51
|
Brain Network Organization Correlates with Autistic Features in Preschoolers with Autism Spectrum Disorders and in Their Fathers: Preliminary Data from a DWI Analysis. J Clin Med 2019; 8:jcm8040487. [PMID: 30974902 PMCID: PMC6518033 DOI: 10.3390/jcm8040487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders that is characterized by an altered brain connectivity organization. Autistic traits below the clinical threshold (i.e., the broad autism phenotype; BAP) are frequent among first-degree relatives of subjects with ASD; however, little is known regarding whether subthreshold behavioral manifestations of ASD mirror also at the neuroanatomical level in parents of ASD probands. To this aim, we applied advanced diffusion network analysis to MRI of 16 dyads consisting of a child with ASD and his father in order to investigate: (i) the correlation between structural network organization and autistic features in preschoolers with ASD (all males; age range 1.5-5.2 years); (ii) the correlation between structural network organization and BAP features in the fathers of individuals with ASD (fath-ASD). Local network measures significantly correlated with autism severity in ASD children and with BAP traits in fath-ASD, while no significant association emerged when considering the global measures of brain connectivity. Notably, an overlap of some brain regions that are crucial for social functioning (cingulum, superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, frontal pole, and amygdala) in patients with ASD and fath-ASD was detected, suggesting an intergenerational transmission of these neural substrates. Overall, the results of this study may help in elucidating the neurostructural endophenotype of ASD, paving the way for bridging connections between underlying genetic and ASD symptomatology.
Collapse
|
52
|
Smith REW, Avery JA, Wallace GL, Kenworthy L, Gotts SJ, Martin A. Sex Differences in Resting-State Functional Connectivity of the Cerebellum in Autism Spectrum Disorder. Front Hum Neurosci 2019; 13:104. [PMID: 31024276 PMCID: PMC6460665 DOI: 10.3389/fnhum.2019.00104] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is more prevalent in males than females, but the underlying neurobiology of this sex bias remains unclear. Given its involvement in ASD, its role in sensorimotor, cognitive, and socio-affective processes, and its developmental sensitivity to sex hormones, the cerebellum is a candidate for understanding this sex difference. The current study used resting-state functional magnetic resonance imaging (fMRI) to investigate sex-dependent differences in cortico-cerebellar organization in ASD. We collected resting-state fMRI scans from 47 females (23 ASD, 24 controls) and 120 males (56 ASD, 65 controls). Using a measure of global functional connectivity (FC), we ran a linear mixed effects analysis to determine whether there was a sex-by-diagnosis interaction in resting-state FC. Subsequent seed-based analyses from the resulting clusters were run to clarify the global connectivity effects. Two clusters in the bilateral cerebellum exhibited a diagnosis-by-sex interaction in global connectivity. These cerebellar clusters further showed a pattern of interaction with regions in the cortex, including bilateral fusiform, middle occipital, middle frontal, and precentral gyri, cingulate cortex, and precuneus. Post hoc tests revealed a pattern of cortico-cerebellar hyperconnectivity in ASD females and a pattern of hypoconnectivity in ASD males. Furthermore, cortico-cerebellar FC in females more closely resembled that of control males than that of control females. These results shed light on the sex-specific pathophysiology of ASD and are indicative of potentially divergent neurodevelopmental trajectories for each sex. This sex-dependent, aberrant cerebellar connectivity in ASD might also underlie some of the motor and/or socio-affective difficulties experienced by members of this population, but the symptomatic correlate(s) of these brain findings remain unknown. Clinical Trial Registration: www.ClinicalTrials.gov, NIH Clinical Study Protocol 10-M-0027 (ZIA MH002920-09) identifier #NCT01031407
Collapse
Affiliation(s)
- Rachel E W Smith
- Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, United States
| | - Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, United States
| | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, United States
| | - Lauren Kenworthy
- Children's National Health System, Washington, DC, United States
| | - Stephen J Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, United States
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
53
|
Silent shapes and shapeless sounds: the robustness of the diminished crossmodal correspondences effect in autism spectrum conditions. PSYCHOLOGICAL RESEARCH 2019; 84:1507-1516. [PMID: 30864001 PMCID: PMC7387372 DOI: 10.1007/s00426-019-01163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/28/2019] [Indexed: 11/29/2022]
Abstract
We performed a registered replication of the Oberman and Ramachandran (Soc Neurosci 3(3–4):348–355, 2008) study on the ‘kiki/bouba’ effect in autism spectrum conditions (ASC). The aim of the study was to test the robustness of the diminished crossmodal correspondences effect in autism, but also to verify whether this effect is not an artifact of differences in intelligence. We tested a Polish-speaking sample of 21 participants with ADOS-confirmed autism spectrum conditions (mean age 15.90) and 21 age- (mean age 15.86), sex- and IQ-matched neurotypical control participants. Procedure closely followed the replicated study. Participants’ task was to match five pairs of unfamiliar words and shapes. Matching words and shapes had similar supramodal characteristics that allowed the match. We report partial replication of the diminished ‘kiki/bouba’ effect in individuals with ASC compared to the neurotypical control group. However, we found that nonverbal intelligence also significantly contributed to task performance, but only in participants with autism, suggesting a compensatory role of intelligence. Finally, the effect of autism severity (measured by ADOS classification) was significant—crossmodal correspondences were weaker in individuals with autism, compared to those with autism spectrum diagnosis.
