51
|
Blesken CC, Bator I, Eberlein C, Heipieper HJ, Tiso T, Blank LM. Genetic Cell-Surface Modification for Optimized Foam Fractionation. Front Bioeng Biotechnol 2020; 8:572892. [PMID: 33195133 PMCID: PMC7658403 DOI: 10.3389/fbioe.2020.572892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Rhamnolipids are among the glycolipids that have been investigated intensively in the last decades, mostly produced by the facultative pathogen Pseudomonas aeruginosa using plant oils as carbon source and antifoam agent. Simplification of downstream processing is envisaged using hydrophilic carbon sources, such as glucose, employing recombinant non-pathogenic Pseudomonas putida KT2440 for rhamnolipid or 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA, i.e., rhamnolipid precursors) production. However, during scale-up of the cultivation from shake flask to bioreactor, excessive foam formation hinders the use of standard fermentation protocols. In this study, the foam was guided from the reactor to a foam fractionation column to separate biosurfactants from medium and bacterial cells. Applying this integrated unit operation, the space-time yield (STY) for rhamnolipid synthesis could be increased by a factor of 2.8 (STY = 0.17 gRL/L·h) compared to the production in shake flasks. The accumulation of bacteria at the gas-liquid interface of the foam resulted in removal of whole-cell biocatalyst from the reactor with the strong consequence of reduced rhamnolipid production. To diminish the accumulation of bacteria at the gas-liquid interface, we deleted genes encoding cell-surface structures, focusing on hydrophobic proteins present on P. putida KT2440. Strains lacking, e.g., the flagellum, fimbriae, exopolysaccharides, and specific surface proteins, were tested for cell surface hydrophobicity and foam adsorption. Without flagellum or the large adhesion protein F (LapF), foam enrichment of these modified P. putida KT2440 was reduced by 23 and 51%, respectively. In a bioreactor cultivation of the non-motile strain with integrated rhamnolipid production genes, biomass enrichment in the foam was reduced by 46% compared to the reference strain. The intensification of rhamnolipid production from hydrophilic carbon sources presented here is an example for integrated strain and process engineering. This approach will become routine in the development of whole-cell catalysts for the envisaged bioeconomy. The results are discussed in the context of the importance of interacting strain and process engineering early in the development of bioprocesses.
Collapse
Affiliation(s)
- Christian C. Blesken
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
| | - Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
52
|
Rapid evolution destabilizes species interactions in a fluctuating environment. ISME JOURNAL 2020; 15:450-460. [PMID: 33024292 DOI: 10.1038/s41396-020-00787-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Positive species interactions underlie the functioning of ecosystems. Given their importance, it is crucial to understand the stability of positive interactions over evolutionary timescales, in both constant and fluctuating environments; e.g., environments interrupted with periods of competition. We addressed this question using a two-species microbial system in which we modulated interactions according to the nutrient provided. We evolved in parallel four experimental replicates of species growing in isolation or together in consortia for 200 generations in both a constant and fluctuating environment with daily changes between commensalism and competition. We sequenced full genomes of single clones isolated at different time points during the experiment. We found that the two species coexisted over 200 generations in the constant commensal environment. In contrast, in the fluctuating environment, coexistence broke down when one of the species went extinct in two out of four cases. We showed that extinction was highly deterministic: when we replayed the evolution experiment from an intermediate time point we repeatably reproduced species extinction. We further show that these dynamics were driven by adaptive mutations in a small set of genes. In conclusion, in a fluctuating environment, rapid evolution destabilizes the long-term stability of positive pairwise interactions.
Collapse
|
53
|
Martínez-García E, Fraile S, Rodríguez Espeso D, Vecchietti D, Bertoni G, de Lorenzo V. Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain. ACS Synth Biol 2020; 9:2477-2492. [PMID: 32786355 DOI: 10.1021/acssynbio.0c00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sofía Fraile
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Rodríguez Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Davide Vecchietti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
54
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
55
|
Man Z, Guo J, Zhang Y, Cai Z. Regulation of intracellular ATP supply and its application in industrial biotechnology. Crit Rev Biotechnol 2020; 40:1151-1162. [PMID: 32862717 DOI: 10.1080/07388551.2020.1813071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient cell factories are the core of industrial biotechnology. In recent years, synthetic biology develops rapidly, and more and more modified microbial cell factories are employed in industrial biotechnology. ATP plays vital roles in biosynthesis, metabolism regulation, and cellular maintenance. Regulating cellular ATP supply can effectively modify cellular metabolism. This paper presents a review of recent studies on the regulation of the intracellular ATP supply and its application in industrial biotechnology. Detailed strategies for regulating the ATP supply and the resulting impact on bioproduction are introduced. It is observed that regulating the cellular ATP supply can provide great possibilities for making microbial cells into efficient factories. Future perspectives for further understanding the function of ATP are also discussed.
Collapse
Affiliation(s)
- Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China
| | - Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Yingyang Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| |
Collapse
|
56
|
Tiso T, Ihling N, Kubicki S, Biselli A, Schonhoff A, Bator I, Thies S, Karmainski T, Kruth S, Willenbrink AL, Loeschcke A, Zapp P, Jupke A, Jaeger KE, Büchs J, Blank LM. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Front Bioeng Biotechnol 2020; 8:976. [PMID: 32974309 PMCID: PMC7468518 DOI: 10.3389/fbioe.2020.00976] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid-liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.
Collapse
Affiliation(s)
- Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nina Ihling
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Sonja Kubicki
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andreas Biselli
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Andreas Schonhoff
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Isabel Bator
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stephan Thies
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Karmainski
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sebastian Kruth
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anna-Lena Willenbrink
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Anita Loeschcke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Petra Zapp
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Jupke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
57
|
Suárez GA, Dugan KR, Renda BA, Leonard SP, Gangavarapu LS, Barrick JE. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Res 2020; 48:4585-4600. [PMID: 32232367 PMCID: PMC7192602 DOI: 10.1093/nar/gkaa204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 18 successful multiple-gene deletions ranged in size from 21 to 183 kb and collectively accounted for 23.4% of its genome. The success of each multiple-gene deletion attempt could only be partially predicted on the basis of an existing collection of viable ADP1 single-gene deletion strains and a new transposon insertion sequencing (Tn-Seq) dataset that we generated. We further show that ADP1’s native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.
