51
|
Kaur J, Davoodi-Bojd E, Fahmy LM, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Magnetic Resonance Imaging and Modeling of the Glymphatic System. Diagnostics (Basel) 2020; 10:diagnostics10060344. [PMID: 32471025 PMCID: PMC7344900 DOI: 10.3390/diagnostics10060344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The glymphatic system is a newly discovered waste drainage pathway in the brain; it plays an important role in many neurological diseases. Ongoing research utilizing various cerebrospinal fluid tracer infusions, either directly or indirectly into the brain parenchyma, is investigating clearance pathways by using distinct imaging techniques. In the present review, we discuss the role of the glymphatic system in various neurological diseases and efflux pathways of brain waste clearance based on current evidence and controversies. We mainly focus on new magnetic resonance imaging (MRI) modeling techniques, along with traditional computational modeling, for a better understanding of the glymphatic system function. Future sophisticated modeling techniques hold the potential to generate quantitative maps for glymphatic system parameters that could contribute to the diagnosis, monitoring, and prognosis of neurological diseases. The non-invasive nature of MRI may provide a safe and effective way to translate glymphatic system measurements from bench-to-bedside.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Lara M Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-313-916-8735; Fax: +1-313-916-1324
| |
Collapse
|
52
|
Walsh P, Sudre CH, Fiford CM, Ryan NS, Lashley T, Frost C, Barnes J. CSF amyloid is a consistent predictor of white matter hyperintensities across the disease course from aging to Alzheimer's disease. Neurobiol Aging 2020; 91:5-14. [PMID: 32305782 DOI: 10.1016/j.neurobiolaging.2020.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
Abstract
This study investigated the relationship between white matter hyperintensities (WMH) and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers. Subjects included 180 controls, 107 individuals with a significant memory concern, 320 individuals with early mild cognitive impairment, 171 individuals with late mild cognitive impairment, and 151 individuals with AD, with 3T MRI and CSF Aβ1-42, total tau (t-tau), and phosphorylated tau (p-tau) data. Multiple linear regression models assessed the relationship between WMH and CSF Aβ1-42, t-tau, and p-tau. Directionally, a higher WMH burden was associated with lower CSF Aβ1-42 within each diagnostic group, with no evidence for a difference in the slope of the association across diagnostic groups (p = 0.4). Pooling all participants, this association was statistically significant after adjustment for t-tau, p-tau, age, diagnostic group, and APOE-ε4 status (p < 0.001). Age was the strongest predictor of WMH (partial R2~16%) compared with CSF Aβ1-42 (partial R2~5%). There was no evidence for an association with WMH and either t-tau or p-tau. These data are supportive of a link between amyloid burden and presumed vascular pathology.
Collapse
Affiliation(s)
- Phoebe Walsh
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Centre for Medical Image Computing, University College London, London, UK
| | - Cassidy M Fiford
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Chris Frost
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
53
|
Potential Role of Venular Amyloid in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2020; 21:ijms21061985. [PMID: 32183293 PMCID: PMC7139584 DOI: 10.3390/ijms21061985] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Insurmountable evidence has demonstrated a strong association between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), along with various other cerebrovascular diseases. One form of CAA, which is the accumulation of amyloid-beta peptides (Aβ) along cerebral vessel walls, impairs perivascular drainage pathways and contributes to cerebrovascular dysfunction in AD. To date, CAA research has been primarily focused on arterial Aβ, while the accumulation of Aβ in veins and venules were to a lesser extent. In this review, we describe preclinical models and clinical studies supporting the presence of venular amyloid and potential downstream pathological mechanisms that affect the cerebrovasculature in AD. Venous collagenosis, impaired cerebrovascular pulsatility, and enlarged perivascular spaces are exacerbated by venular amyloid and increase Aβ deposition, potentially through impaired perivascular clearance. Gaining a comprehensive understanding of the mechanisms involved in venular Aβ deposition and associated pathologies will give insight to how CAA contributes to AD and its association with AD-related cerebrovascular disease. Lastly, we suggest that special consideration should be made to develop Aβ-targeted therapeutics that remove vascular amyloid and address cerebrovascular dysfunction in AD.
Collapse
|
54
|
Frontera JA. This is your brain on LVAD. J Heart Lung Transplant 2020; 39:228-230. [DOI: 10.1016/j.healun.2020.01.1337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/11/2023] Open
|
55
|
Murase S, Okazaki S, Yoshioka D, Watanabe K, Gon Y, Todo K, Sasaki T, Sakaguchi M, Misumi Y, Toda K, Sawa Y, Mochizuki H. Abnormalities of brain imaging in patients after left ventricular assist device support following explantation. J Heart Lung Transplant 2020; 39:220-227. [DOI: 10.1016/j.healun.2019.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022] Open
|
56
|
Klohs J. An Integrated View on Vascular Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:109-127. [PMID: 32062666 DOI: 10.1159/000505625] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,
| |
Collapse
|
57
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
58
|
Cheng Y, Haorah J. How does the brain remove its waste metabolites from within? INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:238-249. [PMID: 31993098 PMCID: PMC6971497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The brain is the command center of the body that regulates the vital functions of circulation, respiration, motor function, metabolic activities, or autonomic nervous system outcomes. The brain coordinates these continuous activities at the expense of huge energy utilization. This energy demand is achieved by active transport of nutrients across the endothelial blood-brain barrier (BBB). This review discusses the barrier interfaces in the CNS that include the BBB, blood-spinal cord barrier, the epithelial choroid plexus, and the epithelial arachnoid. While transporting of nutrients across the BBB is a normal physiological function, the trafficking of xenobiotics and inflammatory cells/agents across these interfaces is harmful to brain cells. This leads to production of waste metabolites in the brain. Clearance of these waste metabolites maintains the normal brain homeostasis, while aggregation is detrimental to neurological complications. Since the CNS lacks lymphatic system, the CSF serves as the clearance path for water-soluble peptides/solutes, but not large size waste metabolites like Aβ protein. In particular, this review will focus on the mechanisms of waste metabolites clearance paths in the CNS. This will include the recently discovered waste metabolites movement from interstitial space (IS) directly into perivascular clearance (PVC), or via IS-CSF-PVC, and its exchange from PVC to circulation. Concluding remarks will discuss the therapeutic approach to improve the clearance mechanisms for ameliorating neurological diseases.
Collapse
Affiliation(s)
- Yiming Cheng
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology Newark, NJ 07102, United States
| | - James Haorah
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology Newark, NJ 07102, United States
| |
Collapse
|
59
|
From Stroke to Dementia: a Comprehensive Review Exposing Tight Interactions Between Stroke and Amyloid-β Formation. Transl Stroke Res 2019; 11:601-614. [PMID: 31776837 PMCID: PMC7340665 DOI: 10.1007/s12975-019-00755-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/13/2023]
Abstract
Stroke and Alzheimer’s disease (AD) are cerebral pathologies with high socioeconomic impact that can occur together and mutually interact. Vascular factors predisposing to cerebrovascular disease have also been specifically associated with development of AD, and acute stroke is known to increase the risk to develop dementia. Despite the apparent association, it remains unknown how acute cerebrovascular disease and development of AD are precisely linked and act on each other. It has been suggested that this interaction is strongly related to vascular deposition of amyloid-β (Aβ), i.e., cerebral amyloid angiopathy (CAA). Furthermore, the blood–brain barrier (BBB), perivascular space, and the glymphatic system, the latter proposedly responsible for the drainage of solutes from the brain parenchyma, may represent key pathophysiological pathways linking stroke, Aβ deposition, and dementia. In this review, we propose a hypothetic connection between CAA, stroke, perivascular space integrity, and dementia. Based on relevant pre-clinical research and a few clinical case reports, we speculate that impaired perivascular space integrity, inflammation, hypoxia, and BBB breakdown after stroke can lead to accelerated deposition of Aβ within brain parenchyma and cerebral vessel walls or exacerbation of CAA. The deposition of Aβ in the parenchyma would then be the initiating event leading to synaptic dysfunction, inducing cognitive decline and dementia. Maintaining the clearance of Aβ after stroke could offer a new therapeutic approach to prevent post-stroke cognitive impairment and development into dementia.