Collapse
|
54
|
Nomi JS, Molnar-Szakacs I, Uddin LQ. Insular function in autism: Update and future directions in neuroimaging and interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:412-426. [PMID: 30381235 DOI: 10.1016/j.pnpbp.2018.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
The insular cortex, hidden within the lateral sulcus of the human brain, participates in a range of cognitive, affective, and sensory functions. Autism spectrum disorder (ASD), a neurodevelopmental condition affecting all of these functional domains, has increasingly been linked with atypical activation and connectivity of the insular cortices. Here we review the latest research linking atypical insular function to a range of behaviors characteristic of ASD, with an emphasis on neuroimaging findings in the domains of social cognition and executive function. We summarize some of the recent work linking the insula to interventions in autism, including oxytocin-based pharmacological treatments and music therapy. We suggest that future directions likely to yield significant insights into insular pathology in ASD include the analysis of the dynamics of this brain region. We also conclude that more basic research is necessary on the use of oxytocin pharmacotherapy, and larger studies addressing participant heterogeneity are needed on the use of music therapy in ASD. Long-term studies are needed to ascertain sustained effects of these interventions.
Collapse
Affiliation(s)
- Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA; Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
55
|
Hong SJ, Vos de Wael R, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, Milham MP, Di Martino A, Margulies DS, Smallwood J, Bernhardt BC. Atypical functional connectome hierarchy in autism. Nat Commun 2019; 10:1022. [PMID: 30833582 PMCID: PMC6399265 DOI: 10.1038/s41467-019-08944-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
One paradox of autism is the co-occurrence of deficits in sensory and higher-order socio-cognitive processing. Here, we examined whether these phenotypical patterns may relate to an overarching system-level imbalance-specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Combining connectome gradient and stepwise connectivity analysis based on task-free functional magnetic resonance imaging (fMRI), we demonstrated atypical connectivity transitions between sensory and higher-order default mode regions in a large cohort of individuals with autism relative to typically-developing controls. Further analyses indicated that reduced differentiation related to perturbed stepwise connectivity from sensory towards transmodal areas, as well as atypical long-range rich-club connectivity. Supervised pattern learning revealed that hierarchical features predicted deficits in social cognition and low-level behavioral symptoms, but not communication-related symptoms. Our findings provide new evidence for imbalances in network hierarchy in autism, which offers a parsimonious reference frame to consolidate its diverse features.
Collapse
Affiliation(s)
- Seok-Jun Hong
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada.
- Center for the Developing Brain, Child Mind Institute, 10022, New York, NY, USA.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, CB28AH, Cambridge, UK
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - Sofie L Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, 10022, New York, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 10962, Orangeburg, NY, USA
| | | | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | | | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada.
| |
Collapse
|
56
|
Gotts SJ, Ramot M, Jasmin K, Martin A. Altered resting-state dynamics in autism spectrum disorder: Causal to the social impairment? Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:28-36. [PMID: 30414457 DOI: 10.1016/j.pnpbp.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by profound impairments in social abilities and by restricted interests and repetitive behaviors. Much work in the past decade has been dedicated to understanding the brain-bases of ASD, and in the context of resting-state functional connectivity fMRI in high-functioning adolescents and adults, the field has established a set of reliable findings: decreased cortico-cortical interactions among brain regions thought to be engaged in social processing, along with a simultaneous increase in thalamo-cortical and striato-cortical interactions. However, few studies have attempted to manipulate these altered patterns, leading to the question of whether such patterns are actually causally involved in producing the corresponding behavioral impairments. We discuss a few such recent attempts in the domains of fMRI neurofeedback and overt social interaction during scanning, and we conclude that the evidence of causal involvement is somewhat mixed. We highlight the potential role of the thalamus and striatum in ASD and emphasize the need for studies that directly compare scanning during multiple cognitive states in addition to the resting-state.