Collapse
Affiliation(s)
- Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kyle R Dugan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian A Renda
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lakshmi Suryateja Gangavarapu
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
58
|
Wang J, Ma W, Fang Y, Zhang H, Liang H, Li Y, Wang X. Truncating the Structure of Lipopolysaccharide in Escherichia coli Can Effectively Improve Poly-3-hydroxybutyrate Production. ACS Synth Biol 2020; 9:1201-1215. [PMID: 32302096 DOI: 10.1021/acssynbio.0c00071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly-3-hydroxybutyrate is an environmentally friendly polymer with many promising applications and can be produced in Escherichia coli cells after overexpressing the heterologous gene cluster phaCAB. In this study, we found that truncating the structure of lipopolysaccharide in E. coli can effectively enhance poly-3-hydroxybutyrate production. E. coli mutant strains WJW00, WJD00, and WJJ00 were constructed by deleting rfaD from E. coli strain W3110, DH5α, and JM109, respectively. Compared to the controls W3110/pDXW-8-phaCAB, DH5a/pDXW-8-phaCAB, and JM109/pDXW-8-phaCAB, the yield of poly-3-hydroxybutyrate in WJW00/pDXW-8-phaCAB, WJD00/pDXW-8-phaCAB, and WJJ00/pDXW-8-phaCAB cells increased by 200%, 81.5%, and 75.6%, respectively, and the conversion rate of glucose to poly-3-hydroxybutyrate was increased by ∼250%. Further analysis revealed that LPS truncation in E. coli rebalanced carbon and nitrogen metabolism, increased the levels of acetyl-CoA, γ-aminobutyric acid, NADPH, NADH, and ATP, and decreased the levels of organic acids and flagella, resulting in the high ratio of carbon to nitrogen. These metabolic changes in these E. coli mutants led to the significant increase of poly-3-hydroxybutyrate production.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Hailing Zhang
- Department of Biotechnology Engineering, College of Life Science, Yantai University, Shandong, 264005, China
| | - Hao Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
59
|
Du B, Gu Y, Chen G, Wang G, Liu L. Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110340. [PMID: 32135377 DOI: 10.1016/j.ecoenv.2020.110340] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Flagellar motility enables resource acquisition and noxious substance evasion, underpinning imperative ecological processes in aquatic environments. Yet the underlying mechanism that links flagellar motility with surface attachment and thereby biofilm formation, especially in conditions of limited resource availability, remains elusive. Here, we present experimental and modeling evidence to unveil bacterial motility and biofilm formation under nutrient-limited stresses with Pseudomonas aeruginosa (WT) and its nonflagellated isogenic mutant (ΔfliC) as model bacteria. Results revealed that boosted flagellar motility of WT strain promoted biofilm initialization to a peak value of 0.99 × 107 cells/cm2 at 1/50 dilution after 20 min incubation. We hypothesized that bacteria can invoke instant motility acceleration for survival confronting nutrient-limited stress, accompanied by optimized chemotactic foraging through sensing ambient chemical gradients. Accordingly, accelerated cell motility in oligotrophic environment created increased cell-cell and cell-surface interactions and thereof facilitated biofilm initialization. It was confirmed by the consistence of modeling predictions and experimental results of cell velocity and surface attachment. With the development of biofilm, promotion effect of flagellar motility responding to nutrient deprivation-stress faded out. Instead, loss of motility profiting increased growth rates and extracellular protein excretion, associated with an enhancement of biofilm development for the mutant in oligotrophic aquatic environment. For both strains, nutrient limitation evidently reduced planktonic cell propagation as expected. Our results offer new insights into the mechanical understanding of biofilm formation shaped by environmental stresses and associating biological responses.
Collapse
Affiliation(s)
- Bang Du
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Gu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
60
|
Raimondi SL, Marsh TL, Guenther MF. Does Repetition Matter? Analysis of Biology Majors' Ability to Comprehend Journal Articles Across a Major. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2020; 21:jmbe-21-41. [PMID: 32431777 PMCID: PMC7198228 DOI: 10.1128/jmbe.v21i1.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
The ability to read and critically analyze the primary literature is a core skill necessary for future success in scientific fields. While many studies have described methodologies to teach journal reading, no studies examine how much practice and repetition is required before students learn how to comprehend a journal article. Here we assessed student journal reading and comprehension throughout an undergraduate biology major, analyzing students in six upper-level elective courses, some of which had no journal reading requirements while others had extensive requirements built into the course. We hypothesized that there would be a strong correlation between number of articles read in a semester and student ability to comprehend the articles, as well as their comfort and confidence with journal reading. Surprisingly, we found that the number of articles required for a class did not affect overall student reading comprehension and critical thinking even though students self-assessed that they gained comfort and confidence with articles as the number increased. Instead, we found that sophomore students in their first upper-level biology course showed significant gains in learning when the course activities include journal article readings. After this initial gain, there were no significant learning gains in future years, no matter the number of journals required in the course. Together, the results shown here indicate that it is not necessary to revise an entire curriculum to improve students' journal reading and critical thinking skills. Instead, early intervention and exposure to critical journal article reading is most important for this skill development.
Collapse
Affiliation(s)
- Stacey L. Raimondi
- Corresponding author. Mailing address: Elmhurst College, 190 Prospect Ave., Box 133, Elmhurst, IL 60126. Phone: 630-617-3323. Fax: 630-617-6474. E-mail:
| | | | | |
Collapse
|
61
|
Scheidweiler D, Miele F, Peter H, Battin TJ, de Anna P. Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale. J R Soc Interface 2020; 17:20200046. [PMID: 32208823 DOI: 10.1098/rsif.2020.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dispersal of organisms controls the structure and dynamics of populations and communities, and can regulate ecosystem functioning. Predicting dispersal patterns across scales is important to understand microbial life in heterogeneous porous environments such as soils and sediments. We developed a multi-scale approach, combining experiments with microfluidic devices and time-lapse microscopy to track individual bacterial trajectories and measure the overall breakthrough curves and bacterial deposition profiles: we, then, linked the two scales with a novel stochastic model. We show that motile cells of Pseudomonas putida disperse more efficiently than non-motile mutants through a designed heterogeneous porous system. Motile cells can evade flow-imposed trajectories, enabling them to explore larger pore areas than non-motile cells. While transported cells exhibited a rotation in response to hydrodynamic shear, motile cells were less susceptible to the torque, maintaining their body oriented towards the flow direction and thus changing the population velocity distribution with a significant impact on the overall transport properties. We also found, in a separate set of experiments, that if the suspension flows through a porous system already colonized by a biofilm, P. putida cells are channelled into preferential flow paths and the cell attachment rate is increased. These two effects were more pronounced for non-motile than for motile cells. Our findings suggest that motility coupled with heterogeneous flows can be beneficial to motile bacteria in confined environments as it enables them to actively explore the space for resources or evade regions with unfavourable conditions. Our study also underlines the benefit of a multi-scale approach to the study of bacterial dispersal in porous systems.
Collapse
Affiliation(s)
- David Scheidweiler
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Filippo Miele
- Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
62
|
Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet 2020; 16:e1008649. [PMID: 32163413 PMCID: PMC7093028 DOI: 10.1371/journal.pgen.1008649] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/24/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Unicellular organisms have the prevalent challenge to survive under oxidative stress of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). ROS are present as by-products of photosynthesis and aerobic respiration. These reactive species are even employed by multicellular organisms as potent weapons against microbes. Although bacterial defences against lethal and sub-lethal oxidative stress have been studied in model bacteria, the role of fluctuating H2O2 concentrations remains unexplored. It is known that sub-lethal exposure of Escherichia coli to H2O2 results in enhanced survival upon subsequent exposure. Here we investigate the priming response to H2O2 at physiological concentrations. The basis and the duration of the response (memory) were also determined by time-lapse quantitative proteomics. We found that a low level of H2O2 induced several scavenging enzymes showing a long half-life, subsequently protecting cells from future exposure. We then asked if the phenotypic resistance against H2O2 alters the evolution of resistance against oxygen stress. Experimental evolution of H2O2 resistance revealed faster evolution and higher levels of resistance in primed cells. Several mutations were found to be associated with resistance in evolved populations affecting different loci but, counterintuitively, none of them was directly associated with scavenging systems. Our results have important implications for host colonisation and infections where microbes often encounter reactive oxygen species in gradients. Throughout evolution, bacteria were exposed to reactive oxygen species and evolved the ability to scavenge toxic oxygen radicals. Furthermore, multicellular organisms evolved the ability to produce such oxygen species directed against pathogens. Recent studies also suggest that ROS such as H2O2 play an important role during host gut colonisation by its microbiota. Traditionally, experiments with different antimicrobials have been carried out using fixed concentrations while in nature, including in intra-host environments, microbes are more likely to experience this type of stress in steps or gradients. Here we show that bacteria treated with sub-lethal concentrations of H2O2 (priming) survive far better than non-treated cells when they subsequently encounter a higher concentration. We also found that the 'priming' response has a protective role from lethal mutagenesis. This protection is provided by long-lived proteins that, upon priming, remain at a high level for several generations as determined by time-lapse LC-mass spectrometry. Bacteria that were primed evolved H2O2 resistance faster and to a higher level. Moreover, mutations that increase resistance to H2O2, as determined by whole-genome sequencing (WGS), do not occur in known scavenger encoding genes but in loci coding for other functions, at least in E. coli.