Collapse
|
60
|
Abstract
Despite its small size, the brain consumes 25% of the body’s energy, generating its own weight in potentially toxic proteins and biological debris each year. The brain is also the only organ lacking lymph vessels to assist in removal of interstitial waste. Over the past 50 years, a picture has been developing of the brain’s unique waste removal system. Experimental observations show cerebrospinal fluid, which surrounds the brain, enters the brain along discrete pathways, crosses a barrier into the spaces between brain cells, and flushes the tissue, carrying wastes to routes exiting the brain. Dysfunction of this cerebral waste clearance system has been demonstrated in Alzheimer’s disease, traumatic brain injury, diabetes, and stroke. The activity of the system is observed to increase during sleep. In addition to waste clearance, this circuit of flow may also deliver nutrients and neurotransmitters. Here, we review the relevant literature with a focus on transport processes, especially the potential role of diffusion and advective flows.
Collapse
|
61
|
Cheng Y, Liu X, Ma X, Garcia R, Belfield K, Haorah J. Alcohol promotes waste clearance in the CNS via brain vascular reactivity. Free Radic Biol Med 2019; 143:115-126. [PMID: 31362045 DOI: 10.1016/j.freeradbiomed.2019.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
The efficient clearance of the interstitial waste metabolites is essential for the normal maintenance of brain homeostasis. The brain lacks the lymphatic clearance system. Thus, the drainage of waste metabolites in the brain is dependent on a slow flow of cerebrospinal fluid (CSF) system. Glymphatic system claims the direct bulk flow transport of small size water-soluble waste metabolites into to the perivenous space by aquaporin-4 water channels of the astrocyte end-feet, but it did not address the diffusive clearance of large size waste metabolites. Here, we addressed the clearance mechanisms of large size waste metabolites from interstitial fluid to perivascular space as well as from CSF subarachnoid into perivascular space via the paravascular drainage. A low dose ethanol acting as a potent vasodilator promotes the dynamic clearance of waste metabolites through this perivascular-perivenous drainage path. We observed that ethanol-induced increased in vascular endothelial and smooth muscle cell reactivity regulated the enhanced clearance of metabolites. Here, activation of endothelial specific nitric oxide synthase (eNOS) by ethanol and generation of vasodilator nitric oxide mediates the interactive reactivity of endothelial-smooth muscle cells and subsequent diffusion of the CNS waste metabolites towards perivascular space. Detection of tracer dye (waste metabolite) in the perivenous space and in the blood samples further confirmed the improved clearance of waste metabolites through this unraveled interstitial-perivascular-perivenous clearance path. Our results suggest that alcohol intake at low-dose levels may promote clearance of neurological disease associated entangled proteins.
Collapse
Affiliation(s)
- Yiming Cheng
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Xinglei Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, NJ, 07102, United States
| | - Xiaotang Ma
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Ricardo Garcia
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Kevin Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, NJ, 07102, United States
| | - James Haorah
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, United States.
| |
Collapse
|
62
|
Jäkel L, Boche D, Nicoll JAR, Verbeek MM. Aβ43 in human Alzheimer's disease: effects of active Aβ42 immunization. Acta Neuropathol Commun 2019; 7:141. [PMID: 31477180 PMCID: PMC6717966 DOI: 10.1186/s40478-019-0791-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropathological follow-up of patients with Alzheimer’s disease (AD) who participated in the first clinical trial of Amyloid-β 42 (Aβ42) immunization (AN1792, Elan Pharmaceuticals) has shown that immunization can induce removal of Aβ42 and Aβ40 from plaques, whereas analysis of the cerebral vessels has shown increased levels of these Aβ peptides in cerebral amyloid angiopathy (CAA). Aβ43 has been less frequently studied in AD, but its aggregation propensity and neurotoxic properties suggest it may have an important pathogenic role. In the current study we show by using immunohistochemistry that in unimmunized AD patients Aβ43 is a frequent constituent of plaques (6.0% immunostained area), similar to Aβ42 (3.9% immunostained area). Aβ43 immunostained area was significantly higher than that of Aβ40 (2.3%, p = 0.006). In addition, we show that Aβ43 is only a minor component of CAA in both parenchymal vessels (1.5 Aβ43-positive vessels per cm2 cortex vs. 5.3 Aβ42-positive vessels, p = 0.03, and 6.2 Aβ40-positive vessels, p = 0.045) and leptomeningeal vessels (5.6% Aβ43-positive vessels vs. 17.3% Aβ42-positive vessels, p = 0.007, and 27.4% Aβ40-positive vessels, p = 0.003). Furthermore, we have shown that Aβ43 is cleared from plaques after Aβ immunotherapy, similar to Aβ42 and Aβ40. Cerebrovascular Aβ43 levels did not change after immunotherapy.
Collapse
|
63
|
Standring OJ, Friedberg J, Tripodis Y, Chua AS, Cherry JD, Alvarez VE, Huber BR, Xia W, Mez J, Alosco ML, Nicks R, Mahar I, Pothast MJ, Gardner HM, Meng G, Palmisano JN, Martin BM, Dwyer B, Kowall NW, Cantu RC, Goldstein LE, Katz DI, Stern RA, McKee AC, Stein TD. Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathol 2019; 138:401-413. [PMID: 31183671 DOI: 10.1007/s00401-019-02031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) consists of beta-amyloid deposition in the walls of the cerebrovasculature and is commonly associated with Alzheimer's disease (AD). However, the association of CAA with repetitive head impacts (RHI) and with chronic traumatic encephalopathy (CTE) is unknown. We evaluated the relationship between RHI from contact sport participation, CTE, and CAA within a group of deceased contact sport athletes (n = 357), a community-based cohort (n = 209), and an AD cohort from Boston University AD Center (n = 241). Unsupervised hierarchal cluster analysis demonstrated a unique cluster (n = 11) with increased CAA in the leptomeningeal vessels compared to the intracortical vessels (p < 0.001) comprised of participants with significantly greater frequencies of CTE (7/11) and history of RHI. Overall, participants with CTE (n = 251) had more prevalent (p < 0.001) and severe (p = 0.010) CAA within the frontal leptomeningeal vessels compared to intracortical vessels. Compared to those with AD, participants with CTE had more severe CAA in frontal than parietal lobes (p < 0.001) and more severe CAA in leptomeningeal than intracortical vessels (p = 0.002). The overall frequency of CAA in participants with CTE was low, and there was no significant association between contact sport participation and the presence of CAA. However, in those with CAA, a history of contact sports was associated with increased CAA severity in the frontal leptomeningeal vessels (OR = 4.01, 95% CI 2.52-6.38, p < 0.001) adjusting for AD, APOE ε4 status, and age. Participants with CAA had increased levels of sulcal tau pathology and decreased levels of the synaptic marker PSD-95 (p's < 0.05), and CAA was a predictor of dementia (OR = 1.75, 95% CI 1.02-2.99, p = 0.043) adjusting for age, sex, and comorbid pathology. Overall, contact sport participation and CTE were associated with more severe frontal and leptomeningeal CAA, and CAA was independently associated with worse pathological and clinical outcomes.