Collapse
Affiliation(s)
- Stephen J Gotts
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States.
| | - Michal Ramot
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States
| | - Kyle Jasmin
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States; Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - Alex Martin
- Section on Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bldg 10, Rm 4C-217, Bethesda, MD 20892-1366, United States
| |
Collapse
|
57
|
Jasmin K, Gotts SJ, Xu Y, Liu S, Riddell CD, Ingeholm JE, Kenworthy L, Wallace GL, Braun AR, Martin A. Overt social interaction and resting state in young adult males with autism: core and contextual neural features. Brain 2019; 142:808-822. [PMID: 30698656 PMCID: PMC6391610 DOI: 10.1093/brain/awz003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Conversation is an important and ubiquitous social behaviour. Individuals with autism spectrum disorder (autism) without intellectual disability often have normal structural language abilities but deficits in social aspects of communication like pragmatics, prosody, and eye contact. Previous studies of resting state activity suggest that intrinsic connections among neural circuits involved with social processing are disrupted in autism, but to date no neuroimaging study has examined neural activity during the most commonplace yet challenging social task: spontaneous conversation. Here we used functional MRI to scan autistic males (n = 19) without intellectual disability and age- and IQ-matched typically developing control subjects (n = 20) while they engaged in a total of 193 face-to-face interactions. Participants completed two kinds of tasks: conversation, which had high social demand, and repetition, which had low social demand. Autistic individuals showed abnormally increased task-driven interregional temporal correlation relative to controls, especially among social processing regions and during high social demand. Furthermore, these increased correlations were associated with parent ratings of participants' social impairments. These results were then compared with previously-acquired resting state data (56 autism, 62 control subjects). While some interregional correlation levels varied by task or rest context, others were strikingly similar across both task and rest, namely increased correlation among the thalamus, dorsal and ventral striatum, somatomotor, temporal and prefrontal cortex in the autistic individuals, relative to the control groups. These results suggest a basic distinction. Autistic cortico-cortical interactions vary by context, tending to increase relative to controls during task and decrease during test. In contrast, striato- and thalamocortical relationships with socially engaged brain regions are increased in both task and rest, and may be core to the condition of autism.
Collapse
Affiliation(s)
- Kyle Jasmin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
- Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Yisheng Xu
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Siyuan Liu
- Developmental Neurogenomics Unit, Human Genetics Branch, NIMH, NIH, Bethesda, MD, USA
| | - Cameron D Riddell
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - John E Ingeholm
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Lauren Kenworthy
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
- Children’s National Medical Center, Washington DC, USA
| | - Gregory L Wallace
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
- Department of Speech, Language, and Hearing Sciences, George Washington University, Washington, DC, USA
| | - Allen R Braun
- Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
58
|
Kozhemiako N, Vakorin V, Nunes AS, Iarocci G, Ribary U, Doesburg SM. Extreme male developmental trajectories of homotopic brain connectivity in autism. Hum Brain Mapp 2019; 40:987-1000. [PMID: 30311349 PMCID: PMC6865573 DOI: 10.1002/hbm.24427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
It has been proposed that autism spectrum disorder (ASD) may be characterized by an extreme male brain (EMB) pattern of brain development. Here, we performed the first investigation of how age-related changes in functional brain connectivity may be expressed differently in females and males with ASD. We analyzed resting-state functional magnetic resonance imaging data of 107 typically developing (TD) females, 114 TD males, 104 females, and 115 males with ASD (6-26 years) from the autism brain imaging data exchange repository. We explored how interhemispheric homotopic connectivity and its maturational curvatures change across groups. Differences between ASD and TD and between females and males with ASD were observed for the rate of changes in connectivity in the absence of overall differences in connectivity. The largest portion of variance in age-related changes in connectivity was described through similarities between TD males, ASD males, and ASD females, in contrast to TD females. We found that shape of developmental curvature is associated with symptomatology in both males and females with ASD. We demonstrated that females and males with ASD tended to follow the male pattern of developmental changes in interhemispheric connectivity, supporting the EMB theory of ASD.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityVancouverBritish ColumbiaCanada
