51
|
Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020; 10:biom10060953. [PMID: 32599856 PMCID: PMC7357118 DOI: 10.3390/biom10060953] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
- Correspondence:
| | - Neeta Raj Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
| | - Matthew Petitt
- Redwood Biomedical Editing, Redwood City, CA 94061, USA;
| | - Devika Maulik
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| |
Collapse
|
52
|
Gierman LM, Silva GB, Pervaiz Z, Rakner JJ, Mundal SB, Thaning AJ, Nervik I, Elschot M, Mathew S, Thomsen LCV, Bjørge L, Iversen AC. TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies. J Leukoc Biol 2020; 109:173-183. [PMID: 32573856 DOI: 10.1002/jlb.3ma0620-728rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and oxidative stress at the maternal-fetal interface characterize the placental dysfunction that underlies the pregnancy disorder preeclampsia. Specialized fetal trophoblasts directly interact with leukocytes at both sites of the maternal-fetal interface; the uterine wall decidua; and the placenta. TLR3 has been implicated in the harmful inflammation at the maternal-fetal interface in preeclampsia, but the cellular involvement in the decidua and placenta has not been determined. This study aimed to characterize and quantify cell-specific TLR3 expression and function at the maternal-fetal interface in normal and preeclamptic pregnancies. TLR3 expression was assessed by immunohistochemistry and quantified by a novel image-based and cell-specific quantitation method. TLR3 was expressed at the maternal-fetal interface by all decidual and placental trophoblast types and by maternal and fetal leukocytes. Placental, but not decidual, TLR3 expression was significantly higher in preeclampsia compared to normal pregnancies. This increase was attributed to placental intravillous tissue and associated with both moderate and severe placental dysfunction. TLR3 pathway functionality in the decidua and placenta was confirmed by TLR3 ligand-induced cytokine response, but the TLR3 expression levels did not correlate between the two sites. In conclusion, functional TLR3 was broadly expressed by maternal and fetal cells at both sites of the maternal-fetal interface and the placental intravillous expression was increased in preeclampsia. This suggests TLR3-mediated inflammatory involvement with local regulation at both sites of the maternal-fetal interface in normal and preeclamptic pregnancies.
Collapse
Affiliation(s)
- Lobke M Gierman
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gabriela B Silva
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Zahra Pervaiz
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johanne J Rakner
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv B Mundal
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid J Thaning
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingunn Nervik
- Cellular & Molecular Imaging Core Facility (CMIC), Faculty of Medicine and Health Science, NTNU, Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Seema Mathew
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Liv Cecilie V Thomsen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
53
|
Li N, He F, Gao H, Ge Y, Fan X, Zhang J, Qi H, Ren L. Elevated cell-free fetal DNA contributes to placental inflammation and antiangiogenesis via AIM2 and IFI16 during pre-eclampsia. J Cell Physiol 2020; 235:9577-9588. [PMID: 32383175 DOI: 10.1002/jcp.29766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Accumulated evidence has shown that pre-eclampsia (PE) is related to both maternal and utero-placental antiangiogenesis and inflammation. Remarkably, an elevated cell-free fetal DNA (cffDNA) level has been found in maternal circulation; however, it remains unclear whether this DNA can induce activation of cytosolic DNA sensor signaling pathways and lead to the development of PE. In this study, we found that trophoblast cells constitutively expressed the cytosolic DNA sensors, absent in melanoma 2 (AIM2) and interferon-inducible protein 16 (IFI16). The cffDNA and pro-inflammatory and antiangiogenic factors were present at higher concentrations in PE compared with the control group and correlated with the severity of PE. DNA stimulation significantly increased the AIM2 and IFI16 levels, consistent with the elevated AIM2 and IFI16 expression in women with PE, and elicited increased production of AIM2-mediated interleukin IL-8 (IL-8), IL-6 and CC chemokine ligand 2 (CCL2) and IFI16-mediated sEndoglin, sFlt-1 and CXCL10. Furthermore, enhancement of the inflammatory response was found to be induced by DNA exposure, but DNA exposure did not induce PE-like symptoms in pregnant mice. It is possible that elevated cffDNA could reflect the degree of placental damage and trigger cytosolic DNA sensor activation, which disrupts the immunity balance and, consequently, contributes to inflammatory and antiangiogenic responses. In conclusion, the results of this study suggest that circulating cffDNA levels are increased in preeclamptic women and act through AIM2 and IFI16 activation to promote the production of pro-inflammatory and antiangiogenic factors, which correlate with the severity of the disease, and may offer insights into the etiology and pathogenesis of PE.