Collapse
|
63
|
Samuels T, Pybus D, Cockell CS. Casamino acids slow motility and stimulate surface growth in an extreme oligotroph. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:63-69. [PMID: 31769203 DOI: 10.1111/1758-2229.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Environmental cues that regulate motility are poorly understood, but specific carbon and nitrogen sources, such as casamino acids (CAA), are known to stimulate motility in model organisms. However, natural environments are commonly more nutrient-limited than laboratory growth media, and the effect of energy-rich CAA on the motility of oligotrophic microorganisms is unknown. In this study, an extreme oligocarbotroph, Variovorax paradoxus YC1, was isolated from weathered shale rock within a disused mine level in North Yorkshire, UK. The addition of 0.1% CAA to minimal media significantly reduced the motility of YC1 after 72 h and inhibited swimming motility resulting in enhanced surface growth. We propose this response to CAA is a physiological adaptation to oligotrophy, facilitating the colonization of nutrient-rich environments.
Collapse
Affiliation(s)
- Toby Samuels
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - David Pybus
- ICL Boulby, Boulby Mine, Cleveland, TS13 4UZ, UK
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
64
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
65
|
Chung The H, Boinett C, Pham Thanh D, Jenkins C, Weill FX, Howden BP, Valcanis M, De Lappe N, Cormican M, Wangchuk S, Bodhidatta L, Mason CJ, Nguyen TNT, Ha Thanh T, Voong VP, Duong VT, Nguyen PHL, Turner P, Wick R, Ceyssens PJ, Thwaites G, Holt KE, Thomson NR, Rabaa MA, Baker S. Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun 2019; 10:4828. [PMID: 31645551 PMCID: PMC6811581 DOI: 10.1038/s41467-019-12823-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Shigella sonnei increasingly dominates the international epidemiological landscape of shigellosis. Treatment options for S. sonnei are dwindling due to resistance to several key antimicrobials, including the fluoroquinolones. Here we analyse nearly 400 S. sonnei whole genome sequences from both endemic and non-endemic regions to delineate the evolutionary history of the recently emergent fluoroquinolone-resistant S. sonnei. We reaffirm that extant resistant organisms belong to a single clonal expansion event. Our results indicate that sequential accumulation of defining mutations (gyrA-S83L, parC-S80I, and gyrA-D87G) led to the emergence of the fluoroquinolone-resistant S. sonnei population around 2007 in South Asia. This clone was then transmitted globally, resulting in establishments in Southeast Asia and Europe. Mutation analysis suggests that the clone became dominant through enhanced adaptation to oxidative stress. Experimental evolution reveals that under fluoroquinolone exposure in vitro, resistant S. sonnei develops further intolerance to the antimicrobial while the susceptible counterpart fails to attain complete resistance. Shigella sonnei is one of the main species causing shigellosis worldwide. Here the authors analyse nearly 400 S. sonnei genome sequences and carry out experimental evolution experiments to shed light into the evolutionary processes underlying the recent emergence of fluoroquinolone resistance in this pathogen.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Christine Boinett
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Claire Jenkins
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Niall De Lappe
- National Salmonella, Shigella, and Listeria monocytogenes Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - To Nguyen Thi Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Phat Voong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thuy Duong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phu Huong Lan Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.,Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK.,The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Maia A Rabaa
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, The Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
66
|
Horlbog JA, Stevens MJA, Stephan R, Guldimann C. Global Transcriptional Response of Three Highly Acid-Tolerant Field Strains of Listeria monocytogenes to HCl Stress. Microorganisms 2019; 7:microorganisms7100455. [PMID: 31623206 PMCID: PMC6843411 DOI: 10.3390/microorganisms7100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Tolerance to acid is of dual importance for the food-borne pathogen Listeria monocytogenes: acids are used as a preservative, and gastric acid is one of the first defenses within the host. There are considerable differences in the acid tolerance of strains. Here we present the transcriptomic response of acid-tolerant field strains of L. monocytogenes to HCl at pH 3.0. RNAseq revealed significant differential expression of genes involved in phosphotransferase systems, oxidative phosphorylation, cell morphology, motility, and biofilm formation. Genes in the acetoin biosynthesis pathway were upregulated, suggesting that L. monocytogenes shifts to metabolizing pyruvate to acetoin under organic acid stress. We also identified the formation of cell aggregates in microcolonies as a potential relief strategy. A motif search within the first 150 bp upstream of differentially expressed genes identified a novel potential regulatory sequence that may have a function in the regulation of virulence gene expression. Our data support a model where an excess of intracellular H+ ions is counteracted by pumping H+ out of the cytosol via cytochrome C under reduced activity of the ATP synthase. The observed morphological changes suggest that acid stress may cause cells to aggregate in biofilm microcolonies to create a more favorable microenvironment. Additionally, HCl stress in the host stomach may serve as (i) a signal to downregulate highly immunogenic flagella, and (ii) as an indicator for the imminent contact with host cells which triggers early stage virulence genes.
Collapse
Affiliation(s)
- Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| |
Collapse
|
67
|
Kim J, Darlington A, Salvador M, Utrilla J, Jiménez JI. Trade-offs between gene expression, growth and phenotypic diversity in microbial populations. Curr Opin Biotechnol 2019; 62:29-37. [PMID: 31580950 PMCID: PMC7208540 DOI: 10.1016/j.copbio.2019.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Limitations in molecular resources for gene expression influence bacterial physiology. Bacteria optimise trade-offs between resource allocation and growth. Resource allocation plays a role in the emergence of phenotypic heterogeneity. Trade-offs between bet-hedging and growth can be harnessed in biotechnology.
Bacterial cells have a limited number of resources that can be allocated for gene expression. The intracellular competition for these resources has an impact on the cell physiology. Bacteria have evolved mechanisms to optimize resource allocation in a variety of scenarios, showing a trade-off between the resources used to maximise growth (e.g. ribosome synthesis) and the rest of cellular functions. Limitations in gene expression also play a role in generating phenotypic diversity, which is advantageous in fluctuating environments, at the expenses of decreasing growth rates. Our current understanding of these trade-offs can be exploited for biotechnological applications benefiting from the selective manipulation of the allocation of resources.