| | - Vasily Vakorin
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityVancouverBritish ColumbiaCanada
- Behavioural and Cognitive Neuroscience InstituteSimon Fraser UniversityVancouverBritish ColumbiaCanada
| | - Adonay S. Nunes
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityVancouverBritish ColumbiaCanada
| | - Grace Iarocci
- Department of PsychologySimon Fraser UniversityVancouverBritish ColumbiaCanada
| | - Urs Ribary
- Behavioural and Cognitive Neuroscience InstituteSimon Fraser UniversityVancouverBritish ColumbiaCanada
- Department of PsychologySimon Fraser UniversityVancouverBritish ColumbiaCanada
- Department of Pediatrics and PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sam M. Doesburg
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityVancouverBritish ColumbiaCanada
- Behavioural and Cognitive Neuroscience InstituteSimon Fraser UniversityVancouverBritish ColumbiaCanada
| |
Collapse
|
59
|
Easson AK, Fatima Z, McIntosh AR. Functional connectivity-based subtypes of individuals with and without autism spectrum disorder. Netw Neurosci 2019; 3:344-362. [PMID: 30793086 PMCID: PMC6370474 DOI: 10.1162/netn_a_00067] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/16/2018] [Indexed: 11/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by impairments in social communication and restricted, repetitive behaviors. Neuroimaging studies have shown complex patterns and functional connectivity (FC) in ASD, with no clear consensus on brain-behavior relationships or shared patterns of FC with typically developing controls. Here, we used a dimensional approach to characterize two distinct clusters of FC patterns across both ASD participants and controls using k-means clustering. Using multivariate statistical analyses, a categorical approach was taken to characterize differences in FC between subtypes and between diagnostic groups. One subtype was defined by increased FC within resting-state networks and decreased FC across networks compared with the other subtype. A separate FC pattern distinguished ASD from controls, particularly within default mode, cingulo-opercular, sensorimotor, and occipital networks. There was no significant interaction between subtypes and diagnostic groups. Finally, a dimensional analysis of FC patterns with behavioral measures of IQ, social responsiveness, and ASD severity showed unique brain-behavior relations in each subtype and a continuum of brain-behavior relations from ASD to controls within one subtype. These results demonstrate that distinct clusters of FC patterns exist across ASD and controls, and that FC subtypes can reveal unique information about brain-behavior relationships.
Collapse
Affiliation(s)
- Amanda K. Easson
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Zainab Fatima
- Department of Psychology, Faculty of Health, Sherman Health Sciences Centre, York University, Toronto, ON, Canada
| | - Anthony R. McIntosh
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
60
|
Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor Networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:260-270. [PMID: 30711508 DOI: 10.1016/j.bpsc.2018.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging-based studies on functional connectivity in autism spectrum disorder (ASD) have generated inconsistent results. Interpretation of findings is further hampered by small samples and a focus on a limited number of networks, with networks underlying sensory processing being largely underexamined. We aimed to comprehensively characterize ASD-related alterations within and between 20 well-characterized resting-state networks using baseline data from the EU-AIMS (European Autism Interventions-A Multicentre Study for Developing New Medications) Longitudinal European Autism Project. METHODS Resting-state functional magnetic resonance imaging data was available for 265 individuals with ASD (7.5-30.3 years; 73.2% male) and 218 typically developing individuals (6.9-29.8 years; 64.2% male), all with IQ > 70. We compared functional connectivity within 20 networks-obtained using independent component analysis-between the ASD and typically developing groups, and related functional connectivity within these networks to continuous (overall) autism trait severity scores derived from the Social Responsiveness Scale Second Edition across all participants. Furthermore, we investigated case-control differences and autism trait-related alterations in between-network connectivity. RESULTS Higher autism traits were associated with increased connectivity within salience, medial motor, and orbitofrontal networks. However, we did not replicate previously reported case-control differences within these networks. The between-network analysis did reveal case-control differences showing on average 1) decreased connectivity of the visual association network with somatosensory, medial, and lateral motor networks, and 2) increased connectivity of the cerebellum with these sensory and motor networks in ASD compared with typically developing subjects. CONCLUSIONS We demonstrate ASD-related alterations in within- and between-network connectivity. The between-network alterations broadly affect connectivity between cerebellum, visual, and sensory-motor networks, potentially underlying impairments in multisensory and visual-motor integration frequently observed in ASD.
