128-element L7-4 imaging probe is used to acquire BCD signals during all treatments. The BCD signal is then quantitatively analyzed using the time-to-peak rebound velocity (tprv) metric. Using the Pearson correlation coefficient, the tprv is compared with histologic analytics of lesions generated by various numbers of pulses using a significance level of 0.001. Histologic analytics in this study include viable cell count, reticulin-stained type III collagen area and trichrome-stained type I collagen area. It is found that the tprv metric has a statistically significant correlation with the change in reticulin-stained type III collagen area with a Pearson correlation coefficient of -0.94 (p <0.001), indicating that changes in BCD are more likely because of destruction of the structural components of tissue.
Collapse
Affiliation(s)
- Jonathan J Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Xi Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Charles A Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
86
|
Koulakis JP, Rouch J, Huynh N, Dubrovsky G, Dunn JCY, Putterman S. Interstitial Matrix Prevents Therapeutic Ultrasound From Causing Inertial Cavitation in Tumescent Subcutaneous Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:177-186. [PMID: 29096999 DOI: 10.1016/j.ultrasmedbio.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
We search for cavitation in tumescent subcutaneous tissue of a live pig under application of pulsed, 1-MHz ultrasound at 8 W cm-2 spatial peak and pulse-averaged intensity. We find no evidence of broadband acoustic emission indicative of inertial cavitation. These acoustic parameters are representative of those used in external-ultrasound-assisted lipoplasty and in physical therapy and our null result brings into question the role of cavitation in those applications. A comparison of broadband acoustic emission from a suspension of ultrasound contrast agent in bulk water with a suspension injected subcutaneously indicates that the interstitial matrix suppresses cavitation and provides an additional mechanism behind the apparent lack of in-vivo cavitation to supplement the absence of nuclei explanation offered in the literature. We also find a short-lived cavitation signal in normal, non-tumesced tissue that disappears after the first pulse, consistent with cavitation nuclei depletion in vivo.
Collapse
Affiliation(s)
- John P Koulakis
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, USA.
| | - Joshua Rouch
- Department of Surgery, Division of Pediatric Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Nhan Huynh
- Department of Surgery, Division of Pediatric Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Genia Dubrovsky
- Department of Surgery, Division of Pediatric Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - James C Y Dunn
- Department of Surgery, Division of Pediatric Surgery, Stanford Children's Health, Stanford, California, USA
| | - Seth Putterman
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
87
|
Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. Catheter Hydrophone Aberration Correction for Transcranial Histotripsy Treatment of Intracerebral Hemorrhage: Proof-of-Concept. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1684-1697. [PMID: 28880166 PMCID: PMC5681355 DOI: 10.1109/tuffc.2017.2748050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment. Histotripsy pulses were delivered through an excised human skullcap using a 256-element, 500-kHz hemisphere array transducer with a 15-cm focal distance. A custom hydrophone was fabricated using a mm PZT-5h crystal interfaced to a coaxial cable and integrated into a drainage catheter. An AC algorithm was developed to correct the aberrations introduced between histotripsy pulses from each array element. An increase in focal pressure of up to 60% was achieved at the geometric focus and 27%-62% across a range of electronic steering locations. The sagittal and axial -6-dB beam widths decreased from 4.6 to 2.2 mm in the sagittal direction and 8 to 4.4 mm in the axial direction, compared to 1.5 and 3 mm in the absence of aberration. After performing AC, lesions with diameters ranging from 0.24 to 1.35 mm were generated using electronic steering over a mm grid in a tissue-mimicking phantom. An average volume of 4.07 ± 0.91 mL was liquefied and drained after using electronic steering to treat a 4.2-mL spherical volume in in vitro bovine clots through the skullcap.