Collapse
Affiliation(s)
- Ning Li
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Fei He
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Hang Gao
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Ge
- Jilin Gynecology and Obstetrics Hospital, Jilin, China
| | - Xiujun Fan
- Laboratory for Reproductive Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Zhang
- Laboratory for Reproductive Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Qi
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Lili Ren
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| |
Collapse
|
54
|
Park S, Shin J, Bae J, Han D, Park SR, Shin J, Lee SK, Park HW. SIRT1 Alleviates LPS-Induced IL-1β Production by Suppressing NLRP3 Inflammasome Activation and ROS Production in Trophoblasts. Cells 2020; 9:cells9030728. [PMID: 32188057 PMCID: PMC7140679 DOI: 10.3390/cells9030728] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence indicates that aberrant maternal inflammation is associated with several pregnancy-related disorders such as preeclampsia, preterm birth, and intrauterine growth restriction. Sirtuin1 (SIRT1), a class III histone deacetylase, is involved in the regulation of various physiopathological processes including cellular inflammation and metabolism. However, the effect of SIRT1 on the placental proinflammatory environment remains to be elucidated. In this study, we investigated the effect of SIRT1 on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human first-trimester trophoblasts (Sw.71 and HTR-8/SVneo cells). Treatment with LPS elevated SIRT1 expression and induced NLRP3 inflammasome activation in mouse placental tissues and human trophoblasts. Knockdown of SIRT1 enhanced LPS-induced NLRP3 inflammasome activation, inflammatory signaling, and subsequent interleukin (IL)-1β secretion. Furthermore, knockdown of NLRP3 considerably attenuated the increase of IL-1β secretion in SIRT1-knockdown cells treated with LPS. Moreover, SIRT1 inhibited LPS-induced NLRP3 inflammasome activation by reducing oxidative stress. This study revealed a novel mechanism via which SIRT1 exerts anti-inflammatory effects, suggesting that SIRT1 is a potential therapeutic target for the prevention of inflammation-associated pregnancy-related complications.
Collapse
Affiliation(s)
- Sumi Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Jiha Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Jeongyun Bae
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
| | - Seok-Rae Park
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Department of Microbiology, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Sung Ki Lee
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea
- Correspondence: (S.K.L.); (H.-W.P.); Tel.: +82-42-600-8677 (H.-W.P.)
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea; (S.P.); (J.S.); (J.B.); (D.H.); (J.S.)
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Korea;
- Correspondence: (S.K.L.); (H.-W.P.); Tel.: +82-42-600-8677 (H.-W.P.)
| |
Collapse
|
55
|
Murthi P, Pinar AA, Dimitriadis E, Samuel CS. Inflammasomes-A Molecular Link for Altered Immunoregulation and Inflammation Mediated Vascular Dysfunction in Preeclampsia. Int J Mol Sci 2020; 21:ijms21041406. [PMID: 32093005 PMCID: PMC7073120 DOI: 10.3390/ijms21041406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific multisystem disorder and is associated with maladaptation of the maternal cardiovascular system and abnormal placentation. One of the important characteristics in the pathophysiology of PE is a dysfunction of the placenta. Placental insufficiency is associated with poor trophoblast uterine invasion and impaired transformation of the uterine spiral arterioles to high capacity and low impedance vessels and/or abnormalities in the development of chorionic villi. Significant progress in identifying potential molecular targets in the pathophysiology of PE is underway. The human placenta is immunologically functional with the trophoblast able to generate specific and diverse innate immune-like responses through their expression of multimeric self-assembling protein complexes, termed inflammasomes. However, the type of response is highly dependent upon the stimuli, the receptor(s) expressed and activated, the downstream signaling pathways involved, and the timing of gestation. Recent findings highlight that inflammasomes can act as a molecular link for several components at the syncytiotrophoblast surface and also in maternal blood thereby directly influencing each other. Thus, the inflammasome molecular platform can promote adverse inflammatory effects when chronically activated. This review highlights current knowledge in placental inflammasome expression and activity in PE-affected pregnancies, and consequently, vascular dysfunction in PE that must be addressed as an interdependent interactive process.