Collapse
|
61
|
Developmental changes of cortical white-gray contrast as predictors of autism diagnosis and severity. Transl Psychiatry 2018; 8:249. [PMID: 30446637 PMCID: PMC6240045 DOI: 10.1038/s41398-018-0296-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/18/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022] Open
Abstract
Recent studies suggest that both cortical gray and white-matter microstructural characteristics are distinct for subjects with autism. There is a lack of evidence regarding how these characteristics change in a developmental context. We analysed a longitudinal/cross-sectional dataset of 402 magnetic resonance imaging (MRI) scans (171 subjects with autism and 231 with typical development) from the Autism Brain Imaging Data Exchange, cohorts I-II (ABIDE-I-II). In the longitudinal sample, we computed the rate of change in the white-gray contrast, a measure which has been related to age and cognitive performance, at the boundary of the cerebral cortex. Then, we devised an analogous metric for the cross-sectional sample of the ABIDE dataset to measure age-related differences in cortical contrast. Further, we developed a probabilistic model to predict the diagnostic group in the longitudinal sample of the cortical contrast change data, using results obtained from the cross-sectional sample. In both subsets, we observed a similar overall pattern of greater decrease within the autistic population in intensity contrast for most cortical regions (81%), with occasional increases, mostly in primary sensory regions. This pattern correlated well with raw and calibrated behavioural scores. The prediction results show 76% accuracy for the whole-cortex diagnostic prediction and 86% accuracy in prediction using the motor system alone. Our results support a contrast change analysis strategy that appears sensitive in predicting diagnostic outcome and symptom severity in autism spectrum disorder, and is readily extensible to other MRI-based studies of neurodevelopmental cohorts.
Collapse
|
62
|
Yu CL, Chou TL. A Dual Route Model of Empathy: A Neurobiological Prospective. Front Psychol 2018; 9:2212. [PMID: 30483202 PMCID: PMC6243070 DOI: 10.3389/fpsyg.2018.02212] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Chi-Lin Yu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Center for Advanced Study in the Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
63
|
Müller RA, Fishman I. Brain Connectivity and Neuroimaging of Social Networks in Autism. Trends Cogn Sci 2018; 22:1103-1116. [PMID: 30391214 DOI: 10.1016/j.tics.2018.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 01/16/2023]
Abstract
Impairments in social communication (SC) predominate among the core diagnostic features of autism spectrum disorders (ASDs). Neuroimaging has revealed numerous findings of atypical activity and connectivity of 'social brain' networks, yet no consensus view on crucial developmental causes of SC deficits has emerged. Aside from methodological challenges, the deeper problem concerns the clinical label of ASD. While genetic studies have not comprehensively explained the causes of nonsyndromic ASDs, they highlight that the clinical label encompasses many etiologically different disorders. The question of how potential causes and etiologies converge onto a comparatively narrow set of SC deficits remains. Only neuroimaging designs searching for subtypes within ASD cohorts (rather than conventional group level designs) can provide translationally informative answers.
Collapse
Affiliation(s)
- Ralph-Axel Müller
- Brain Development Imaging Laboratories, SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA, USA.
| | - Inna Fishman
- Brain Development Imaging Laboratories, SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA, USA
| |
Collapse
|
64
|
Lawrence KE, Hernandez LM, Bookheimer SY, Dapretto M. Atypical longitudinal development of functional connectivity in adolescents with autism spectrum disorder. Autism Res 2018; 12:53-65. [PMID: 30375176 DOI: 10.1002/aur.1971] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) is consistently associated with alterations in brain connectivity, but there are conflicting results as to where and when individuals with ASD display increased or reduced functional connectivity. Such inconsistent findings may be driven by atypical neurodevelopmental trajectories in ASD during adolescence, but no longitudinal studies to date have investigated this hypothesis. We thus examined the functional connectivity of three neurocognitive resting-state networks-the default mode network (DMN), salience network, and central executive network (CEN)-in a longitudinal sample of youth with ASD (n = 16) and without ASD (n = 22) studied during early/mid- and late adolescence. Functional connectivity between the CEN and the DMN displayed significantly altered developmental trajectories in ASD: typically developing (TD) controls-but not youth with ASD-exhibited an increase in negative functional connectivity between these two networks with age. This significant interaction was due to the ASD group displaying less negative functional connectivity than the TD group during late adolescence only, with no significant group differences in early/mid-adolescence. These preliminary findings suggest a localized age-dependency of functional connectivity alterations in ASD and underscore the importance of considering age when examining brain connectivity. Autism Research 2019, 12: 53-65. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain connectivity may develop differently during adolescence in youth with autism spectrum disorder (ASD). We looked at changes in brain connectivity over time within individuals and found that, for some brain regions, adolescents with ASD did not show the same changes in brain connectivity that typically developing adolescents did. This suggests it is important to consider age when studying brain connectivity in ASD.