Collapse
|
88
|
Maxwell AD, Yuldashev PV, Kreider W, Khokhlova TD, Schade GR, Hall TL, Sapozhnikov OA, Bailey MR, Khokhlova VA. A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1542-1557. [PMID: 28809681 PMCID: PMC5871228 DOI: 10.1109/tuffc.2017.2739649] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Boiling histotripsy (BH) is a method of focused ultrasound surgery that noninvasively applies millisecond-length pulses with high-amplitude shock fronts to generate liquefied lesions in tissue. Such a technique requires unique outputs compared to a focused ultrasound thermal therapy apparatus, particularly to achieve high in situ pressure levels through intervening tissue. This paper describes the design and characterization of a system capable of producing the necessary pressure to transcutaneously administer BH therapy through clinically relevant overlying tissue paths using pulses with duration up to 10 ms. A high-voltage electronic pulser was constructed to drive a 1-MHz focused ultrasound transducer to produce shock waves with amplitude capable of generating boiling within the pulse duration in tissue. The system output was characterized by numerical modeling with the 3-D Westervelt equation using boundary conditions established by acoustic holography measurements of the source field. Such simulations were found to be in agreement with directly measured focal waveforms. An existing derating method for nonlinear therapeutic fields was used to estimate in situ pressure levels at different tissue depths. The system was tested in ex vivo bovine liver samples to create BH lesions at depths up to 7 cm. Lesions were also created through excised porcine body wall (skin, adipose, and muscle) with 3-5 cm thickness. These results indicate that the system is capable of producing the necessary output for transcutaneous ablation with BH.
Collapse
|
89
|
Movahed P, Kreider W, Maxwell AD, Dunmire B, Freund JB. Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2318-2328. [PMID: 28739379 PMCID: PMC5562535 DOI: 10.1016/j.ultrasmedbio.2017.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Therapeutic ultrasound can drive bubble activity that damages soft tissues. To study the potential mechanisms of such injury, transparent agar tissue-mimicking phantoms were subjected to multiple pressure wave bursts of the kind being considered specifically for burst wave lithotripsy. A high-speed camera recorded bubble activity during each pulse. Various agar concentrations were used to alter the phantom's mechanical properties, especially its stiffness, which was varied by a factor of 3.5. However, the maximum observed bubble radius was insensitive to stiffness. During 1000 wave bursts of a candidate burst wave lithotripsy treatment, bubbles appeared continuously in a region that expanded slowly, primarily toward the transducer. Denser bubble clouds are formed at higher pulse repetition frequency. The specific observations are used to inform the incorporation of damage mechanisms into cavitation models for soft materials.
Collapse
Affiliation(s)
- Pooya Movahed
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Adam D Maxwell
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA; Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Barbrina Dunmire
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Jonathan B Freund
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
90
|
Bigelow TA, Thomas CL, Wu H, Itani KMF. Histotripsy Treatment of S. Aureus Biofilms on Surgical Mesh Samples Under Varying Pulse Durations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017. [PMID: 28650808 PMCID: PMC5819746 DOI: 10.1109/tuffc.2017.2718841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Prior studies demonstrated that histotripsy generated by high-intensity tone bursts to excite a bubble cloud adjacent to a medical implant can destroy the bacteria biofilm responsible for the infection. The goal of this paper was to treat Staphylococcus aureus (S. aureus) biofilms on surgical mesh samples while varying the number of cycles in the tone burst to minimize collateral tissue damage while maximizing therapy effectiveness. S. aureus biofilms were grown on 1-cm square surgical mesh samples. The biofilms were then treated in vitro using a spherically focused transducer (1.1 MHz, 12.9-cm focal length, 12.7-cm diameter) using either a sham exposure or histotripsy pulses with tone burst durations of 3, 5, or 10 cycles (pulse repetition frequency of 333 Hz, peak compressional pressure of 150 MPa, peak rarefactional pressure of 17 MPa). After treatment, the number of colony forming units (CFUs) on the mesh and the surrounding gel was independently determined. The number of CFUs remaining on the mesh for the sham exposure (4.8 ± 0.9-log10) (sample mean ± sample standard deviation-log10 from 15 observations) was statistically significantly different from the 3-cycle (1.9 ± 1.5-log10), 5-cycle (2.2 ± 1.1-log10), and 10-cycle exposures (1 ± 1.5-log10) with an average reduction in the number of CFUs of 3.1-log10. The numbers of CFUs released into the gel for both the sham and exposure groups were the same within a bound of 0.86-log10, but this interval was too large to deduce the fate of the bacteria in the biofilm following the treatment.