Collapse
Affiliation(s)
- Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria 3168, Australia; (A.A.P.); (C.S.S.)
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria 3168, Australia;
- Correspondence: ; Tel.: +61-03-99059917
| | - Anita A. Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria 3168, Australia; (A.A.P.); (C.S.S.)
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria 3168, Australia;
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria 3168, Australia; (A.A.P.); (C.S.S.)
| |
Collapse
|
56
|
Lipoxin A 4 suppresses angiotensin II type 1 receptor autoantibody in preeclampsia via modulating caspase-1. Cell Death Dis 2020; 11:78. [PMID: 32001671 PMCID: PMC6992755 DOI: 10.1038/s41419-020-2281-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and neonatal morbidity and mortality. Numerous studies have shown that women with PE develop autoantibody, termed angiotensin II type 1 receptor autoantibody (AT1-AA), and key features of the disease result from it. Emerging evidence has indicated that inflammatory cell necrosis, such as pyroptosis, could lead to autoantigen exposure and stimulate autoantibody production. Caspase-1, the central enzyme of inflammasome and key target of pyroptosis, may play roles in AT1R exposure and AT1-AA production. Exploring endogenous regulator that could inhibit AT1-AA production by targeting pyroptosis will be essential for treating PE. Lipoxin A4 (LXA4), endogenous dual anti-inflammatory and proresolving lipid mediator, may inhibit AT1-AA production via modulating caspase-1. Thus, we explore whether caspase-1 is essential for AT1-AA production and LXA4 inhibits AT1-AA via modulating caspase-1. PE patients and mice developed AT1-AA associated with caspase-1 activation. Caspase-1 deletion leaded to AT1-AA decrease in PE mice. Consistent with these findings, we confirmed caspase-1 activation, trophoblast pyroptosis and AT1R exposure in PE mice and trophoblast model, while caspase-1 deficiency showed decreased trophoblast pyroptosis and AT1R exposure in vitro and in vivo. Interestingly, LXA4 could suppress AT1-AA production via regulating caspase-1 as well as enhancing phagocytosis of dead trophoblasts by macrophages. These results suggest that caspase-1 promotes AT1-AA production via inducing trophoblast pyroptosis and AT1R exposure, while LXA4 suppresses AT1-AA production via modulating caspase-1, supporting caspase-1 serving as a therapeutic target for attenuating AT1-AA and LXA4 protecting patients from AT1-AA and PE.