Collapse
Affiliation(s)
- Katherine E Lawrence
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA.,Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Leanna M Hernandez
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA.,Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Susan Y Bookheimer
- Center for Cognitive Neuroscience, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
65
|
Delbruck E, Yang M, Yassine A, Grossman ED. Functional connectivity in ASD: Atypical pathways in brain networks supporting action observation and joint attention. Brain Res 2018; 1706:157-165. [PMID: 30392771 DOI: 10.1016/j.brainres.2018.10.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder characterized by impaired social communication, including attending to and interpreting social cues, initiating and responding to joint attention, and engaging in abstract social cognitive reasoning. Current studies emphasize a underconnectivity in ASD, particularly for brain systems that support abstract social reasoning and introspective thought. Here, we evaluate intrinsic connectivity in children with ASD, targeting brain systems that support the developmental precursors to social reasoning, namely perception of social cues and joint attention. Using resting state fMRI made available through the Autism Brain Imaging Data Exchange (ABIDE), we compute functional connectivity within and between nodes in the action observation, attention and social cognitive networks in children and adolescents with ASD. We also compare connectivity strength to observational assessments that explicitly evaluate severity of ASD on two distinct subdomains using the ADOS-Revised schedule: social affective (SA) and restricted, repetitive behaviors (RRB). Compared to age-matched controls, children with ASD have decreased functional connectivity in a number of connections in the action observation network, particularly in the lateral occipital cortex (LOTC) and fusiform gyrus (FG). Distinct patterns of connections were also correlated with symptom severity on the two subdomains of the ADOS. ADOS-SA severity most strongly correlated with connectivity to the left TPJ, while ADOS-RRB severity correlated with connectivity to the dMPFC. We conclude that atypical connectivity in the action observation system may underlie some of the more complex deficits in social cognitive systems in ASD.
Collapse
Affiliation(s)
- Elita Delbruck
- Department of Cognitive Sciences, University of California, Irvine, United States
| | - Melody Yang
- Department of Cognitive Sciences, University of California, Irvine, United States
| | - Ahmed Yassine
- Department of Cognitive Sciences, University of California, Irvine, United States
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California, Irvine, United States.
| |
Collapse
|
66
|
Safar K, Wong SM, Leung RC, Dunkley BT, Taylor MJ. Increased Functional Connectivity During Emotional Face Processing in Children With Autism Spectrum Disorder. Front Hum Neurosci 2018; 12:408. [PMID: 30364114 PMCID: PMC6191493 DOI: 10.3389/fnhum.2018.00408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) demonstrate poor social functioning, which may be related to atypical emotional face processing. Altered functional connectivity among brain regions, particularly involving limbic structures may be implicated. The current magnetoencephalography (MEG) study investigated whole-brain functional connectivity of eight a priori identified brain regions during the implicit presentation of happy and angry faces in 20 7 to 10-year-old children with ASD and 22 typically developing controls. Findings revealed a network of increased alpha-band phase synchronization during the first 400 ms of happy face processing in children with ASD compared to controls. This network of increased alpha-band phase synchronization involved the left fusiform gyrus, right insula, and frontal regions critical for emotional face processing. In addition, greater connectivity strength of the left fusiform gyrus (maximal 85 to 208 ms) and right insula (maximal 73 to 270 ms) following happy face presentation in children with ASD compared to typically developing controls was found. These findings reflect altered neuronal communication in children with ASD only to happy faces during implicit emotional face processing.
Collapse
Affiliation(s)
- Kristina Safar
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Simeon M Wong
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel C Leung
- University Health Network - Toronto Western Hospital, Toronto, ON, Canada
| | - Benjamin T Dunkley
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
67
|
Hogeveen J, Krug MK, Elliott MV, Solomon M. Insula-Retrosplenial Cortex Overconnectivity Increases Internalizing via Reduced Insight in Autism. Biol Psychiatry 2018; 84. [PMID: 29523413 PMCID: PMC6067993 DOI: 10.1016/j.biopsych.2018.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Internalizing symptoms like anxiety and depression are common and impairing in autism spectrum disorder (ASD). Here, we test the hypothesis that aberrant functional connectivity among three brain networks (salience network [SN], default mode network [DMN], and frontoparietal network [FPN]) plays a role in the pathophysiology of internalizing in ASD. METHODS We examined the association between resting-state functional connectivity and internalizing in 102 adolescents and young adults with ASD (n = 49) or typical development (n = 53). Seed-to-target functional connectivity was contrasted between adolescents and young adults with ASD and typically developing subjects using a recent parcellation of the human cerebral cortex, and connections that were aberrant in ASD were analyzed dimensionally as a function of parent-reported internalizing symptoms. RESULTS Three connections demonstrated robust overconnectivity in ASD: 1) the anterior insula to the retrosplenial cortex (i.e., SN-DMN), 2) the anterior insula to the frontal pole (i.e., SN-FPN), and 3) the dorsolateral prefrontal cortex to the retrosplenial cortex (i.e., FPN-DMN). These differences remained significant after controlling for age, and no age-related effects survived correction. The SN-DMN connection was associated with greater internalizing in ASD, mediated by a bigger difference between self- and parent-reported internalizing. Control analyses found that the other two connections were not associated with internalizing, and SN-DMN connectivity was not associated with a well-matched control measure (externalizing symptoms). CONCLUSIONS The present findings provide novel evidence for a specific link between SN-DMN overconnectivity and internalizing in ASD. Further, the mediation results suggest that intact anterior insula-retrosplenial connectivity may play a role in an individual's generating insight into his or her own psychopathology.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- MIND Institute, University of California, Davis, Sacramento, California; Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California.