Collapse
|
91
|
Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. Effect of Frequency and Focal Spacing on Transcranial Histotripsy Clot Liquefaction, Using Electronic Focal Steering. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2302-2317. [PMID: 28716432 PMCID: PMC5580808 DOI: 10.1016/j.ultrasmedbio.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 05/08/2023]
Abstract
This in vitro study investigated the effects of ultrasound frequency and focal spacing on blood clot liquefaction via transcranial histotripsy. Histotripsy pulses were delivered using two 256-element hemispherical transducers of different frequency (250 and 500 kHz) with 30-cm aperture diameters. A 4-cm diameter spherical volume of in vitro blood clot was treated through 3 excised human skullcaps by electronically steering the focus with frequency proportional focal spacing: λ/2, 2 λ/3 and λ with 50 pulses per location. The pulse repetition frequency across the volume was 200 Hz, corresponding to a duty cycle of 0.08% (250 kHz) and 0.04% (500 kHz) for each focal location. Skull heating during treatment was monitored. Liquefied clot was drained via catheter and syringe in the range of 6-59 mL in 0.9-42.4 min. The fastest rate was 16.6 mL/min. The best parameter combination was λ spacing at 500 kHz, which produced large liquefaction through 3 skullcaps (23.1 ± 4.0, 37.1 ± 16.9 and 25.4 ± 16.9 mL) with the fast rates (3.2 ± 0.6, 5.1 ± 2.3 and 3.5 ± 0.4 mL/min). The temperature rise through the 3 skullcaps remained below 4°C.
Collapse
Affiliation(s)
- Tyler Gerhardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya S Pandey
- Department of Neurologic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
92
|
Vlaisavljevich E, Owens G, Lundt J, Teofilovic D, Ives K, Duryea A, Bertolina J, Welling TH, Xu Z. Non-Invasive Liver Ablation Using Histotripsy: Preclinical Safety Study in an In Vivo Porcine Model. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1237-1251. [PMID: 28318889 DOI: 10.1016/j.ultrasmedbio.2017.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
This study investigates the safety profile for use of histotripsy, a non-invasive ultrasonic ablation method currently being developed for the treatment of liver cancer, for liver ablation in an in vivo porcine model. Histotripsy treatments were applied to the liver and hepatic veins of 22 porcine subjects, with half of the subjects receiving systemic heparinization. Vital signs (heart rate, blood pressure, temperature, electrocardiogram and SpO2) were monitored throughout the procedure and for 1 h post-treatment. Blood was drawn at six points during the experiment to analyze blood gases, liver function and free hemoglobin levels. All treatments were guided and monitored by real-time ultrasound imaging. After treatment, the tissue was harvested for histological analysis. Results indicated that histotripsy generated well-defined lesions inside the liver and around the treated hepatic veins of all subjects in both treatment groups. Vital signs and blood analysis revealed that animals responded well to histotripsy, with all animals surviving the treatment. One animal in the non-heparinized group had a transient increase in pH and decreases in blood pressure, heart rate and PCO2 during the 15-min vessel treatment, with these changes returning to baseline levels soon after the treatment. Overall, the results indicate that histotripsy can safely be performed on the liver without the need for systemic heparinization, even in regions containing large hepatic vessels, supporting its future use for the treatment of liver cancer.
Collapse
Affiliation(s)
- Eli Vlaisavljevich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; HistoSonics, Inc., Ann Arbor, Michigan, USA.
| | - Gabe Owens
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Kimberly Ives
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
93
|
Arnal B, Baranger J, Demene C, Tanter M, Pernot M. In vivo real-time cavitation imaging in moving organs. Phys Med Biol 2017; 62:843-857. [DOI: 10.1088/1361-6560/aa4fe8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
94
|
Ellens NPK, Partanen A. Preclinical MRI-Guided Focused Ultrasound: A Review of Systems and Current Practices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:291-305. [PMID: 27662675 DOI: 10.1109/tuffc.2016.2609238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective preclinical research is a vital component in the development of MRI-guided focused ultrasound (MRgFUS) and its translation to clinic. In this review, we seek to outline the challenges at hand for effective preclinical research, survey different solutions, and underline best practices. Furthermore, we summarize efforts to build and characterize dedicated preclinical MRgFUS equipment, including lab prototypes and available commercial products. Finally, we discuss constraints and considerations specific to using clinical MRgFUS equipment in preclinical research. Specifically, we examine additional hardware that has been used to adapt clinical MRgFUS equipment to better position, constrain, and image preclinical subjects, as well as software solutions that have been used to extend the potential and capabilities of clinical devices.