Collapse
Affiliation(s)
- Juhyun Kim
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | | - Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - José Utrilla
- Centre for Genomic Sciences, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad s/n Col. Chamilpa 62210, Cuernavaca, Mexico
| | - José I Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.
| |
Collapse
|
68
|
Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, Wierckx N. Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synth Biol 2019; 8:2036-2050. [PMID: 31465206 DOI: 10.1021/acssynbio.9b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadine Runge
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah Preckel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
69
|
O'Keeffe A, Hyndman L, McGinty S, Riezk A, Murdan S, Croft SL. Development of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS One 2019; 14:e0219985. [PMID: 31339931 PMCID: PMC6656416 DOI: 10.1371/journal.pone.0219985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023] Open
Abstract
Background In vitro assays are widely used in studies on pathogen infectivity, immune responses, drug and vaccine discovery. However, most in vitro assays display significant differences to the in vivo situation and limited predictive properties. We applied medium perfusion methods to mimic interstitial fluid flow to establish a novel infection model of Leishmania parasites. Methods Leishmania major infection of mouse peritoneal macrophages was studied within the Quasi Vivo QV900 macro-perfusion system. Under a constant flow of culture media at a rate of 360μl/min, L. major infected macrophages were cultured either at the base of a perfusion chamber or raised on 9mm high inserts. Mathematical and computational modelling was conducted to estimate medium flow speed, shear stress and oxygen concentration. The effects of medium flow on infection rate, intracellular amastigote division, macrophage phagocytosis and macropinocytosis were measured. Results Mean fluid speeds at the macrophage cell surface were estimated to be 1.45 x 10−9 m/s and 1.23 x 10−7 m/s for cells at the base of the chamber and cells on an insert, respectively. L. major macrophage infection was significantly reduced under both media perfusion conditions compared to cells maintained under static conditions; a 85±3% infection rate of macrophages at 72 hours in static cultures compared to 62±5% for cultures under slow medium flow and 55±3% under fast medium flow. Media perfusion also decreased amastigote replication and both macrophage phagocytosis (by 44±4% under slow flow and 57±5% under fast flow compared with the static condition) and macropinocytosis (by 40±4% under slow flow and 62±5% under fast flow compared with the static condition) as measured by uptake of latex beads and pHrodo Red dextran. Conclusions Perfusion of culture medium in an in vitro L. major macrophage infection model (simulating in vivo lymphatic flow) reduced the infection rate of macrophages, the replication of the intracellular parasite, macrophage phagocytosis and macropinocytosis with greater reductions achieved under faster flow speeds.
Collapse
Affiliation(s)
- Alec O'Keeffe
- Department of Infection and Immunology, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Lauren Hyndman
- Division of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Alaa Riezk
- Department of Infection and Immunology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Simon L Croft
- Department of Infection and Immunology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
70
|
Hueso-Gil Á, Calles B, O'Toole GA, de Lorenzo V. Gross transcriptomic analysis of Pseudomonas putida for diagnosing environmental shifts. Microb Biotechnol 2019; 13:263-273. [PMID: 30957409 PMCID: PMC6922523 DOI: 10.1111/1751-7915.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023] Open
Abstract
The biological regime of Pseudomonas putida (and any other bacterium) under given environmental conditions results from the hierarchical expression of sets of genes that become turned on and off in response to one or more physicochemical signals. In some cases, such signals are clearly defined, but in many others, cells are exposed to a whole variety of ill-defined inputs that occur simultaneously. Transcriptomic analyses of bacteria passed from a reference condition to a complex niche can thus expose both the type of signals that they experience during the transition and the functions involved in adaptation to the new scenario. In this article, we describe a complete protocol for generation of transcriptomes aimed at monitoring the physiological shift of P. putida between two divergent settings using as a simple case study the change between homogeneous, planktonic lifestyle in a liquid medium and growth on the surface of an agar plate. To this end, RNA was collected from P. putidaKT2440 cells at various times after growth in either condition, and the genome-wide transcriptional outputs were analysed. While the role of individual genes needs to be verified on a case-by-case basis, a gross inspection of the resulting profiles suggested cells that are cultured on solid media consistently had a higher translational and metabolic activity, stopped production of flagella and were conspicuously exposed to a strong oxidative stress. The herein described methodology is generally applicable to other circumstances for diagnosing lifestyle determinants of interest.
Collapse
Affiliation(s)
- Ángeles Hueso-Gil
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Belén Calles
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
71
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
72
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
73
|
Wang J, Ma W, Wang Y, Lin L, Wang T, Wang Y, Li Y, Wang X. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl Microbiol Biotechnol 2018; 102:10523-10539. [PMID: 30338358 DOI: 10.1007/s00253-018-9439-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
Pseudomonas putida KT2442, a natural producer of polyhydroxyalkanoate, spends a lot of energy and carbon sources to form flagella and pili; therefore, deleting the genes involved in the biosynthesis and assembly of flagella and pili might improve PHA productivity. In this study, two novel deletion systems were constructed in order to efficiently remove the 76 genes involved in the biosynthesis and assembly of flagella and pili in P. putida KT2442. Both systems combine suicide-plasmid-based homologous recombination and mutant lox site-specific recombination and involve three plasmids. The first includes pK18mobsacB, pWJW101, and pWJW102; and the second includes pZJD29c, pDTW202, and pWJW103. These newly constructed systems were successfully used to remove different gene clusters in P. putida KT2442 and showed a high deletion efficiency (above 90%) whether for the second-round or the third-round recombination. Both systems could efficiently delete the gene PP4378 encoding flagellin in putida KT2442, resulting in the mutant strain WJPP01. The second system was used to remove the pili-forming gene cluster PP2357-PP2363 in putida KT2442, resulting in the mutant strain WJPP02, and also used to remove the flagella-forming gene cluster PP4329-PP4397 in WJPP02, resulting in the mutant strain WJPP03. Compared with the wild-type KT2442, the 1.2% genome reduction mutant WJPP03 grew faster, lacked flagella and motility, showed sharply decreased biofilm and 3',5'-cyclic diguanylic acid (c-di-GMP), but accumulated more polyhydroxyalkanoate. The biomass, polyhydroxyalkanoate yield, and content of WJPP03 increased 19.1, 73.4, and 45.6%, respectively, with sodium hexanoate supplementation, and also increased 11.4, 53.6, and 37.9%, respectively, with lauric acid supplementation.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yuzhou Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lin Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Tianyi Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yuqian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
74
|
Hentchel KL, Reyes Ruiz LM, Curtis PD, Fiebig A, Coleman ML, Crosson S. Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater. ISME JOURNAL 2018; 13:523-536. [PMID: 30297849 DOI: 10.1038/s41396-018-0295-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Bacterial genomes evolve in complex ecosystems and are best understood in this natural context, but replicating such conditions in the lab is challenging. We used transposon sequencing to define the fitness consequences of gene disruption in the bacterium Caulobacter crescentus grown in natural freshwater, compared with axenic growth in common laboratory media. Gene disruptions in amino-acid and nucleotide sugar biosynthesis pathways and in metabolic substrate transport machinery impaired fitness in both lake water and defined minimal medium relative to complex peptone broth. Fitness in lake water was enhanced by insertions in genes required for flagellum biosynthesis and reduced by insertions in genes involved in biosynthesis of the holdfast surface adhesin. We further uncovered numerous hypothetical and uncharacterized genes for which disruption impaired fitness in lake water, defined minimal medium, or both. At the genome scale, the fitness profile of mutants cultivated in lake water was more similar to that in complex peptone broth than in defined minimal medium. Microfiltration of lake water did not significantly affect the terminal cell density or the fitness profile of the transposon mutant pool, suggesting that Caulobacter does not strongly interact with other microbes in this ecosystem on the measured timescale. Fitness of select mutants with defects in cell surface biosynthesis and environmental sensing were significantly more variable across days in lake water than in defined medium, presumably owing to day-to-day heterogeneity in the lake environment. This study reveals genetic interactions between Caulobacter and a natural freshwater environment, and provides a new avenue to study gene function in complex ecosystems.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Leila M Reyes Ruiz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA.