| | - Marie K. Krug
- UC Davis MIND Institute,Department of Psychiatry & Behavioral Sciences, UC Davis
| | - Matthew V. Elliott
- UC Davis MIND Institute,Department of Psychiatry & Behavioral Sciences, UC Davis
| | - Marjorie Solomon
- UC Davis MIND Institute,Department of Psychiatry & Behavioral Sciences, UC Davis,Imaging Research Center, UC Davis
| |
Collapse
|
68
|
Dickinson A, DiStefano C, Lin YY, Scheffler AW, Senturk D, Jeste SS. Interhemispheric alpha-band hypoconnectivity in children with autism spectrum disorder. Behav Brain Res 2018; 348:227-234. [PMID: 29689375 PMCID: PMC5993636 DOI: 10.1016/j.bbr.2018.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Diverse genetic and environmental etiologies converge onto circuit level brain dysfunction in autism spectrum disorder (ASD), manifesting at a macroscopic level as aberrant neural connectivity. Previous studies have described atypical patterns of decreased short range and increased long range connectivity in ASD [1 ]. However, it remains unclear whether group level features of circuit dysfunction are consistently present across the range of cognitive function seen in the autism spectrum. The dynamics of neural oscillations in the alpha range (6-12 Hz) are exquisitely sensitive to healthy development of functional and structural connectivity. Alpha-band coherence, measured with high temporal-precision electroencephalography (EEG) therefore represents an ideal tool for studying neural connectivity in developmental populations. Here we examined spontaneous alpha phase coherence in a heterogeneous sample of 59 children with ASD and 39 age matched typically developing children. Using a data driven approach, we conducted an unbiased examination of all possible atypical connectivity patterns across all cortical regions. Long-range hypoconnectivity was present in children with ASD compared to typically developing children, with temporal interhemispheric connectivity showing the largest difference between the two groups. Decreased long range alpha coherence distinguishes a heterogeneous group of ASD children from typically developing children. Interhemispheric temporal hypoconnectivity represents a fundamental functional difference in children with ASD across a wide cognitive and age range that may reflect white matter disturbances or increased signal variability at temporal sites in ASD.
Collapse
Affiliation(s)
- Abigail Dickinson
- Center for Autism Research and Treatment, University of California, Semel Institute for Neuroscience, 760 Westwood Plaza, Suite A7-452 Los Angeles, CA, 90095, United States.