Collapse
Affiliation(s)
- Oliver J Standring
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Jacob Friedberg
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Alicia S Chua
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Jonathan D Cherry
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Victor E Alvarez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Bertrand R Huber
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Jesse Mez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Michael L Alosco
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Raymond Nicks
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Ian Mahar
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Morgan J Pothast
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Hannah M Gardner
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Gaoyuan Meng
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Joseph N Palmisano
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brett M Martin
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Neil W Kowall
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Robert C Cantu
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Concussion Legacy Foundation, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, 01742, USA
| | - Lee E Goldstein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Departments of Psychiatry, Ophthalmology, Boston University School of Medicine, Boston, USA
- Departments of Biomedical, Electrical and Computer Engineering, Boston University College of Engineering, Boston, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Robert A Stern
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ann C McKee
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Thor D Stein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
64
|
Raposo N, Planton M, Payoux P, Péran P, Albucher JF, Calviere L, Viguier A, Rousseau V, Hitzel A, Chollet F, Olivot JM, Bonneville F, Pariente J. Enlarged perivascular spaces and florbetapir uptake in patients with intracerebral hemorrhage. Eur J Nucl Med Mol Imaging 2019; 46:2339-2347. [PMID: 31359110 DOI: 10.1007/s00259-019-04441-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Enlarged perivascular spaces in the centrum semiovale (CSO-EPVS) have been linked to cerebral amyloid angiopathy (CAA). To get insight into the underlying mechanisms of this association, we investigated the relationship between amyloid-β deposition assessed by 18F-florbetapir PET and CSO-EPVS in patients with acute intracerebral hemorrhage (ICH). METHODS We prospectively enrolled 18 patients with lobar ICH (suggesting CAA) and 20 with deep ICH (suggesting hypertensive angiopathy), who underwent brain MRI and 18F-florbetapir PET. EPVS were assessed on MRI using a validated 4-point visual rating scale in the centrum semiovale and the basal ganglia (BG-EPVS). PET images were visually assessed, blind to clinical and MRI data. We evaluated the association between florbetapir PET positivity and high degree (score> 2) of CSO-EPVS and BG-EPVS. RESULTS High CSO-EPVS degree was more common in patients with lobar ICH than deep ICH (55.6% vs. 20.0%; p = 0.02). Eight (57.1%) patients with high CSO-EPVS degree had a positive florbetapir PET compared with 4 (16.7%) with low CSO-EPVS degree (p = 0.01). In contrast, prevalence of florbetapir PET positivity was similar between patients with high vs. low BG-EPVS. In multivariable analysis adjusted for age, hypertension, and MRI markers of CAA, florbetapir PET positivity (odds ratio (OR) 6.44, 95% confidence interval (CI) 1.32-38.93; p = 0.03) was independently associated with high CSO-EPVS degree. CONCLUSIONS Among patients with spontaneous ICH, high degree of CSO-EPVS but not BG-EPVS is associated with amyloid PET positivity. The findings provide further evidence that CSO-EPVS are markers of vascular amyloid burden that may be useful in diagnosing CAA.
Collapse
Affiliation(s)
- Nicolas Raposo
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France. .,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Mélanie Planton
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Pierre Payoux
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Nuclear Medicine, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean François Albucher
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Lionel Calviere
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Alain Viguier
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Vanessa Rousseau
- Department of Epidemiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Anne Hitzel
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Nuclear Medicine, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - François Chollet
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean Marc Olivot
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Neuroradiology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jérémie Pariente
- Department of Neurology, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Place Baylac, 31059, Toulouse Cedex 9, France.,Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
65
|
Origins of Beta Amyloid Differ Between Vascular Amyloid Deposition and Parenchymal Amyloid Plaques in the Spinal Cord of a Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2019; 57:278-289. [DOI: 10.1007/s12035-019-01697-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
|
66
|
de Retana SF, Marazuela P, Solé M, Colell G, Bonaterra A, Sánchez-Quesada JL, Montaner J, Maspoch D, Cano-Sarabia M, Hernández-Guillamon M. Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. ALZHEIMERS RESEARCH & THERAPY 2019; 11:42. [PMID: 31077261 PMCID: PMC6511153 DOI: 10.1186/s13195-019-0498-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Background ApoJ/clusterin is a multifunctional protein highly expressed in the brain. The implication of ApoJ in β-amyloid (Aβ) fibrillization and clearance in the context of Alzheimer’s disease has been widely studied, although the source and concentration of ApoJ that promotes or inhibits Aβ cerebral accumulation is not clear yet. ApoJ is abundant in plasma and approximately 20% can appear bound to HDL-particles. In this regard, the impact of plasmatic ApoJ and its lipidation status on cerebral β-amyloidosis is still not known. Hence, our main objective was to study the effect of a peripheral increase of free ApoJ or reconstituted HDL particles containing ApoJ in an experimental model of cerebral β-amyloidosis. Methods Fourteen-month-old APP23 transgenic mice were subjected to subchronic intravenous treatment with rHDL-rApoJ nanodiscs or free rApoJ for 1 month. Aβ concentration and distribution in the brain, as well as Aβ levels in plasma and CSF, were determined after treatments. Other features associated to AD pathology, such as neuronal loss and neuroinflammation, were also evaluated. Results Both ApoJ-based treatments prevented the Aβ accumulation in cerebral arteries and induced a decrease in total brain insoluble Aβ42 levels. The peripheral treatment with rApoJ also induced an increase in the Aβ40 levels in CSF, whereas the concentration remained unaltered in plasma. At all the endpoints studied, the lipidation of rApoJ did not enhance the protective properties of free rApoJ. The effects obtained after subchronic treatment with free rApoJ were accompanied by a reduction in hippocampal neuronal loss and an enhancement of the expression of a phagocytic marker in microglial cells surrounding Aβ deposits. Finally, despite the activation of this phagocytic phenotype, treatments did not induce a global neuroinflammatory status. In fact, free rApoJ treatment was able to reduce the levels of interleukin-17 (IL17) and keratinocyte chemoattractant (KC) chemokine in the brain. Conclusions Our results demonstrate that an increase in circulating human rApoJ induces a reduction of insoluble Aβ and CAA load in the brain of APP23 mice. Thus, our study suggests that peripheral interventions, based on treatments with multifunctional physiological chaperones, offer therapeutic opportunities to regulate the cerebral Aβ load. Electronic supplementary material The online version of this article (10.1186/s13195-019-0498-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofía Fernández de Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Guillem Colell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Anna Bonaterra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBER of Diabetes and Metabolism (CIBERDEM), ISCIII, Madrid, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, , Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, , Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.
| |
Collapse
|
67
|
Zhang L, Chopp M, Jiang Q, Zhang Z. Role of the glymphatic system in ageing and diabetes mellitus impaired cognitive function. Stroke Vasc Neurol 2019; 4:90-92. [PMID: 31338217 PMCID: PMC6613875 DOI: 10.1136/svn-2018-000203] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is a common metabolic disease in the middle-aged and older population, and is associated with cognitive impairment and an increased risk of developing dementia. The glymphatic system is a recently characterised brain-wide cerebrospinal fluid and interstitial fluid drainage pathway that enables the clearance of interstitial metabolic waste from the brain parenchyma. Emerging data suggest that DM and ageing impair the glymphatic system, leading to accumulation of metabolic wastes including amyloid-β within the brain parenchyma, and consequently provoking cognitive dysfunction. In this review, we concisely discuss recent findings regarding the role of the glymphatic system in DM and ageing associated cognitive impairment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
68
|
Keith Sharp M, Carare RO, Martin BA. Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system. Fluids Barriers CNS 2019; 16:13. [PMID: 31056079 PMCID: PMC6512764 DOI: 10.1186/s12987-019-0132-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/16/2019] [Indexed: 01/22/2023] Open
Abstract
Background As an alternative to advection, solute transport by shear-augmented dispersion within oscillatory cerebrospinal fluid flow was investigated in small channels representing the basement membranes located between cerebral arterial smooth muscle cells, the paraarterial space surrounding the vessel wall and in large channels modeling the spinal subarachnoid space (SSS). Methods Geometries were modeled as two-dimensional. Fully developed flows in the channels were modeled by the Darcy–Brinkman momentum equation and dispersion by the passive transport equation. Scaling of the enhancement of axial dispersion relative to molecular diffusion was developed for regimes of flow including quasi-steady, porous and unsteady, and for regimes of dispersion including diffusive and unsteady. Results Maximum enhancement occurs when the characteristic time for lateral dispersion is matched to the cycle period. The Darcy–Brinkman model represents the porous media as a continuous flow resistance, and also imposes no-slip boundary conditions at the walls of the channel. Consequently, predicted dispersion is always reduced relative to that of a channel without porous media, except when the flow and dispersion are both unsteady. Discussion/conclusions In the basement membranes, flow and dispersion are both quasi-steady and enhancement of dispersion is small even if lateral dispersion is reduced by the porous media to achieve maximum enhancement. In the paraarterial space, maximum enhancement Rmax = 73,200 has the potential to be significant. In the SSS, the dispersion is unsteady and the flow is in the transition zone between porous and unsteady. Enhancement is 5.8 times that of molecular diffusion, and grows to a maximum of 1.6E+6 when lateral dispersion is increased. The maximum enhancement produces rostral transport time in agreement with experiments. Electronic supplementary material The online version of this article (10.1186/s12987-019-0132-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40292, USA.