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
75
|
Frimodt-Møller J, Rossi E, Haagensen JAJ, Falcone M, Molin S, Johansen HK. Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Sci Rep 2018; 8:12512. [PMID: 30131514 PMCID: PMC6104031 DOI: 10.1038/s41598-018-30972-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 11/09/2022] Open
Abstract
In 474 genome sequenced Pseudomonas aeruginosa isolates from 34 cystic fibrosis (CF) patients, 40% of these harbor mutations in the mexZ gene encoding a negative regulator of the MexXY-OprM efflux pump associated with aminoglycoside and fluoroquinolone resistance. Surprisingly, resistance to aminoglycosides and fluoroquinolones of mexZ mutants was far below the breakpoint of clinical resistance. However, the fitness increase of the mutant bacteria in presence of the relevant antibiotics, as demonstrated in competition experiments between mutant and ancestor bacteria, showed that 1) very small phenotypic changes cause significant fitness increase with severe adaptive consequences, and 2) standardized phenotypic tests fail to detect such low-level variations. The frequent appearance of P. aeruginosa mexZ mutants in CF patients is directly connected to the intense use of the target antibiotics, and low-level antibiotic resistance, if left unnoticed, can result in accumulation of additional genetic changes leading to high-level resistance.
Collapse
Affiliation(s)
- Jakob Frimodt-Møller
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen, Denmark
| | - Elio Rossi
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Marilena Falcone
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
76
|
de Lorenzo V. Evolutionary tinkering vs. rational engineering in the times of synthetic biology. LIFE SCIENCES, SOCIETY AND POLICY 2018; 14:18. [PMID: 30099657 PMCID: PMC6087506 DOI: 10.1186/s40504-018-0086-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Synthetic biology is not only a contemporary reformulation of the recombinant DNA technologies of the last 30 years, combined with descriptive language imported from electrical and industrial engineering. It is also a new way to interpret living systems and a statement of intent for the use and reprogramming of biological objects for human benefit. In this context, the notion of designer biology is often presented as opposed to natural selection following the powerful rationale formulated by François Jacob on evolution-as-tinkering. The onset of synthetic biology opens a different perspective by leaving aside the question about the evolutionary origin of biological phenomena and focusing instead on the relational logic and the material properties of the corresponding components that make biological system work as they do. Once a functional challenge arises, the solution space for the problem is not homogeneous but it has attractors that can be accessed either through random exploration (as evolution does) or rational design (as engineers do). Although these two paths (i.e. evolution and engineering) are essentially different, they can lead to solutions to specific mechanistic bottlenecks that frequently coincide or converge-and one can easily help to understand and improve the other. Alas, productive discussions on these matters are often contaminated by ideological preconceptions that prevent adoption of the engineering metaphor to understand and ultimately reshape living systems-as ambitioned by synthetic biology. Yet, some possible ways to overcome the impasse are feasible. In parallel to Monod's evolutionary paradox of teleo-logy (finality/purpose) vs. teleo-nomy (appearance of finality/purpose), a mechanistic paradox could be entertained between techno-logy (rational engineering) vs techno-nomy (appearance of rational engineering), all for the sake of understanding the relational logic that enables live systems to function as physico-chemical entities in time and space. This article thus proposes a radical vision of synthetic biology through the lens of the engineering metaphor.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
77
|
Karimi E, Slaby BM, Soares AR, Blom J, Hentschel U, Costa R. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol Ecol 2018; 94:4985835. [DOI: 10.1093/femsec/fiy074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Elham Karimi
- Centre of Marine Sciences (CCMAR), Faculty of Science and Technology (FCT), Algarve University, 8005-139 Faro, Portugal
| | - Beate M Slaby
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - André R Soares
- Institute of Geography and Earth Sciences, Aberystwyth University, SY23 3DB Aberystwyth, Wales, UK
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
- Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Rodrigo Costa
- Centre of Marine Sciences (CCMAR), Faculty of Science and Technology (FCT), Algarve University, 8005-139 Faro, Portugal
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
78
|
Enhancing the Adaptability of the Deep-Sea Bacterium Shewanella piezotolerans WP3 to High Pressure and Low Temperature by Experimental Evolution under H 2O 2 Stress. Appl Environ Microbiol 2018; 84:AEM.02342-17. [PMID: 29269502 DOI: 10.1128/aem.02342-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/10/2017] [Indexed: 11/20/2022] Open
Abstract
Oxidative stresses commonly exist in natural environments, and microbes have developed a variety of defensive systems to counteract such events. Although increasing evidence has shown that high hydrostatic pressure (HHP) and low temperature (LT) induce antioxidant defense responses in cells, there is no direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT. In this study, using the wild-type (WT) strain of a deep-sea bacterium, Shewanella piezotolerans WP3, as an ancestor, we obtained a mutant, OE100, with an enhanced antioxidant defense capacity by experimental evolution under H2O2 stress. Notably, OE100 exhibited better tolerance not only to H2O2 stress but also to HHP and LT (20 MPa and 4°C, respectively). Whole-genome sequencing identified a deletion mutation in the oxyR gene, which encodes the transcription factor that controls the oxidative stress response. Comparative transcriptome analysis showed that the genes associated with oxidative stress defense, anaerobic respiration, DNA repair, and the synthesis of flagella and bacteriophage were differentially expressed in OE100 compared with the WT at 20 MPa and 4°C. Genetic analysis of oxyR and ccpA2 indicated that the OxyR-regulated cytochrome c peroxidase CcpA2 significantly contributed to the adaptation of WP3 to HHP and LT. Taken together, these results confirmed the inherent relationship between antioxidant defense mechanisms and the adaptation of a benthic microorganism to HHP and LT.IMPORTANCE Oxidative stress exists in various niches, including the deep-sea ecosystem, which is an extreme environment with conditions of HHP and predominantly LT. Although previous studies have shown that HHP and LT induce antioxidant defense responses in cells, direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT is lacking. In this work, using the deep-sea bacterium Shewanella piezotolerans WP3 as a model, we proved that enhancement of the adaptability of WP3 to HHP and LT can benefit from its antioxidant defense mechanism, which provided useful insight into the ecological roles of antioxidant genes in a benthic microorganism and contributed to an improved understanding of microbial adaptation strategies in deep-sea environments.
Collapse
|
79
|
Nikel PI, de Lorenzo V. Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida. Methods Mol Biol 2018; 1745:287-301. [PMID: 29476475 DOI: 10.1007/978-1-4939-7680-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soil bacterium Pseudomonas putida is rapidly becoming a platform of choice for applications that require a microbial host highly resistant to different types of stresses and elevated rates of reducing power regeneration. P. putida is capable of growing in a wide variety of carbon sources that range from simple sugars to complex substrates such as aromatic compounds. Interestingly, the growth of the reference strain KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. This macroscopic phenomenon has been shown to be connected with the stochastic expression of the glp genes, which encode the enzymes needed for glycerol processing. In this protocol, we propose a general procedure to examine bacterial growth in small-scale cultures while monitoring the metabolic activity of individual cells. Assessing the metabolic capacity of single bacteria by means of fluorescence microscopy and flow cytometry, in combination with the analysis of the temporal takeoff of growth in single-cell cultures, is a simple and easy-to-implement approach. It can help to understand the link between macroscopic phenotypes (e.g., microbial growth in batch cultures) and stochastic phenomena at the genetic level. The implementation of these methodologies revealed that the adoption of a glycerol-metabolizing regime by P. putida KT2440 is not the result of a gradual change in the whole population, but it rather reflects a time-dependent bimodal switch between metabolically inactive (i.e., not growing) to fully active (i.e., growing) bacteria.