Collapse
|
57
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
58
|
de Rivero Vaccari JP. The Inflammasome in Reproductive Biology: A Promising Target for Novel Therapies. Front Endocrinol (Lausanne) 2020; 11:8. [PMID: 32047476 PMCID: PMC6997205 DOI: 10.3389/fendo.2020.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/03/2022] Open
Abstract
The inflammasome is a key regulator of innate immunity involved in the inflammatory response to infections as well as disease through the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. Even though the inflammasome was first described in the context of infections, most research in recent years has focused on targeting the inflammasome as a therapeutic option in sterile inflammatory events. Recent evidence indicates a clear involvement of the inflammasome in Reproductive Biology such as infertility and preeclampsia. In this mini-review, I summarize the current findings on the inflammasome that have been described in the field of Reproductive Biology and highlight the potential that the inflammasome has as a novel therapeutic option in this field. The topics covered in this review as it pertains to the inflammasome field cover the literature published on male and female infertility, endometriosis, preeclampsia, placental inflammation, and reproductive senescence.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, United States
- InflamaCORE, LLC, Miami, FL, United States
- *Correspondence: Juan Pablo de Rivero Vaccari
| |
Collapse
|
59
|
Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:80. [PMID: 32161574 PMCID: PMC7053284 DOI: 10.3389/fendo.2020.00080] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Reproduction involves tightly regulated series of events and the immune system is involved in an array of reproductive processes. Disruption of well-controlled immune functions leads to infertility, placental inflammation, and numerous pregnancy complications, including preeclampsia (PE). Inflammasomes are involved in the process of pathogen clearance and sterile inflammation. They are large multi-protein complexes that are located in the cytosol and play key roles in the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and pyroptosis. The nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome is a key mediator of sterile inflammation induced by various types of damage-associated molecular patterns (DAMPs). Recent evidence indicates that the NLRP3 inflammasome is involved in pregnancy dysfunction, including PE. Many DAMPs (uric acid, palmitic acid, high-mobility group box 1, advanced glycation end products, extracellular vesicles, cell-free DNA, and free fatty acids) are increased and associated with pregnancy complications, especially PE. This review focuses on the role of the NLRP3 inflammasome in the pathophysiology of PE.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Koumei Shirasuna
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
60
|
Cheng SB, Nakashima A, Huber WJ, Davis S, Banerjee S, Huang Z, Saito S, Sadovsky Y, Sharma S. Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Dis 2019; 10:927. [PMID: 31804457 PMCID: PMC6895177 DOI: 10.1038/s41419-019-2162-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Systemic manifestation of preeclampsia (PE) is associated with circulating factors, including inflammatory cytokines and damage-associated molecular patterns (DAMPs), or alarmins. However, it is unclear whether the placenta directly contributes to the increased levels of these inflammatory triggers. Here, we demonstrate that pyroptosis, a unique inflammatory cell death pathway, occurs in the placenta predominantly from early onset PE, as evidenced by elevated levels of active caspase-1 and its substrate or cleaved products, gasdermin D (GSDMD), IL-1β, and IL-18. Using cellular models mimicking pathophysiological conditions (e.g., autophagy deficiency, hypoxia, and endoplasmic reticulum (ER) stress), we observed that pyroptosis could be induced in autophagy-deficient human trophoblasts treated with sera from PE patients as well as in primary human trophoblasts exposed to hypoxia. Exposure to hypoxia elicits excessive unfolded protein response (UPR) and ER stress and activation of the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome in primary human trophoblasts. Thioredoxin-interacting protein (TXNIP), a marker for hyperactivated UPR and a crucial signaling molecule linked to NLRP3 inflammasome activation, is significantly increased in hypoxia-treated trophoblasts. No evidence was observed for necroptosis-associated events. Importantly, these molecular events in hypoxia-treated human trophoblasts are significantly observed in placental tissue from women with early onset PE. Taken together, we propose that placental pyroptosis is a key event that induces the release of factors into maternal circulation that possibly contribute to severe sterile inflammation and early onset PE pathology.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Warren J Huber
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sarah Davis
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sayani Banerjee
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zheping Huang
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Surendra Sharma
- Departments of Pediatrics, Obstetrics and Gynecology and Pathology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
61
|