| | - Roxana O Carare
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Bryn A Martin
- Department of Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
69
|
Ray L, Iliff JJ, Heys JJ. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 2019; 16:6. [PMID: 30836968 PMCID: PMC6402182 DOI: 10.1186/s12987-019-0126-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Despite advances in in vivo imaging and experimental techniques, the nature of transport mechanisms in the brain remain elusive. Mathematical modelling verified using available experimental data offers a powerful tool for investigating hypotheses regarding extracellular transport of molecules in brain tissue. Here we describe a tool developed to aid in investigation of interstitial transport mechanisms, especially the potential for convection (or bulk flow) and its relevance to interstitial solute transport, for which there is conflicting evidence. Methods In this work, we compare a large body of published experimental data for transport in the brain to simulations of purely diffusive transport and simulations of combined convective and diffusive transport in the brain interstitium, incorporating current theories of perivascular influx and efflux. Results The simulations show (1) convective flow in the interstitium potentially of a similar magnitude to diffusive transport for molecules of interest and (2) exchange between the interstitium and perivascular space, whereby fluid and solutes may enter or exit the interstitium, are consistent with the experimental data. Simulations provide an upper limit for superficial convective velocity magnitude (approximately \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v$$\end{document}v = 50 μm min−1), a useful finding for researchers developing techniques to measure interstitial bulk flow. Conclusions For the large molecules of interest in neuropathology, bulk flow may be an important mechanism of interstitial transport. Further work is warranted to investigate the potential for bulk flow. Electronic supplementary material The online version of this article (10.1186/s12987-019-0126-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lori Ray
- Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Sciences University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, OR, USA
| | - Jeffrey J Heys
- Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
70
|
Jordão MJC, Sankowski R, Brendecke SM, Sagar, Locatelli G, Tai YH, Tay TL, Schramm E, Armbruster S, Hagemeyer N, Groß O, Mai D, Çiçek Ö, Falk T, Kerschensteiner M, Grün D, Prinz M. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 2019; 363:363/6425/eaat7554. [DOI: 10.1126/science.aat7554] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
The innate immune cell compartment is highly diverse in the healthy central nervous system (CNS), including parenchymal and non-parenchymal macrophages. However, this complexity is increased in inflammatory settings by the recruitment of circulating myeloid cells. It is unclear which disease-specific myeloid subsets exist and what their transcriptional profiles and dynamics during CNS pathology are. Combining deep single-cell transcriptome analysis, fate mapping, in vivo imaging, clonal analysis, and transgenic mouse lines, we comprehensively characterized unappreciated myeloid subsets in several CNS compartments during neuroinflammation. During inflammation, CNS macrophage subsets undergo self-renewal, and random proliferation shifts toward clonal expansion. Last, functional studies demonstrated that endogenous CNS tissue macrophages are redundant for antigen presentation. Our results highlight myeloid cell diversity and provide insights into the brain’s innate immune system.
Collapse
|
71
|
Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain. Front Aging Neurosci 2019; 11:1. [PMID: 30740048 PMCID: PMC6357927 DOI: 10.3389/fnagi.2019.00001] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA.
Collapse
Affiliation(s)
- Roxana Aldea
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Giles Richardson
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
72
|
Cerebral Amyloid Angiopathy. Neuroradiology 2019. [DOI: 10.1016/b978-0-323-44549-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
74
|
Jandke S, Garz C, Schwanke D, Sendtner M, Heinze HJ, Carare RO, Schreiber S. The association between hypertensive arteriopathy and cerebral amyloid angiopathy in spontaneously hypertensive stroke-prone rats. Brain Pathol 2018; 28:844-859. [PMID: 30062722 PMCID: PMC8028507 DOI: 10.1111/bpa.12629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to test the hypothesis that in spontaneously hypertensive stroke‐prone rats (SHRSP), non‐amyloid cerebral small vessel disease/hypertensive arteriopathy (HA) results in vessel wall injury that may promote cerebral amyloid angiopathy (CAA). Our study comprised 21 male SHRSP (age 17–44 weeks) and 10 age‐ and sex‐matched Wistar control rats, that underwent two‐photon (2PM) imaging of the arterioles in the parietal cortex using Methoxy‐X04, Dextran and cerebral blood flow (CBF) measurements. Our data suggest that HA in SHRSP progresses in a temporal and age‐dependent manner, starting from small vessel wall damage (stage 1A), proceeding to CBF reduction (stage 1B), non‐occlusive (stage 2), and finally, occlusive thrombi (stage 3). Wistar animals also demonstrated small vessel wall damage, but were free of any of the later HA stages. Nearly half of all SHRSP additionally displayed vascular Methoxy‐X04 positivity indicative of cortical CAA. Vascular β‐amyloid deposits were found in small vessels characterized by thrombotic occlusions (stage 2 or 3). Post‐mortem analysis of the rat brains confirmed the findings derived from intravital 2PM microscopy. Our data thus overall suggest that advanced HA may play a role in CAA development with the two small vessel disease entities might be related to the same pathological spectrum of the aging brain.
Collapse
Affiliation(s)
- Solveig Jandke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Cornelia Garz
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Daniel Schwanke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
75
|
Diem AK, Carare RO, Weller RO, Bressloff NW. A control mechanism for intra-mural peri-arterial drainage via astrocytes: How neuronal activity could improve waste clearance from the brain. PLoS One 2018; 13:e0205276. [PMID: 30286191 PMCID: PMC6171921 DOI: 10.1371/journal.pone.0205276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/22/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanisms behind the clearance of soluble waste from deep within the parenchyma of the brain remain unclear. Experimental evidence reveals that one pathway for clearance of waste, termed intra-mural peri-arterial drainage (IPAD), is the rapid drainage of interstitial fluid along basement membranes (BM) of the smooth muscle cells of cerebral arteries; failure of IPAD is closely associated with the pathology of Alzheimer's disease (AD), but its driving mechanism remains unclear. We have previously shown that arterial pulsations generated by the heart beat are not strong enough to drive IPAD. Here we present computational evidence for a mechanism for clearance of waste from the brain that is driven by functional hyperaemia, that is, the dilatation of cerebral arterioles as a consequence of increased nutrient demand from neurons. This mechanism is based on our model for the flow of fluid through the vascular BM. It accounts for clearance rates observed in mouse experiments, and aligns with pathological observations and recommendations to lower the individual risk of AD, such as mental and physical activity. Thus, our neurovascular hypothesis should act as the new working hypothesis for the driving force behind IPAD.
Collapse
Affiliation(s)
- Alexandra K. Diem
- Department of Computational Physiology, Simula Research Laboratory, 1364 Fornebu, Norway
- Computational Engineering and Design, Faculty of Engineering and the Environment, University of Southampton, Southampton Boldrewood Innovation Campus, Southampton, SO16 7QF, United Kingdom
- * E-mail:
| | - Roxana O. Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Roy O. Weller
- Neuropathology, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Neil W. Bressloff
- Computational Engineering and Design, Faculty of Engineering and the Environment, University of Southampton, Southampton Boldrewood Innovation Campus, Southampton, SO16 7QF, United Kingdom
| |
Collapse
|
76
|
Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018; 114:1462-1473. [PMID: 29726891 PMCID: PMC6455920 DOI: 10.1093/cvr/cvy113] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Small vessel diseases (SVDs) are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood. Magnetic resonance imaging has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that form part of a vicious cycle involving impaired cerebrovascular reactivity, blood-brain barrier dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid space, leading to accumulation of toxins, hypoxia, and tissue damage. Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.