Collapse
Affiliation(s)
- Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
80
|
Nie H, Xiao Y, Liu H, He J, Chen W, Huang Q. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:571-580. [PMID: 28517238 DOI: 10.1111/1758-2229.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
FleN generally functions as an antagonist of FleQ in regulating flagellar genes and biofilm matrix related genes in Pseudomonas aeruginosa. Here, we found that in Pseudomonas putida KT2440, FleN and FleQ play a synergistic role in regulating two biofilm matrix coding operons, lapA and bcs. FleN deletion decreased the transcription of lapA and increased the transcription of bcs operon, and the same trend was observed in fleQ deletion mutant before. In vitro experiments showed that FleN promoted the binding of FleQ to the lapA/bcs promoter DNA especially in the presence of ATP. Both phenotype observation and transcription analysis showed that, similar to fleQ deletion, fleN deletion significantly weaken the effect of high c-di-GMP level on biofilm formation, surface winkle phenotype and expression of lapA and bcs operons. Mutagenesis of the putative ATP binding motif in FleNK21Q revealed that FleN ATPase activity played an essential role in the regulation of flagellar number and swimming motility but was not critical for biofilm formation. Our results revealed that FleN was not an antagonist of FleQ but a synergistic factor of FleQ in regulating the two biofilm matrix coding operons in P. putida KT2440.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
81
|
Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Sci Rep 2017; 7:7064. [PMID: 28765600 PMCID: PMC5539299 DOI: 10.1038/s41598-017-07435-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 01/03/2023] Open
Abstract
An industrial waste, 1,2,3-trichloropropane (TCP), is toxic and extremely recalcitrant to biodegradation. To date, no natural TCP degraders able to mineralize TCP aerobically have been isolated. In this work, we engineered a biosafety Pseudomonas putida strain KT2440 for aerobic mineralization of TCP by implantation of a synthetic biodegradation pathway into the chromosome and further improved TCP mineralization using combinatorial engineering strategies. Initially, a synthetic pathway composed of haloalkane dehalogenase, haloalcohol dehalogenase and epoxide hydrolase was functionally assembled for the conversion of TCP into glycerol in P. putida KT2440. Then, the growth lag-phase of using glycerol as a growth precursor was eliminated by deleting the glpR gene, significantly enhancing the flux of carbon through the pathway. Subsequently, we improved the oxygen sequestering capacity of this strain through the heterologous expression of Vitreoscilla hemoglobin, which makes this strain able to mineralize TCP under oxygen-limited conditions. Lastly, we further improved intracellular energy charge (ATP/ADP ratio) and reducing power (NADPH/NADP+ ratio) by deleting flagella-related genes in the genome of P. putida KT2440. The resulting strain (named KTU-TGVF) could efficiently utilize TCP as the sole source of carbon for growth. Degradation studies in a bioreactor highlight the value of this engineered strain for TCP bioremediation.
Collapse
|
82
|
Environmental fluctuation governs selection for plasticity in biofilm production. ISME JOURNAL 2017; 11:1569-1577. [PMID: 28338673 DOI: 10.1038/ismej.2017.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 01/09/2023]
Abstract
Bacteria can grow in a free-swimming state, as planktonic cells, or in surface-attached communities, termed biofilms. The planktonic and biofilm growth modes differ dramatically with respect to spatial constraints, nutrient access, population density and cell-cell interactions. Fitness trade-offs underlie how successfully bacteria compete in each of these environments. Accordingly, some bacteria have evolved to be specialists in biofilm formation, while others specialize in planktonic growth. There are species, however, that possess flexible strategies: they can transition between the molecular programs required for biofilm formation and for planktonic growth. Such flexible strategies often sacrifice competitive ability against specialists in a given habitat. There is little exploration of the ecological conditions favoring the evolution of the flexible biofilm production strategy for bacteria in competition with specialist biofilm producers or specialist non-producers. Here, we study the human pathogen Vibrio cholerae, a flexible biofilm-former, as well as constitutive biofilm-producing and non-producing mutants. We assess the fitness of these strains under biofilm conditions, planktonic conditions and conditions that demand the ability to transition between the two growth modes. We show that, relative to the specialists, the wild type is superior at dispersal from biofilms to the planktonic phase; however, this capability comes at the expense of reduced competitive fitness against constitutive biofilm producers on surfaces. Wild-type V. cholerae can outcompete the constitutive biofilm producers and non-producers if habitat turnover is sufficiently frequent. Thus, selection for phenotypic flexibility in biofilm production depends on the frequency of environmental fluctuations encountered by bacteria.
Collapse
|
83
|
Morales M, Sentchilo V, Bertelli C, Komljenovic A, Kryuchkova-Mostacci N, Bourdilloud A, Linke B, Goesmann A, Harshman K, Segers F, Delapierre F, Fiorucci D, Seppey M, Trofimenco E, Berra P, El Taher A, Loiseau C, Roggero D, Sulfiotti M, Etienne A, Ruiz Buendia G, Pillard L, Escoriza A, Moritz R, Schneider C, Alfonso E, Ben Jeddou F, Selmoni O, Resch G, Greub G, Emery O, Dubey M, Pillonel T, Robinson-Rechavi M, van der Meer JR. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand. PLoS One 2016; 11:e0165850. [PMID: 27812150 PMCID: PMC5094676 DOI: 10.1371/journal.pone.0165850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.
Collapse
Affiliation(s)
- Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Nadezda Kryuchkova-Mostacci
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Audrey Bourdilloud
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Burkhard Linke
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francisca Segers
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabien Delapierre
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damien Fiorucci
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Seppey
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Evgeniya Trofimenco
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Berra
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Athimed El Taher
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Chloé Loiseau
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Dejan Roggero
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Madeleine Sulfiotti
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angela Etienne
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gustavo Ruiz Buendia
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loïc Pillard
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angelique Escoriza
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cedric Schneider
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Esteban Alfonso
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fatma Ben Jeddou
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Selmoni
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
84
|
Xiao Y, Liu H, Nie H, Xie S, Luo X, Chen W, Huang Q. Expression of the phosphodiesterase BifA facilitating swimming motility is partly controlled by FliA in Pseudomonas putida KT2440. Microbiologyopen 2016; 6. [PMID: 27663176 PMCID: PMC5300878 DOI: 10.1002/mbo3.402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 12/30/2022] Open
Abstract
Flagella‐mediated motility is an important capability of many bacteria to survive in nutrient‐depleted and harsh environments. Decreasing the intracellular cyclic di‐GMP (c‐di‐GMP) level by overexpression of phosphodiesterase BifA promotes flagellar‐mediated motility and induces planktonic lifestyle in Pseudomonas. The mechanism that regulates expression of bifA gene was poorly studied. Here we showed that expression of BifA was partly controlled by flagellar sigma factor FliA (σ28) in Pseudomonas putidaKT2440. FliA deletion led to an approximately twofold decrease in transcription of bifA. 5′ race assay revealed two transcription start points in bifA promoter region, with the putative σ70 and σ28 promoter sequences upstream, respectively. Point mutation in σ28 promoter region reduced transcriptional activity of the promoter in wild‐type KT2440, but showed no influence on that in fliA deletion mutant. FliA overexpression decreased the intracellular c‐di‐GMP level in a BifA‐dependent way, suggesting that FliA was able to modulate the intracellular c‐di‐GMP level and BifA function was required for the modulation. Besides, FliA overexpression enhanced swimming ability of wild‐type strain, while made no difference to the bifA mutant. Our results suggest that FliA acts as a negative regulator to modulate the c‐di‐GMP level via controlling transcription of bifA to facilitate swimming motility.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Shan Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
85
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
86
|
Worrich A, König S, Banitz T, Centler F, Frank K, Thullner M, Harms H, Miltner A, Wick LY, Kästner M. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress. Front Microbiol 2016; 7:1214. [PMID: 27536297 PMCID: PMC4971104 DOI: 10.3389/fmicb.2016.01214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/21/2016] [Indexed: 11/13/2022] Open
Abstract
Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost consistently high with an average of 70.7 ± 7.8%, regardless of the strength of the osmotic stress. We propose that especially fungal network-mediated bacterial dispersal is a key process to achieve high functionality of heterogeneous microbial ecosystems also at reduced osmotic potentials. Thus, mechanical stress by, for example, soil homogenization should be kept low in order to preserve fungal network integrity.