Collapse
|
95
|
Vlaisavljevich E, Gerhardson T, Hall T, Xu Z. Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. Phys Med Biol 2016; 62:1269-1290. [PMID: 27995900 DOI: 10.1088/1361-6560/aa54c7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Although previous work has provided significant insight into the process of intrinsic threshold histotripsy, the majority of these studies have used highly focused (i.e. f-number < 0.6) transducers. In this study, we investigate the effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior using a 500 kHz array transducer, with the effective f-number of the transducer varied from 0.51 to 0.89. The intrinsic threshold did not significantly change with f-number, with the threshold remaining ~27-30 MPa for all conditions. The predictability of intrinsic threshold histotripsy was further demonstrated by experiments comparing the predicted and experimentally measured bubble cloud dimensions, with results showing close agreement for all f-numbers. Finally, the effects of f-number on 'bubble density' and tissue fractionation efficiency were investigated, with results supporting the hypothesis that the density of the bubbles within the bubble cloud significantly decreases at higher f-numbers, resulting in decreased fractionation efficiency. Overall, this study provides significant insight into the effects of f-number on intrinsic threshold histotripsy that will help to guide the development of histotripsy for specific clinical applications.
Collapse
Affiliation(s)
- Eli Vlaisavljevich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
96
|
Guan Y, Lu M, Li Y, Liu F, Gao Y, Dong T, Wan M. Histotripsy Produced by Hundred-Microsecond-Long Focused Ultrasonic Pulses: A Preliminary Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2232-2244. [PMID: 27318864 DOI: 10.1016/j.ultrasmedbio.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/09/2016] [Accepted: 01/27/2016] [Indexed: 06/06/2023]
Abstract
A new strategy is proposed in this study to rapidly generate mechanical homogenized lesions using hundred-microsecond-long pulses. The pulsing scheme was divided into two stages: generating sufficient bubble seed nuclei via acceleration by boiling bubbles and efficiently forming a mechanically homogenized and regularly shaped lesion with a homogenate inside via inertial cavitation. The duty cycle was set at 4.9%/3.9% in stage 1 and 1%/0.88% in stage 2 by changing the pulse duration (PD) and off-time independently. The pulse sequence was 500-μs/400-μs PD with a 100-Hz pulse repetition frequency (PRF) in stage 1, followed by 500-μs/400-μs PD with a 100-Hz PRF and 200-μs PD with a 200-Hz PRF in stage 2. Experiments were conducted on polyacrylamide phantoms with bovine serum albumin and on ex vivo porcine kidney tissues using a single-element 1.06-MHz transducer at an 8-MPa peak negative pressure with shock waves. The lesion evolution and dynamic elastic modulus variation in the phantoms and the histology in the tissue samples were investigated. The results indicate that the two-stage treatment using hundred-microsecond-long pulses can efficiently produce mechanically homogenized lesions with smooth borders, long tear shapes and the total homogenate inside. The time to generate a single mechanically homogenized lesion is shortened from >50 s to 17.1 s.
Collapse
Affiliation(s)
- Yubo Guan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Yujiao Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fenfen Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tengju Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
97
|
Yin H, Chang N, Xu S, Wan M. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU. ULTRASONICS SONOCHEMISTRY 2016; 32:158-164. [PMID: 27150756 DOI: 10.1016/j.ultsonch.2016.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.