Collapse
Affiliation(s)
- Rosalind Brown
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, USA
| | - Sandra E Black
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Maiken Nedergaard
- Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, USA
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh, UK
- Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| |
Collapse
|
77
|
Harrison IF, Siow B, Akilo AB, Evans PG, Ismail O, Ohene Y, Nahavandi P, Thomas DL, Lythgoe MF, Wells JA. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. eLife 2018; 7:34028. [PMID: 30063207 PMCID: PMC6117153 DOI: 10.7554/elife.34028] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
The glymphatics system describes a CSF-mediated clearance pathway for the removal of potentially harmful molecules, such as amyloid beta, from the brain. As such, its components may represent new therapeutic targets to alleviate aberrant protein accumulation that defines the most prevalent neurodegenerative conditions. Currently, however, the absence of any non-invasive measurement technique prohibits detailed understanding of glymphatic function in the human brain and in turn, it’s role in pathology. Here, we present the first non-invasive technique for the assessment of glymphatic inflow by using an ultra-long echo time, low b-value, multi-direction diffusion weighted MRI sequence to assess perivascular fluid movement (which represents a critical component of the glymphatic pathway) in the rat brain. This novel, quantitative and non-invasive approach may represent a valuable biomarker of CSF-mediated brain clearance, working towards the clinical need for reliable and early diagnostic indicators of neurodegenerative conditions such as Alzheimer’s disease. Our brain is bathed in cerebrospinal fluid, a clear liquid that ‘cushions’ the fragile organ. This liquid travels into the brain along special channels – the perivascular space – that surround certain blood vessels. As the fluid washes in and out of the brain, it takes with it potentially harmful molecules, such as the aggregates that build up to cause Alzheimer’s disease. If this brain-cleaning system becomes faulty, it could lead to neurodegenerative diseases. However, it is extremely difficult to measure the activity of this intricate and delicate system, and most studies so far have had to use invasive techniques that usually require brain surgery. Now, Harrison et al. adapt a technique, called diffusion tensor magnetic resonance imaging (MRI), to visualise how the cerebrospinal fluid moves in the perivascular space in healthy rats. The non-invasive MRI method captures how the cerebrospinal fluid is driven into the brain when the blood vessels nearby expand and contract; as the vessels pulsate with each heartbeat, there is a 300% increase in the movement of the fluid in the perivascular space. This approach could be applied to understand exactly how neurodegenerative diseases emerge when the cerebrospinal fluid stops to properly clean the brain. Ultimately, the method could be used to detect when the cleansing system starts to fail in people, which could help to treat patients before their brains accumulate too many harmful substances.
Collapse
Affiliation(s)
- Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Bernard Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Aisha B Akilo
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Phoebe G Evans
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Ozama Ismail
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Payam Nahavandi
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
78
|
Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, Carare RO. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol 2018; 136:139-152. [PMID: 29754206 PMCID: PMC6015107 DOI: 10.1007/s00401-018-1862-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022]
Abstract
Tracers injected into CSF pass into the brain alongside arteries and out again. This has been recently termed the “glymphatic system” that proposes tracers enter the brain along periarterial “spaces” and leave the brain along the walls of veins. The object of the present study is to test the hypothesis that: (1) tracers from the CSF enter the cerebral cortex along pial-glial basement membranes as there are no perivascular “spaces” around cortical arteries, (2) tracers leave the brain along smooth muscle cell basement membranes that form the Intramural Peri-Arterial Drainage (IPAD) pathways for the elimination of interstitial fluid and solutes from the brain. 2 μL of 100 μM soluble, fluorescent fixable amyloid β (Aβ) were injected into the CSF of the cisterna magna of 6–10 and 24–30 month-old male mice and their brains were examined 5 and 30 min later. At 5 min, immunocytochemistry and confocal microscopy revealed Aβ on the outer aspects of cortical arteries colocalized with α-2 laminin in the pial-glial basement membranes. At 30 min, Aβ was colocalised with collagen IV in smooth muscle cell basement membranes in the walls of cortical arteries corresponding to the IPAD pathways. No evidence for drainage along the walls of veins was found. Measurements of the depth of penetration of tracer were taken from 11 regions of the brain. Maximum depths of penetration of tracer into the brain were achieved in the pons and caudoputamen. Conclusions drawn from the present study are that tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. The exit route is along IPAD pathways in which Aβ accumulates in cerebral amyloid angiopathy (CAA) in Alzheimer’s disease. Results from this study suggest that CSF may be a suitable route for delivery of therapies for neurological diseases, including CAA.
Collapse
Affiliation(s)
| | | | | | - Roy O Weller
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
79
|
Faghih MM, Sharp MK. Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS 2018; 15:17. [PMID: 29903035 PMCID: PMC6003203 DOI: 10.1186/s12987-018-0103-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Transport of solutes has been observed in the spaces surrounding cerebral arteries and veins. Indeed, transport has been found in opposite directions in two different spaces around arteries. These findings have motivated hypotheses of bulk flow within these spaces. The glymphatic circulation hypothesis involves flow of cerebrospinal fluid from the cortical subarachnoid space to the parenchyma along the paraarterial (extramural, Virchow-Robin) space around arteries, and return flow to the cerebrospinal fluid (CSF) space via paravenous channels. The second hypothesis involves flow of interstitial fluid from the parenchyma to lymphatic vessels along basement membranes between arterial smooth muscle cells. METHODS This article evaluates the plausibility of steady, pressure-driven flow in these channels with one-dimensional branching models. RESULTS According to the models, the hydraulic resistance of arterial basement membranes is too large to accommodate estimated interstitial perfusion of the brain, unless the flow empties to lymphatic ducts after only several generations (still within the parenchyma). The estimated pressure drops required to drive paraarterial and paravenous flows of the same magnitude are not large, but paravenous flow back to the CSF space means that the total pressure difference driving both flows is limited to local pressure differences among the different CSF compartments, which are estimated to be small. CONCLUSIONS Periarterial flow and glymphatic circulation driven by steady pressure are both found to be implausible, given current estimates of anatomical and fluid dynamic parameters.
Collapse
Affiliation(s)
- Mohammad M Faghih
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - M Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
80
|
Berman SE, Clark LR, Rivera-Rivera LA, Norton D, Racine AM, Rowley HA, Bendlin BB, Blennow K, Zetterberg H, Carlsson CM, Asthana S, Turski P, Wieben O, Johnson SC. Intracranial Arterial 4D Flow in Individuals with Mild Cognitive Impairment is Associated with Cognitive Performance and Amyloid Positivity. J Alzheimers Dis 2018; 60:243-252. [PMID: 28826187 DOI: 10.3233/jad-170402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is becoming increasingly recognized that cerebrovascular disease is a contributing factor in the pathogenesis of Alzheimer's disease (AD). A unique 4D-Flow magnetic resonance imaging (MRI) technique, phase contrast vastly undersampled isotropic projection imaging (PC VIPR), enables examination of angiographic and quantitative metrics of blood flow in the arteries of the Circle of Willis within a single MRI acquisition. Thirty-eight participants with mild cognitive impairment (MCI) underwent a comprehensive neuroimaging protocol (including 4D-Flow imaging) and a standard neuropsychological battery. A subset of participants (n = 22) also underwent lumbar puncture and had cerebrospinal fluid (CSF) assayed for AD biomarkers. Cut-offs for biomarker positivity in CSF resulting from a receiver operating characteristic curve analysis of AD cases and controls from the larger Wisconsin Alzheimer's Disease Research Center cohort were used to classify MCI participants as biomarker positive or negative on amyloid-β (Aβ42), total-tau and total-tau/Aβ42 ratio. Internal carotid artery (ICA) and middle cerebral artery (MCA) mean flow were associated with executive functioning performance, with lower mean flow corresponding to worse performance. MCI participants who were biomarker positive for Aβ42 had lower ICA mean flow than did those who were Aβ42 negative. In sum, mean ICA and MCA arterial flow was associated with cognitive performance in participants with MCI and lower flow in the ICA was associated with amyloid positivity. This provides further evidence for vascular health as a contributing factor in the etiopathogenesis of AD, and could represent a point to intervene in the disease process.