Jain A, Shah H, Simonsick EM, Metter EJ, Mangold L, Humphreys E, Partin A, Fedarko NS. Angiotensin receptor autoantibodies as exposures that modify disease progression: Cross sectional, longitudinal and in vitro studies of prostate cancer. J Transl Autoimmun 2019; 2:100008. [PMID: 31930191 PMCID: PMC6953913 DOI: 10.1016/j.jtauto.2019.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Circulating angiotensin type I receptor (AT1R) agonistic autoantibodies (AT1RaAbs) that bind and chronically activate the receptor have been associated with a number of diseases suggesting that while the autoantibodies are not necessarily causative they may promote disease progression. The prostate has a local renin angiotensin system. The current study examines associations between AT1RaAbs and prostate cancer (PCA), disease-free survival (DFS), overall survival (OS) and AT1RaAb effects on PCA cell phenotype. In a cross-sectional set of serum obtained from 151 men diagnosed with PCA, nonmalignant prostate disease or no disease, higher serum AT1RaAb levels were associated with PCA and non-organ confined PCA. The odds ratio for PCA was 6.3 (95% confidence interval 2.2 to 18) for a positive 1:1600 titer and 18 (95% confidence interval 6.9 to 45) at AT1RaAb levels > 1.04 μg/ml, (p < 0.0001). In a longitudinal set of pre-diagnosis samples from 109 men, DFS hazard ratios of 2.2 (95% confidence interval 1.4 to 3.5) and 1.6 (95% confidence interval 1.0 to 2.5) for most proximal to diagnosis and most distal to diagnosis samples, respectively, were found for high versus low AT1RaAb groups. Hazard ratios for OS in most proximal and distal samples were 2.4 (95% confidence interval 1.6 to 3.6) and 1.8 (95% confidence interval 1.1 to 2.8), respectively. Accelerated failure modeling of survival indicated that a 1 μg/ml increase in AT1RaAb levels was associated with a reduction of DFS and OS by 20% at the most proximal time point and by 15% at the most distal time points. Adjusting for age, did not affect the association with DFS in proximal samples but changed distal time point DFS and OS to a 10% decrease for every 1 μg/ml increase in AT1RaAb. Additional adjustments for body mass index, systolic blood pressure and prostate-specific antigen did not appreciably alter these associations. AT1RaAb treatment of PC3, DU145, and LNCaP cells significantly increased the maximal growth rate approximately 2-fold and invasiveness approximately 3-fold. Conclusions: These observations provide evidence supporting AT1RaAbs as exposures that may modify prostate cancer progression and indicate they may be predictive markers for risk stratification.
Collapse
Affiliation(s)
- Alka Jain
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21224, USA
| | - Haikoo Shah
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21224, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Eleanor M. Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21225, USA
| | - E. Jeffrey Metter
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21225, USA
- Current Address: Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Leslie Mangold
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth Humphreys
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alan Partin
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Neal S. Fedarko
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21224, USA
| |
Collapse
|
62
|
Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: Their Role in Normal and Complicated Pregnancies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2757-2769. [PMID: 31740550 PMCID: PMC6871659 DOI: 10.4049/jimmunol.1900901] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201
- Detroit Medical Center, Detroit, MI 48201; and
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199
| |
Collapse
|
63
|
Yang Y, Li J, Han TL, Zhou X, Qi H, Baker PN, Zhou W, Zhang H. Endoplasmic reticulum stress may activate NLRP3 inflammasomes via TXNIP in preeclampsia. Cell Tissue Res 2019; 379:589-599. [PMID: 31637543 DOI: 10.1007/s00441-019-03104-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) development is often associated with placental immune and inflammatory dysregulation, as well as endoplasmic reticulum (ER) stress. However, the mechanisms linking ER stress and inflammatory dysregulation to PE have not been elucidated. It has been reported that thioredoxin-interacting protein (TXNIP), which can bind with and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome, is a key point in immune regulation. Recent experimental evidence suggests that activated NLRP3 inflammasomes can activate interleukin-1β (IL-1β) production in the placenta of patients with PE. The objective of the current study was to explore if TXNIP plays a critical signaling role linking ER stress with NLRP3 inflammasome activation in PE. We hypothesized that ER stress would induce TXNIP production, which would bind with NLRP3 inflammasomes to activate IL-1β production. These cells showed a higher protein level of NLRP3 and IL-1β, as well as a higher enzymatic activity of caspase-1, indicating enhanced inflammatory dysregulation and ER stress. Cells transfected with TXNIP siRNA showed reduced NLRP3 inflammasome activation. Cells treated with 4-phenylbutyric acid, an inhibitor of ER stress, showed a similar result. Outgrowth of the explant with TXNIP lentivirus in H/R or tunicamycin (inducers of ER stress) was also measured to verify our hypothesis. These findings demonstrated that TXNIP could influence inflammatory dysregulation by mediating ER stress and NLRP3 inflammasome activation in PE. This novel mechanism may further explain the inflammation observed at the maternal-fetal interface, which leads to placental dysfunction in a patient with PE.