Collapse
Affiliation(s)
- Hui Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China.
| |
Collapse
|
98
|
Villemain O, Kwiecinski W, Bel A, Robin J, Bruneval P, Arnal B, Tanter M, Pernot M, Messas E. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography. Eur Heart J Cardiovasc Imaging 2016; 17:1101-7. [DOI: 10.1093/ehjci/jew145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/10/2016] [Indexed: 01/12/2023] Open
|
99
|
Vlaisavljevich E, Greve J, Cheng X, Ives K, Shi J, Jin L, Arvidson A, Hall T, Welling TH, Owens G, Roberts W, Xu Z. Non-Invasive Ultrasound Liver Ablation Using Histotripsy: Chronic Study in an In Vivo Rodent Model. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1890-902. [PMID: 27140521 PMCID: PMC4912895 DOI: 10.1016/j.ultrasmedbio.2016.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/17/2016] [Accepted: 03/20/2016] [Indexed: 05/15/2023]
Abstract
Hepatocellular carcinoma, or liver cancer, has the fastest growing incidence among cancers in the United States. Current liver ablation methods are thermal-based and share limitations due to the heat sink effect from the blood flow through the highly vascular liver. Recently, our group has investigated histotripsy as a non-invasive liver cancer ablation method. Histotripsy is a non-thermal ultrasonic ablation method that fractionates tissue through the control of acoustic cavitation. Previous experiments in an in vivo porcine model show that histotripsy can create well-confined lesions in the liver through ribcage obstruction without damaging the overlying ribs and other tissues. Histotripsy can also completely fractionate liver tissue surrounding major vessels while preserving the vessels. In this study, we investigate the long-term effects of histotripsy liver ablation in a rodent model. We hypothesize that the fractionated histotripsy lesion will be resorbed by the liver, resulting in effective tissue healing. To test this hypothesis, the livers of 20 healthy rats were treated with histotripsy using an 8-element 1-MHz histotripsy transducer. Rats were euthanized after 0, 3, 7, 14 and 28 days (n = 4). In vivo and post mortem results showed histotripsy lesions were successfully generated through the intact abdomen in all 20 rats. Magnetic resonance imaging found primarily negative contrast on day 0, positive contrast on day 3 and rapid normalization of signal intensity thereafter (i.e., signal amplitude returned to baseline levels seen in healthy liver tissue). Histologically, lesions were completely fractionated into an acellular homogenate. The lesions had a maximum cross-sectional area of 17.2 ± 1.9 mm(2) and sharp boundaries between the lesion and the healthy surrounding tissue after treatment. As the animals recovered after treatment, the histotripsy tissue homogenate was almost completely replaced by regenerated liver parenchyma, resulting in a small fibrous lesion (<1 mm(2) maximum cross-section) remaining after 28 d. The results of this study suggest that histotripsy has potential as a non-invasive liver ablation method for effective tissue removal.
Collapse
Affiliation(s)
- Eli Vlaisavljevich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Joan Greve
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xu Cheng
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Kimberly Ives
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lifang Jin
- Department of Ultrasound, Shanghai Jiaotong University, Shanghai, China
| | - Alexa Arvidson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tim Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gabe Owens
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - William Roberts
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
100
|
Bader KB, Crowe MJ, Raymond JL, Holland CK. Effect of Frequency-Dependent Attenuation on Predicted Histotripsy Waveforms in Tissue-Mimicking Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1701-5. [PMID: 27108036 PMCID: PMC4899262 DOI: 10.1016/j.ultrasmedbio.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/07/2016] [Accepted: 02/14/2016] [Indexed: 05/19/2023]
Abstract
Tissue-mimicking phantoms are employed for the assessment of shocked histotripsy pulses in vitro. These broadband shock waves are critical for tissue ablation and are influenced by the frequency-dependent attenuation of the medium. The density, sound speed and attenuation spectra (2-25 MHz) were measured for phantoms that mimic key histotripsy targets. The influence of non-linear propagation relative to the attenuation was described in terms of Gol'dberg number. An expression was derived to estimate the bandwidth of shocked histotripsy pulses for power law-dependent attenuation. The expression is independent of the fundamental frequency of the histotripsy pulse for linear frequency-dependent attenuation.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael J Crowe
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jason L Raymond
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|