Collapse
Affiliation(s)
- Sara E Berman
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Clark
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | - Derek Norton
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison WI, USA
| | - Annie M Racine
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London, Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
81
|
Liu S, Lam MA, Sial A, Hemley SJ, Bilston LE, Stoodley MA. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways. Fluids Barriers CNS 2018; 15:13. [PMID: 29704892 PMCID: PMC5924677 DOI: 10.1186/s12987-018-0098-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is thought to flow into the brain via perivascular spaces around arteries, where it mixes with interstitial fluid. The precise details concerning fluid outflow remain controversial. Although fluid dynamics have been studied in the brain, little is known about spinal cord fluid inflow and outflow. Understanding the normal fluid physiology of the spinal cord may give insight into the pathogenesis of spinal cord oedema and CSF disorders such as syringomyelia. We therefore aimed to determine the fluid outflow pathways in the rat spinal cord. METHODS A fluorescent tracer, Alexa-Fluor®-647 Ovalbumin, was injected into the extracellular space of either the cervicothoracic lateral white matter or the grey matter in twenty-two Sprague-Dawley rats over 250 s. The rats were sacrificed at 20 or 60 min post injection. Spinal cord segments were sectioned and labelled with vascular antibodies for immunohistochemistry. RESULTS Fluorescent tracer was distributed over two to three spinal levels adjacent to the injection site. In grey matter injections, tracer spread radially into the white matter. In white matter injections, tracer was confined to and redistributed along the longitudinal axonal fibres. Tracer was conducted towards the pial and ependymal surfaces along vascular structures. There was accumulation of tracer around the adventitia of the intramedullary arteries, veins and capillaries, as well as the extramedullary vessels. A distinct layer of tracer was deposited in the internal basement membrane of the tunica media of arteries. In half the grey matter injections, tracer was detected in the central canal. CONCLUSIONS These results suggest that in the spinal cord interstitial fluid movement is modulated by tissue diffusivity of grey and white matter. The central canal, and the compartments around or within blood vessels appear to be dominant pathways for fluid drainage in these experiments. There may be regional variations in fluid outflow capacity due to vascular and other anatomical differences between the grey and white matter.
Collapse
Affiliation(s)
- Shinuo Liu
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Suite 407, Clinic Building, 2 Technology Place, Sydney, NSW, 2109, Australia.
| | - Magdalena A Lam
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Suite 407, Clinic Building, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Alisha Sial
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Suite 407, Clinic Building, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Sarah J Hemley
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Suite 407, Clinic Building, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Prince of Wales Clinical School, University of New South Wales, Margarete Ainsworth Building, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Marcus A Stoodley
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Suite 407, Clinic Building, 2 Technology Place, Sydney, NSW, 2109, Australia
| |
Collapse
|
82
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
83
|
Xin SH, Tan L, Cao X, Yu JT, Tan L. Clearance of Amyloid Beta and Tau in Alzheimer's Disease: from Mechanisms to Therapy. Neurotox Res 2018; 34:733-748. [PMID: 29626319 DOI: 10.1007/s12640-018-9895-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Pathological proteins of AD mainly contain amyloid-beta (Aβ) and tau. Their deposition will lead to neuron damage by a series of pathways, and then induce memory and cognitive impairment. Thus, it is pivotal to understand the clearance pathways of Aβ and tau in order to delay or even halt AD. Aβ clearance mechanisms include ubiquitin-proteasome system, autophagy-lysosome, proteases, microglial phagocytosis, and transport from the brain to the blood via the blood-brain barrier (BBB), arachnoid villi and blood-CSF barrier, which can be named blood circulatory clearance. Recently, lymphatic clearance has been demonstrated to play a key role in transport of Aβ into cervical lymph nodes. The discovery of meningeal lymphatic vessels is another direct evidence for lymphatic clearance in the brain. Furthermore, periphery clearance also contributes to Aβ clearance. Tau clearance is almost the same as Aβ clearance. In this review, we will mainly introduce the clearance mechanisms of Aβ and tau proteins, and summarize corresponding targeted drug therapies for AD.
Collapse
Affiliation(s)
- Shu-Hui Xin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Xipeng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
84
|
Sharma R, Dearaugo S, Infeld B, O'Sullivan R, Gerraty RP. Cerebral amyloid angiopathy: Review of clinico-radiological features and mimics. J Med Imaging Radiat Oncol 2018; 62:451-463. [PMID: 29604173 DOI: 10.1111/1754-9485.12726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/01/2018] [Indexed: 01/02/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is an important cause of lobar intracerebral haemorrhage (ICH) in the elderly, but has other clinico-radiological manifestations. In the last two decades, certain magnetic resonance imaging (MRI) sequences, namely gradient-recalled echo imaging and the newer and more sensitive susceptibility-weighted imaging, have been utilised to detect susceptibility-sensitive lesions such as cerebral microbleeds and cortical superficial siderosis. These can be utilised sensitively and specifically by the Modified Boston Criteria to make a diagnosis of CAA without the need for 'gold-standard' histopathology from biopsy. However, recently, other promising MRI biomarkers of CAA have been described which may further increase precision of radiological diagnosis, namely chronic white matter ischaemia, cerebral microinfarcts and lobar lacunes, cortical atrophy, and increased dilated perivascular spaces in the centrum semiovale. However, the radiological manifestations of CAA, as well as their clinical correlates, may have other aetiologies and mimics. It is important for the radiologist to be aware of these clinico-radiological features and mimics to accurately diagnose CAA. This is increasingly important in a patient demographic that has a high prevalence for use of antiplatelet and antithrombotic medications for other comorbidities which inherently carries an increased risk of ICH in patients with CAA.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Stephanie Dearaugo
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Bernard Infeld
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Richard O'Sullivan
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Healthcare Imaging Services, Melbourne, Victoria, Australia
| | - Richard P Gerraty
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| |
Collapse
|
85
|
Eidsvaag VA, Hansson HA, Heuser K, Nagelhus EA, Eide PK. Brain Capillary Ultrastructure in Idiopathic Normal Pressure Hydrocephalus: Relationship With Static and Pulsatile Intracranial Pressure. J Neuropathol Exp Neurol 2017; 76:1034-1045. [PMID: 29040647 DOI: 10.1093/jnen/nlx091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease of unknown cause. We investigated the morphology of capillaries in frontal cortex biopsies from iNPH patients and related the observations to overnight intracranial pressure (ICP) scores. A biopsy (0.9×10 mm) was taken from where the ICP sensor subsequently was inserted. Brain capillaries were investigated by electron microscopy of biopsies from 27 iNPH patients and 10 reference subjects, i.e. patients (not healthy individuals) without cerebrospinal fluid circulation disturbances, in whom normal brain tissue was removed as part of necessary neurosurgical treatment. Degenerating and degenerated pericyte processes were identified in 23/27 (85%) iNPH and 6/10 (60%) of reference specimens. Extensive disintegration of pericyte processes were recognized in 11/27 (41%) iNPH and 1/10 (10%) reference specimens. There were no differences in basement membrane (BM) thickness or pericyte coverage between iNPH and reference subjects. The pulsatile or static ICP scores did neither correlate with the BM thickness nor with pericyte coverage. We found increased prevalence of degenerating pericytes in iNPH while the BM thickness and pericyte coverage did not differ from the reference individuals. Observations in iNPH may to some extent be age-related since the iNPH patients were significantly older than the reference individuals.