Collapse
Affiliation(s)
- Yong Yang
- Department of Obstetrics, Chngqing Health Center For Women And Children, No. 120 Longshan Road, Yubei District, Chongqing, 400021, People's Republic of China
| | - Jianxin Li
- Department of Obstetrics, Chngqing Health Center For Women And Children, No. 120 Longshan Road, Yubei District, Chongqing, 400021, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Xianbo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- College of Medicine, Biological Sciences and Psychology, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK
| | - Philip N Baker
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- College of Medicine, Biological Sciences and Psychology, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK
| | - Wei Zhou
- Department of Obstetrics, Chngqing Health Center For Women And Children, No. 120 Longshan Road, Yubei District, Chongqing, 400021, People's Republic of China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
64
|
Austdal M, Silva GB, Bowe S, Thomsen LCV, Tangerås LH, Bjørge L, Bathen TF, Iversen AC. Metabolomics Identifies Placental Dysfunction and Confirms Flt-1 (FMS-Like Tyrosine Kinase Receptor 1) Biomarker Specificity. Hypertension 2019; 74:1136-1143. [PMID: 31495279 DOI: 10.1161/hypertensionaha.119.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical end-stage parameters define the pregnancy disorders preeclampsia and fetal growth restriction while classification of the underlying placental dysfunction is missing and urgently needed. Flt-1 (FMS-like tyrosine kinase receptor 1) is the most promising placenta-derived predictive biomarker for preeclampsia. We aimed to classify placental dysfunction in preeclampsia and fetal growth restriction at delivery by metabolic profiling and authenticate the biomarker Flt-1 for placental dysfunction. We studied 143 pregnancies with or without preeclampsia and/or fetal growth restriction delivered by cesarean section. Metabolic placenta profiles were created by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and the resulting placental phenotypes obtained by hierarchical clustering. Placental Flt-1 expression (membrane-bound and soluble isoforms combined) and maternal serum Flt-1 expression (soluble isoforms) were analyzed by immunohistochemistry and ELISA, respectively. We identified 3 distinct placenta groups by 21 metabolites and diagnostic outcome parameters; normal placentas, moderate placental dysfunction, and severe placental dysfunction. Increased placental Flt-1 was associated with severe placental dysfunction, and increased serum Flt-1 was associated with moderate and severe placental dysfunction. The preeclamptic pregnancies with and without placental dysfunction could be distinguished by 5 metabolites and placental Flt-1. Placental Flt-1 alone could separate normal pregnancies with and without placental dysfunction. In conclusion, metabolomics could classify placental dysfunction and provide information not identified by traditional diagnostics and metabolites with biomarker potential were identified. Flt-1 was confirmed as precision biomarker for placental dysfunction, substantiating its usefulness for identification of high-risk pregnancies for preeclampsia and fetal growth restriction with placental involvement.
Collapse
Affiliation(s)
- Marie Austdal
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Circulation and Medical Imaging, NTNU (M.A., T.F.B.), Trondheim University Hospital, Norway.,Department of Research, Stavanger University Hospital, Norway (M.A.)
| | - Gabriela Brettas Silva
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Sophie Bowe
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Liv Cecilie Vestrheim Thomsen
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital and Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Norway (L.C.V.T., L.B.)
| | - Line Haugstad Tangerås
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital and Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Norway (L.C.V.T., L.B.)