Collapse
Affiliation(s)
- Anja Worrich
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; UFZ - Helmholtz Centre for Environmental Research, Department of Environmental BiotechnologyLeipzig, Germany
| | - Sara König
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; UFZ - Helmholtz Centre for Environmental Research, Department of Ecological ModellingLeipzig, Germany
| | - Thomas Banitz
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Modelling Leipzig, Germany
| | - Florian Centler
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Karin Frank
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological ModellingLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany; Institute for Environmental Systems Research, University of OsnabrückOsnabrück, Germany
| | - Martin Thullner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Hauke Harms
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Anja Miltner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology Leipzig, Germany
| | - Lukas Y Wick
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Matthias Kästner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology Leipzig, Germany
| |
Collapse
|
87
|
Nikel PI, Pérez-Pantoja D, de Lorenzo V. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 2016; 18:3565-3582. [PMID: 27348295 DOI: 10.1111/1462-2920.13434] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
The metabolic versatility of the soil bacterium Pseudomonas putida is reflected by its ability to execute strong redox reactions (e.g., mono- and di-oxygenations) on aromatic substrates. Biodegradation of aromatics occurs via the pathway encoded in the archetypal TOL plasmid pWW0, yet the effect of running such oxidative route on redox balance against the background metabolism of P. putida remains unexplored. To answer this question, the activity of pyridine nucleotide transhydrogenases (that catalyze the reversible interconversion of NADH and NADPH) was inspected under various physiological and oxidative stress regimes. The genome of P. putida KT2440 encodes a soluble transhydrogenase (SthA) and a membrane-bound, proton-pumping counterpart (PntAB). Mutant strains, lacking sthA and/or pntAB, were subjected to a panoply of genetic, biochemical, phenomic and functional assays in cells grown on customary carbon sources (e.g., citrate) versus difficult-to-degrade aromatic substrates. The results consistently indicated that redox homeostasis is compromised in the transhydrogenases-defective variant, rendering the mutant sensitive to oxidants. This metabolic deficiency was, however, counteracted by an increase in the activity of NADP+ -dependent dehydrogenases in central carbon metabolism. Taken together, these observations demonstrate that transhydrogenases enable a redox-adjusting mechanism that comes into play when biodegradation reactions are executed to metabolize unusual carbon compounds.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, 4030000 Concepción, Chile
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
88
|
Mi J, Schewe H, Buchhaupt M, Holtmann D, Schrader J. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1. World J Microbiol Biotechnol 2016; 32:112. [PMID: 27263007 DOI: 10.1007/s11274-016-2071-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
In this work, monoterpenoid hydroxylation with Pseudomonas putida GS1 and KT2440 were investigated as host strains, and the cytochrome P450 monooxygenase CYP176A1 (P450cin) and its native redox partner cindoxin (CinC) from Citrobacter braakii were introduced in P. putida to catalyze the stereoselective hydroxylation of 1,8-cineole to (1R)-6β-hydroxy-1,8-cineole. Growth experiments in the presence of 1,8-cineole confirmed pseudomonads' superior resilience compared to E. coli. Whole-cell P. putida harboring P450cin with and without CinC were capable of hydroxylating 1,8-cineole, whereas coexpression of CinC has been shown to accelerate this bioconversion. Under the same conditions, P. putida GS1 produced more than twice the amount of heterologous P450cin and bioconversion product than P. putida KT2440. A concentration of 1.1 ± 0.1 g/L (1R)-6β-hydroxy-1,8-cineole was obtained within 55 h in shake flasks and 13.3 ± 1.9 g/L in 89 h in a bioreactor, the latter of which corresponds to a yield YP/S of 79 %. To the authors' knowledge, this is the highest product titer for a P450 based whole-cell monoterpene oxyfunctionalization reported so far. These results show that solvent-tolerant P. putida GS1 can be used as a highly efficient recombinant whole-cell biocatalyst for a P450 monooxygenase-based valorization of monoterpenoids.
Collapse
Affiliation(s)
- Jia Mi
- Biochemical Engineering, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| | - Hendrik Schewe
- Biochemical Engineering, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| | - Markus Buchhaupt
- Biochemical Engineering, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| | - Dirk Holtmann
- Biochemical Engineering, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| | - Jens Schrader
- Biochemical Engineering, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany.
| |
Collapse
|
89
|
Nikel PI, Chavarría M, Danchin A, de Lorenzo V. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 2016; 34:20-29. [PMID: 27239751 DOI: 10.1016/j.cbpa.2016.05.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023]
Abstract
The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Max Chavarría
- Escuela de Química & CIPRONA, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Antoine Danchin
- AMAbiotics SAS, Institut of Cardiometabolism and Nutrition (ICAN), Hôpital Universitaire de la Pitié-Salpêtrière, 75013 Paris, France
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
90
|
Behdenna A, Pothier J, Abby SS, Lambert A, Achaz G. Testing for Independence between Evolutionary Processes. Syst Biol 2016; 65:812-23. [PMID: 27208890 DOI: 10.1093/sysbio/syw004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens.
Collapse
Affiliation(s)
- Abdelkader Behdenna
- UMR7138 "Evolution Paris-Seine" UPMC-CNRS Bât A, 4ème étage, porte 414, Case 5 7 quai Saint Bernard, 75252 Paris Cedex 05; Atelier de BioInformatique - MNHN Boite Courier 50 Batiment 139 - RdC 45 rue Buffon, 75005 Paris; Smile "Stochastic Models for the Inference of Life Evolution" Center for Interdisciplinary Research in Biology Collège de France 11, place Marcelin Berthelot 75231 Paris Cedex 05;
| | - Joël Pothier
- Atelier de BioInformatique - MNHN Boite Courier 50 Batiment 139 - RdC 45 rue Buffon, 75005 Paris; Enzymologie De L'arn Bât B - 2ème étage 7, quai St Bernard Boîte courrier 60 75252 Paris Cedex 05
| | - Sophie S Abby
- Institut Pasteur, Microbial Evolutionary Genomics 25-28 Rue du Docteur Roux 75015, Paris; UMR 3525 - CNRS - Institut Pasteur Génétique des génomes 25-28 rue du Docteur Roux, Site Fernbach 75724 Paris Cedex 15
| | - Amaury Lambert
- Smile "Stochastic Models for the Inference of Life Evolution" Center for Interdisciplinary Research in Biology Collège de France 11, place Marcelin Berthelot 75231 Paris Cedex 05; Laboratoire de Probabilités & Modèles Aléatoires UPMC Univ Paris 06 Case courrier 188 4, Place Jussieu 75252 Paris Cedex 05
| | - Guillaume Achaz
- UMR7138 "Evolution Paris-Seine" UPMC-CNRS Bât A, 4ème étage, porte 414, Case 5 7 quai Saint Bernard, 75252 Paris Cedex 05; Atelier de BioInformatique - MNHN Boite Courier 50 Batiment 139 - RdC 45 rue Buffon, 75005 Paris; Smile "Stochastic Models for the Inference of Life Evolution" Center for Interdisciplinary Research in Biology Collège de France 11, place Marcelin Berthelot 75231 Paris Cedex 05
| |
Collapse
|
91
|
Beri D, Olson DG, Holwerda EK, Lynd LR. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. FEMS Microbiol Lett 2016; 363:fnw091. [PMID: 27190292 DOI: 10.1093/femsle/fnw091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
Abstract
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (>90% of theoretical) and titer (>70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD(+), NADH, NADP(+) and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum.