Collapse
Affiliation(s)
- Vigdis Andersen Eidsvaag
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Hans-Arne Hansson
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Kjell Heuser
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Erlend A Nagelhus
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Per K Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Faculty of Medicine; and Division of Physiology, Department of Molecular Medicine, GliaLab and Letten Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden; and Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
86
|
Bacyinski A, Xu M, Wang W, Hu J. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy. Front Neuroanat 2017; 11:101. [PMID: 29163074 PMCID: PMC5681909 DOI: 10.3389/fnana.2017.00101] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 12/03/2022] Open
Abstract
The paravascular pathway, also known as the “glymphatic” pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins. Studies have shown that metabolic waste products and solutes, including proteins involved in the pathogenesis of neurodegenerative diseases such as amyloid-beta, may be cleared by this pathway. Consequently, a growing body of research has begun to explore the association between glymphatic dysfunction and various disease states. However, significant controversy exists in the literature regarding both the direction of waste clearance as well as the anatomical space in which the waste-fluid mixture is contained. Some studies have found no evidence of interstitial solute clearance along the paravascular space of veins. Rather, they demonstrate a perivascular pathway in which waste is cleared from the brain along an anatomically distinct perivascular space in a direction opposite to that of paravascular flow. Although possible explanations have been offered, none have been able to fully reconcile the discrepancies in the literature, and many questions remain. Given the therapeutic potential that a comprehensive understanding of brain waste clearance pathways might offer, further research and clarification is highly warranted.
Collapse
Affiliation(s)
- Andrew Bacyinski
- School of Medicine, Wayne State University, Detroit, MI, United States
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Wang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
87
|
Carare RO. Editorial: Clearance Pathways for Amyloid-β. Significance for Alzheimer's Disease and Its Therapy. Front Aging Neurosci 2017; 9:339. [PMID: 29163126 PMCID: PMC5663857 DOI: 10.3389/fnagi.2017.00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 11/27/2022] Open
Affiliation(s)
- Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
88
|
Salam S, Anandarajah M, Al-Bachari S, Pal P, Sussman J, Hamdalla H. Relapsing cerebral amyloid angiopathy-related inflammation: the wax and the wane. Pract Neurol 2017. [PMID: 28647708 DOI: 10.1136/practneurol-2017-001599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cerebral amyloid angiopathy-related inflammation (CAA-I) is a rare variant of cerebral amyloid angiopathy (CAA). Its precise pathophysiology remains uncertain and we currently have limited evidence on which immunosuppressive agents are the most effective in its treatment. The disease course of CAA-I disorders can vary from an isolated clinical event to recurrent episodes. We present a case of biopsy-confirmed CAA-I that gives insight into its potential relapsing nature and the challenges of its long-term management.
Collapse
Affiliation(s)
- Sharfaraz Salam
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford Royal NHS Trust, Salford, UK
| | | | - Sarah Al-Bachari
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford Royal NHS Trust, Salford, UK
| | - Piyali Pal
- Department of Neuropathology, Greater Manchester Neurosciences Centre, Salford Royal NHS Trust, Salford, UK
| | - Jonathan Sussman
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford Royal NHS Trust, Salford, UK
| | - Hisham Hamdalla
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford Royal NHS Trust, Salford, UK
| |
Collapse
|
89
|
Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, Carlsson CM, Johnson SC, Wieben O. Changes in intracranial venous blood flow and pulsatility in Alzheimer's disease: A 4D flow MRI study. J Cereb Blood Flow Metab 2017; 37:2149-2158. [PMID: 27492950 PMCID: PMC5464708 DOI: 10.1177/0271678x16661340] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion may be important indicators of cerebrovascular health in aging and diseases of aging such as Alzheimer's disease. Noninvasive markers that assess these characteristics may be helpful in the study of co-occurrence of these diseases and potential additive and interacting effects. In this study, 4D flow MRI was used to measure intra-cranial flow features with cardiac-gated phase contrast MRI in cranial arteries and veins. Mean blood flow and pulsatility index as well as the transit time of the peak flow from the middle cerebral artery to the superior sagittal sinus were measured in a total of 104 subjects comprising of four groups: (a) subjects with Alzheimer's disease, (b) age-matched controls, (c) subjects with mild cognitive impairment, and (d) a group of late middle-aged with parental history of sporadic Alzheimer's disease. The Alzheimer's disease group exhibited: a significant decrease in mean blood flow in the superior sagittal sinus, transverse sinus, middle cerebral artery, and internal carotid arteries; a significant decrease of the peak and end diastolic blood flow in the middle cerebral artery and superior sagittal sinus; a faster transmission of peak flow from the middle cerebral artery to the superior sagittal sinus and increased pulsatility index along the carotid siphon.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sara E Berman
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
90
|
The role of perivascular innervation and neurally mediated vasoreactivity in the pathophysiology of Alzheimer's disease. Clin Sci (Lond) 2017; 131:1207-1214. [DOI: 10.1042/cs20160769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/17/2022]
Abstract
Neuronal death is a hallmark of Alzheimer's disease (AD) and considerable work has been done to understand how the loss of interconnectivity between neurons contributes to the associated dementia. Often overlooked however, is how the loss of neuronal innervation of blood vessels, termed perivascular innervation, may also contribute to the pathogenesis of AD. There is now considerable evidence supporting a crucial role for the neurovascular unit (NVU) in mediating the clearance of the β-amyloid (Aβ) peptide, one of the main pathological constituents of AD, from the brain. Moreover, efficient removal appears to be dependent on the communication of cells within the NVU to maintain adequate vascular tone and pulsatility. This review summarizes the composition of the NVU, including the sources of perivascular innervation and how the NVU mediates Aβ clearance from the brain. It also explores evidence supporting the hypothesis that loss of neurally mediated vasoreactivity contributes to Aβ pathology in the AD brain.
Collapse
|
91
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
92
|
Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A, Na HK, Na DL, Seo SW, Werring DJ. MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden. Brain 2017; 140:1107-1116. [PMID: 28335021 DOI: 10.1093/brain/awx003] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022] Open
Abstract
Perivascular spaces that are visible on magnetic resonance imaging (MRI) are a neuroimaging marker of cerebral small vessel disease. Their location may relate to the type of underlying small vessel pathology: those in the white matter centrum semi-ovale have been associated with cerebral amyloid angiopathy, while those in the basal ganglia have been associated with deep perforating artery arteriolosclerosis. As cerebral amyloid angiopathy is an almost invariable pathological finding in Alzheimer's disease, we hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with a clinical diagnosis of Alzheimer's disease, whereas those in the basal ganglia would be associated with subcortical vascular cognitive impairment. We also hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with brain amyloid burden, as detected by amyloid positron emission tomography using 11C-Pittsburgh B compound (PiB-PET). Two hundred and twenty-six patients (Alzheimer's disease n = 110; subcortical vascular cognitive impairment n = 116) with standardized MRI and PiB-PET imaging were included. MRI-visible perivascular spaces were rated using a validated 4-point visual rating scale, and then categorized by severity ('none/mild', 'moderate' or 'frequent/severe'). Univariable and multivariable regression analyses were performed. Those with Alzheimer's disease-related cognitive impairment were younger, more likely to have a positive PiB-PET scan and carry at least one apolipoprotein E ɛ4 allele; those with subcortical vascular cognitive impairment were more likely to have hypertension, diabetes mellitus, hyperlipidaemia, prior stroke, lacunes, deep microbleeds, and carry the apolipoprotein E ɛ3 allele. In adjusted analyses, the severity of MRI-visible perivascular spaces in the centrum semi-ovale was independently associated with clinically diagnosed Alzheimer's disease (frequent/severe grade odds ratio 6.26, 95% confidence interval 1.66-23.58; P = 0.017, compared with none/mild grade), whereas the severity of MRI-visible perivascular spaces in the basal ganglia was associated with clinically diagnosed subcortical vascular cognitive impairment and negatively predicted Alzheimer's disease (frequent/severe grade odds ratio 0.03, 95% confidence interval 0.00-0.44; P = 0.009, compared with none/mild grade). MRI-visible perivascular space severity in either location did not predict PiB-PET. These findings provide further evidence that the anatomical distribution of MRI-visible perivascular spaces may reflect the underlying cerebral small vessel disease. Using MRI-visible perivascular space location and severity together with other imaging markers may improve the diagnostic value of neuroimaging in memory clinic populations, in particular in differentiating between clinically diagnosed Alzheimer's and subcortical vascular cognitive impairment.