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, NTNU (M.A., T.F.B.), Trondheim University Hospital, Norway
| | - Ann-Charlotte Iversen
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway
| |
Collapse
|
65
|
Lu H, Hu R. The role of immunity in the pathogenesis and development of pre‐eclampsia. Scand J Immunol 2019; 90:e12756. [PMID: 30739345 DOI: 10.1111/sji.12756] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hui‐Qing Lu
- Hospital of Obstetrics and Gynecology Fudan University Shanghai China
| | - Rong Hu
- Hospital of Obstetrics and Gynecology Fudan University Shanghai China
| |
Collapse
|
66
|
CXCL9/CXCL10 angiostasis CXC-chemokines in parallel with the CXCL12 as an angiogenesis CXC-chemokine are variously expressed in pre-eclamptic-women and their neonates. Pregnancy Hypertens 2019; 17:36-42. [DOI: 10.1016/j.preghy.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
|
67
|
Abstract
PURPOSE OF REVIEW Despite enhanced screening and therapeutic management, hypertension remains the most prevalent chronic disease in the United States and the leading cause of heart disease, chronic kidney disease, and stroke in both men and women. It is widely accepted that hypertension is a pro-inflammatory disease and that the immune system plays a vital role in mediating hypertensive outcomes and end organ damage. Despite known discrepancies in the risk of hypertension development between men and women, preclinical models of immune-mediated hypertension were historically developed solely in male animals, leading to a lack of sex-specific clinical practice guidelines or therapeutic targets. RECENT FINDINGS Following the NIH policy on the consideration of sex as a biological variable in 2015, significant advancements have been made into sex-specific disease mechanisms in inflammation and hypertension. This review article serves to critically evaluate recent advancements in the field of sex-specific immune-mediated hypertension.
Collapse
Affiliation(s)
- Megan A Sylvester
- Department of Physiology, College of Medicine, University of Arizona, 1656 E. Mabel St/Rm 417, P.O. Box 245218, Tucson, AZ, 85724-5218, USA
| | - Heddwen L Brooks
- Department of Physiology, College of Medicine, University of Arizona, 1656 E. Mabel St/Rm 417, P.O. Box 245218, Tucson, AZ, 85724-5218, USA. .,Sarver Heart Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
68
|
Larsen JB, Andersen AS, Hvas CL, Thiel S, Lassen MR, Hvas AM, Hansen AT. Lectin pathway proteins of the complement system in normotensive pregnancy and pre-eclampsia. Am J Reprod Immunol 2019; 81:e13092. [PMID: 30672631 DOI: 10.1111/aji.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
PROBLEM The lectin pathway of the complement system may be involved in the pathogenesis of pre-eclampsia. We aimed to investigate changes in serum concentrations of a broad range of lectin pathway proteins during normal pregnancy and their association with pre-eclampsia, placental infarctions and intrauterine growth restriction (IUGR). METHOD OF STUDY We included 51 women with normotensive pregnancies and 54 women with pregnancies complicated by pre-eclampsia. Blood samples were obtained at gestational weeks 16, 33, 37, and after delivery for the normotensive pregnant women and before and after delivery for women with pre-eclampsia. Mannose-binding lectin (MBL), H- and M-ficolin, collectin liver-1 (CL-L1), MBL-associated serine protease (MASP)-1, MASP-2 and MASP-3 and MBL-associated proteins of 19 (MAp19) and 44 (MAp44) kDa were analysed. Clinical information was obtained from medical records. The placentae were examined by two experienced perinatal pathologists. RESULTS Lectin pathway protein concentrations generally increased during normal pregnancy and decreased after delivery in both normotensive pregnant women and women with pre-eclampsia. Exceptions were MASP-3 which increased after delivery in both groups (P < 0.0001) and H-ficolin which increased after delivery in pre-eclampsia (P < 0.0001). H-ficolin (P < 0.0001), M-ficolin (P = 0.005) and MASP-3 (P = 0.03) concentrations were lower in women with pre-eclampsia than in normotensive pregnant women. Low MASP-3 concentrations were associated with placental infarction (P = 0.03) and IUGR (P = 0.04). Low H-ficolin concentrations were associated with IUGR (P < 0.01). CONCLUSION In general, lectin pathway protein serum concentrations increased during normal pregnancy. H-ficolin and MASP-3 may be involved in the pathophysiology of pre-eclampsia and IUGR and could be potential future pre-eclampsia biomarkers.
Collapse
Affiliation(s)
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anette Tarp Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|