Collapse
Affiliation(s)
- Dhananjay Beri
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
92
|
The Histone-Like Nucleoid Structuring Protein (H-NS) Is a Negative Regulator of the Lateral Flagellar System in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Appl Environ Microbiol 2016; 82:2388-2398. [PMID: 26873312 DOI: 10.1128/aem.00297-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. Anhns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhnsexhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the "binding and spreading" model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility.
Collapse
|
93
|
Analysis of a Spontaneous Non-Motile and Avirulent Mutant Shows That FliM Is Required for Full Endoflagella Assembly in Leptospira interrogans. PLoS One 2016; 11:e0152916. [PMID: 27044038 PMCID: PMC4820103 DOI: 10.1371/journal.pone.0152916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.
Collapse
|
94
|
Moreno-Forero SK, Rojas E, Beggah S, van der Meer JR. Comparison of differential gene expression to water stress among bacteria with relevant pollutant-degradation properties. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:91-102. [PMID: 26616826 DOI: 10.1111/1758-2229.12356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/15/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.
Collapse
Affiliation(s)
- Silvia K Moreno-Forero
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Edward Rojas
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| |
Collapse
|
95
|
Benedetti I, Nikel PI, de Lorenzo V. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria. Data Brief 2016; 6:738-44. [PMID: 26870759 PMCID: PMC4738008 DOI: 10.1016/j.dib.2016.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022] Open
Abstract
Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/P chnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper "Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes" [1].
Collapse
Affiliation(s)
- Ilaria Benedetti
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
96
|
Arce-Rodríguez A, Calles B, Nikel PI, de Lorenzo V. The RNA chaperone Hfq enables the environmental stress tolerance super-phenotype ofPseudomonas putida. Environ Microbiol 2015; 18:3309-3326. [DOI: 10.1111/1462-2920.13052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro Arce-Rodríguez
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| | - Belén Calles
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| | - Pablo I. Nikel
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| |
Collapse
|
97
|
Udaondo Z, Molina L, Segura A, Duque E, Ramos JL. Analysis of the core genome and pangenome ofPseudomonas putida. Environ Microbiol 2015; 18:3268-3283. [DOI: 10.1111/1462-2920.13015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Zulema Udaondo
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| | - Lázaro Molina
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1 18008 Granada Spain
| | - Ana Segura
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| | - Estrella Duque
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| | - Juan L. Ramos
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| |
Collapse
|
98
|
The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 2015; 6:mBio.00340-15. [PMID: 25827416 PMCID: PMC4453509 DOI: 10.1128/mbio.00340-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of the soil bacterium Pseudomonas putida KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. We examined the bacterial growth in glycerol cultures while monitoring the metabolic activity of individual cells. Fluorescence microscopy and flow cytometry, as well as the analysis of the temporal start of growth in single-cell cultures, revealed that adoption of a glycerol-metabolizing regime was not the result of a gradual change in the whole population but rather reflected a time-dependent bimodal switch between metabolically inactive (i.e., nongrowing) and fully active (i.e., growing) bacteria. A transcriptional Φ(glpD-gfp) fusion (a proxy of the glycerol-3-phosphate [G3P] dehydrogenase activity) linked the macroscopic phenotype to the expression of the glp genes. Either deleting glpR (encoding the G3P-responsive transcriptional repressor that controls the expression of the glpFKRD gene cluster) or altering G3P formation (by overexpressing glpK, encoding glycerol kinase) abolished the bimodal glpD expression. These manipulations eliminated the stochastic growth start by shortening the otherwise long lag phase. Provision of glpR in trans restored the phenotypes lost in the ΔglpR mutant. The prolonged nongrowth regime of P. putida on glycerol could thus be traced to the regulatory device controlling the transcription of the glp genes. Since the physiological agonist of GlpR is G3P, the arrangement of metabolic and regulatory components at this checkpoint merges a positive feedback loop with a nonlinear transcriptional response, a layout fostering the observed time-dependent shift between two alternative physiological states. Phenotypic variation is a widespread attribute of prokaryotes that leads, inter alia, to the emergence of persistent bacteria, i.e., live but nongrowing members within a genetically clonal population. Persistence allows a fraction of cells to avoid the killing caused by conditions or agents that destroy most growing bacteria (e.g., some antibiotics). Known molecular mechanisms underlying the phenomenon include genetic changes, epigenetic variations, and feedback-based multistability. We show that a prolonged nongrowing state of the bacterial population can be brought about by a distinct regulatory architecture of metabolic genes when cells face specific nutrients (e.g., glycerol). Pseudomonas putida may have adopted the resulting carbon source-dependent metabolic bet hedging as an advantageous trait for exploring new chemical and nutritional landscapes. Defeating such naturally occurring adaptive features of environmental bacteria is instrumental in improving the performance of these microorganisms as whole-cell catalysts in a bioreactor setup.
Collapse
|
99
|
Lieder S, Nikel PI, de Lorenzo V, Takors R. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fact 2015; 14:23. [PMID: 25890048 PMCID: PMC4352270 DOI: 10.1186/s12934-015-0207-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The implementation of novel platform organisms to be used as microbial cell factories in industrial applications is currently the subject of intense research. Ongoing efforts include the adoption of Pseudomonas putida KT2440 variants with a reduced genome as the functional chassis for biotechnological purposes. In these strains, dispensable functions removed include flagellar motility (1.1% of the genome) and a number of open reading frames expected to improve genotypic and phenotypic stability of the cells upon deletion (3.2% of the genome). RESULTS In this study, two previously constructed multiple-deletion P. putida strains were systematically evaluated as microbial cell factories for heterologous protein production and compared to the parental bacterium (strain KT2440) with regards to several industrially-relevant physiological traits. Energetic parameters were quantified at different controlled growth rates in continuous cultivations and both strains had a higher adenosine triphosphate content, increased adenylate energy charges, and diminished maintenance demands than the wild-type strain. Under all the conditions tested the mutants also grew faster, had enhanced biomass yields and showed higher viability, and displayed increased plasmid stability than the parental strain. In addition to small-scale shaken-flask cultivations, the performance of the genome-streamlined strains was evaluated in larger scale bioreactor batch cultivations taking a step towards industrial growth conditions. When the production of the green fluorescent protein (used as a model heterologous protein) was assessed in these cultures, the mutants reached a recombinant protein yield with respect to biomass up to 40% higher than that of P. putida KT2440. CONCLUSIONS The two streamlined-genome derivatives of P. putida KT2440 outcompeted the parental strain in every industrially-relevant trait assessed, particularly under the working conditions of a bioreactor. Our results demonstrate that these genome-streamlined bacteria are not only robust microbial cell factories on their own, but also a promising foundation for further biotechnological applications.
Collapse
Affiliation(s)
- Sarah Lieder
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
100
|
Dechesne A, Badawi N, Aamand J, Smets BF. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Front Microbiol 2014; 5:667. [PMID: 25538691 PMCID: PMC4257087 DOI: 10.3389/fmicb.2014.00667] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 11/16/2022] Open
Abstract
Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.
Collapse
Affiliation(s)
- Arnaud Dechesne
- Department of Environmental Engineering, Technical University of DenmarkLyngby, Denmark
| | - Nora Badawi
- Department of Geochemistry, Geological Survey of Denmark and GreenlandCopenhagen, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and GreenlandCopenhagen, Denmark
| | - Barth F. Smets
- Department of Environmental Engineering, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|