Collapse
Affiliation(s)
- Gargi Banerjee
- UCL Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK
| | - Hee Jin Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Zoe Fox
- Biostatistics Group, University College London Hospitals and University College London Research Support Centre, University College London, Gower Street, London, WC1E 6BT, UK
| | - H Rolf Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Duncan Wilson
- UCL Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK
| | - Andreas Charidimou
- UCL Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK
| | - Han Kyu Na
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - David J Werring
- UCL Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK
| |
Collapse
|
93
|
Pathological changes in basement membranes and dermal connective tissue of skin from patients with hereditary cystatin C amyloid angiopathy. J Transl Med 2017; 97:383-394. [PMID: 28067897 DOI: 10.1038/labinvest.2016.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Hereditary cystatin C amyloid angiopathy (HCCAA) is a genetic disease caused by a mutation in the cystatin C gene. Cystatin C is abundant in cerebrospinal fluid and the most prominent pathology in HCCAA is cerebral amyloid angiopathy due to mutant cystatin C amyloid deposition with associated cerebral hemorrhages, typically in young adult carriers. Analyses of post-mortem brain samples shows that pathological changes are limited to arteries and regions adjacent to arteries. The severity of pathological changes at post-mortem has precluded the elucidation of the evolution of histological changes. Mutant cystatin C deposition in carriers is systemic and has, for example, been described in the skin, suggesting similar pathological mechanisms both in the brain and outside of the central nervous system. The aim of this study was to use skin biopsies from asymptomatic and symptomatic carriers to study intermediate events in HCCAA pathogenesis. We found that cystatin C deposition in minimally affected samples was limited to the basement membrane (BM) between the dermis and epidermis. When the deposits were more advanced, they extended to other BM regions in the skin. Our results showed that the immunoreactivity of the BM protein COLIV was increased to a similar extent in all carrier biopsies and cystatin C deposits were in close association with COLIV. The density of fibroblasts in the upper dermis of carrier skin was increased, whereas the distribution of other cell types examined did not differ compared with control biopsies. COLIV and cystatin C immunoreactivity in carrier biopsies was closely associated with the fibroblasts. The results of this study, in conjunction with our previous results regarding pathological BM changes in leptomeningeal arteries of patients, suggest that BM changes are early and important events in HCCAA pathogenesis that could facilitate cystatin C deposition and aggregation.
Collapse
|
94
|
Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 2017; 34:51-63. [PMID: 27829172 DOI: 10.1016/j.arr.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
Collapse
|
95
|
Yang C, Huang X, Huang X, Mai H, Li J, Jiang T, Wang X, Lü T. Aquaporin-4 and Alzheimer's Disease. J Alzheimers Dis 2017; 52:391-402. [PMID: 27031475 DOI: 10.3233/jad-150949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Although the pathogenesis of AD remains unclear, AD is thought to result from an imbalance in the production and clearance of amyloid-β protein (Aβ). Aquaporin-4 (AQP4) is the major aquaporin in the mammalian brain, is mostly expressed on astrocytic endfeet, and functions as a water transporter. However, the distribution and expression of AQP4 are altered in both AD clinical populations and animal models. Recent studies have revealed that AQP4 is important to the clearance of Aβ in brain via lymphatic clearance, transcytotic delivery, and glial degradation, as well as to the synaptic function. Thus, AQP4 likely plays an important role in the pathogenesis of AD. Further studies would provide new targets for prevention, ultimately leading to improved treatment options for AD.
Collapse
|
96
|
Albargothy NJ, Sharp MM, Gatherer M, Morris A, Weller RO, Hawkes C, Carare RO. Investigating the Lymphatic Drainage of the Brain: Essential Skills and Tools. Methods Mol Biol 2017; 1559:343-365. [PMID: 28063056 DOI: 10.1007/978-1-4939-6786-5_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this chapter we describe in detail the surgical and imaging techniques employed for the study of the anatomical routes of drainage of cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the brain. The types of tracers, sites of injection, and volumes injected are crucial. For example, when testing the drainage of ISF from the parenchyma, volumes larger than 0.5 μL result in spillage of ISF into the ventricular CSF.
Collapse
Affiliation(s)
- Nazira J Albargothy
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Matthew MacGregor Sharp
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Maureen Gatherer
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Alan Morris
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Cheryl Hawkes
- Department of Life, Health and Chemical Sciences, Open University, Milton Keynes, UK
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
97
|
Glymphatic solute transport does not require bulk flow. Sci Rep 2016; 6:38635. [PMID: 27929105 PMCID: PMC5144134 DOI: 10.1038/srep38635] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space.
Collapse
|
98
|
Rivera-Rivera LA, Turski P, Johnson KM, Hoffman C, Berman SE, Kilgas P, Rowley HA, Carlsson CM, Johnson SC, Wieben O. 4D flow MRI for intracranial hemodynamics assessment in Alzheimer's disease. J Cereb Blood Flow Metab 2016; 36:1718-1730. [PMID: 26661239 PMCID: PMC5076787 DOI: 10.1177/0271678x15617171] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion play important roles in the transport of waste metabolites out of the brain. Impaired vasomotion results in reduced driving force for the perivascular/glymphatic clearance of beta-amyloid. Noninvasive cerebrovascular characteristic features that potentially assess these transport mechanisms are mean blood flow (MBF) and pulsatility index (PI). In this study, 4D flow MRI was used to measure intra-cranial flow features, particularly MBF, PI, resistive index (RI) and cross-sectional area in patients with Alzheimer's disease (AD), mild cognitive impairment and in age matched and younger cognitively healthy controls. Three-hundred fourteen subjects participated in this study. Volumetric, time-resolved phase contrast (PC) MRI data were used to quantify hemodynamic parameters from 11 vessel segments. Anatomical variants of the Circle of Willis were also cataloged. The AD population reported a statistically significant decrease in MBF and cross-sectional area, and also an increase in PI and RI compared to age matched cognitively healthy control subjects. The 4D flow MRI technique used in this study provides quantitative measurements of intracranial vessel geometry and the velocity of flow. Cerebrovascular characteristics features of vascular health such as pulsatility index can be extracted from the 4D flow MRI data.
Collapse
Affiliation(s)
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sara E Berman
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Phillip Kilgas
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
99
|
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease? Neuron 2016; 91:957-973. [PMID: 27608759 PMCID: PMC5019121 DOI: 10.1016/j.neuron.2016.08.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lymphatic vasculature drains interstitial fluids, which contain the tissue's waste products, and ensures immune surveillance of the tissues, allowing immune cell recirculation. Until recently, the CNS was considered to be devoid of a conventional lymphatic vasculature. The recent discovery in the meninges of a lymphatic network that drains the CNS calls into question classic models for the drainage of macromolecules and immune cells from the CNS. In the context of neurological disorders, the presence of a lymphatic system draining the CNS potentially offers a new player and a new avenue for therapy. In this review, we will attempt to integrate the known primary functions of the tissue lymphatic vasculature that exists in peripheral organs with the proposed function of meningeal lymphatic vessels in neurological disorders, specifically multiple sclerosis and Alzheimer's disease. We propose that these (and potentially other) neurological afflictions can be viewed as diseases with a neuro-lympho-vascular component and should be therapeutically targeted as such.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sandro Da Mesquita
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
100
|
Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer's disease and influence the regional distribution of Aβ. Brain Pathol 2016; 27:305-313. [PMID: 27248362 DOI: 10.1111/bpa.12392] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid-β (Aβ) transport across the blood-brain barrier. Genome-wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer's disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40-extracted) and insoluble (guanidine-HCl-extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology-mid-frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology-thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region-dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Polly Clarke
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|