| | - Charlotte DiStefano
- Center for Autism Research and Treatment, University of California, Semel Institute for Neuroscience, 760 Westwood Plaza, Suite A7-452 Los Angeles, CA, 90095, United States
| | - Yin-Ying Lin
- Center for Autism Research and Treatment, University of California, Semel Institute for Neuroscience, 760 Westwood Plaza, Suite A7-452 Los Angeles, CA, 90095, United States
| | - Aaron Wolfe Scheffler
- Department of Biostatistics, UCLA School of Public Health, Room 21-254C, CHS, Los Angeles, CA, 90095, United States
| | - Damla Senturk
- Department of Biostatistics, UCLA School of Public Health, Room 21-254C, CHS, Los Angeles, CA, 90095, United States
| | - Shafali Spurling Jeste
- Center for Autism Research and Treatment, University of California, Semel Institute for Neuroscience, 760 Westwood Plaza, Suite A7-452 Los Angeles, CA, 90095, United States
| |
Collapse
|
69
|
Pua EPK, Malpas CB, Bowden SC, Seal ML. Different brain networks underlying intelligence in autism spectrum disorders. Hum Brain Mapp 2018; 39:3253-3262. [PMID: 29667272 DOI: 10.1002/hbm.24074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 01/21/2023] Open
Abstract
There has been sustained clinical and cognitive neuroscience research interest in how network correlates of brain-behavior relationships might be altered in Autism Spectrum Disorders (ASD) and other neurodevelopmental disorders. As previous work has mostly focused on adults, the nature of whole-brain connectivity networks underlying intelligence in pediatric cohorts with abnormal neurodevelopment requires further investigation. We used network-based statistics (NBS) to examine the association between resting-state functional Magnetic Resonance Imaging (fMRI) connectivity and fluid intelligence ability in male children (n = 50) with Autism Spectrum Disorders (ASD; M = 10.45, SD = 1.58 years and in controls (M = 10.38, SD = 0.96 years) matched on fluid intelligence performance, age and sex. Repeat analyses were performed in independent sites for validation and replication. Despite being equivalent on fluid intelligence ability to strictly matched neurotypical controls, boys with ASD displayed a subnetwork of significantly increased associations between functional connectivity and fluid intelligence. Between-group differences remained significant at higher edge thresholding, and results were validated in independent-site replication analyses in an equivalent age and sex-matched cohort with ASD. Regions consistently implicated in atypical connectivity correlates of fluid intelligence in ASD were the angular gyrus, posterior middle temporal gyrus, occipital and temporo-occipital regions. Development of fluid intelligence neural correlates in young ASD males is aberrant, with an increased strength in intrinsic connectivity association during childhood. Alterations in whole-brain network correlates of fluid intelligence in ASD may be a compensatory mechanism that allows equal task performance to neurotypical peers.
Collapse
Affiliation(s)
- Emmanuel Peng Kiat Pua
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.,The Royal Children's Hospital, Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Victoria 3052, Australia
| | - Charles B Malpas
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.,The Royal Children's Hospital, Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Victoria 3052, Australia.,Clinical Outcomes Research Unit, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen C Bowden
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.,St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Marc L Seal
- The Royal Children's Hospital, Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
70
|
Floris DL, Lai MC, Nath T, Milham MP, Di Martino A. Network-specific sex differentiation of intrinsic brain function in males with autism. Mol Autism 2018. [PMID: 29541439 PMCID: PMC5840786 DOI: 10.1186/s13229-018-0192-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background The male predominance in the prevalence of autism spectrum disorder (ASD) has motivated research on sex differentiation in ASD. Multiple sources of evidence have suggested a neurophenotypic convergence of ASD-related characteristics and typical sex differences. Two existing, albeit competing, models provide predictions on such neurophenotypic convergence. These two models are testable with neuroimaging. Specifically, the Extreme Male Brain (EMB) model predicts that ASD is associated with enhanced brain maleness in both males and females with ASD (i.e., a shift-towards-maleness). In contrast, the Gender Incoherence (GI) model predicts a shift-towards-maleness in females, yet a shift-towards-femaleness in males with ASD. Methods To clarify whether either model applies to the intrinsic functional properties of the brain in males with ASD, we measured the statistical overlap between typical sex differences and ASD-related atypicalities in resting-state fMRI (R-fMRI) datasets largely available in males. Main analyses focused on two large-scale R-fMRI samples: 357 neurotypical (NT) males and 471 NT females from the 1000 Functional Connectome Project and 360 males with ASD and 403 NT males from the Autism Brain Imaging Data Exchange. Results Across all R-fMRI metrics, results revealed coexisting, but network-specific, shift-towards-maleness and shift-towards-femaleness in males with ASD. A shift-towards-maleness mostly involved the default network, while a shift-towards-femaleness mostly occurred in the somatomotor network. Explorations of the associated cognitive processes using available cognitive ontology maps indicated that higher-order social cognitive functions corresponded to the shift-towards-maleness, while lower-order sensory motor processes corresponded to the shift-towards-femaleness. Conclusions The present findings suggest that atypical intrinsic brain properties in males with ASD partly reflect mechanisms involved in sexual differentiation. A model based on network-dependent atypical sex mosaicism can synthesize prior competing theories on factors involved in sex differentiation in ASD. Electronic supplementary material The online version of this article (10.1186/s13229-018-0192-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorothea L Floris
- 1Hassenfeld Children's Hospital at NYU Langone Health, Department of Child and Adolescent Psychiatry, Child Study Center, 1 Park Avenue, New York City, NY 10016 USA
| | - Meng-Chuan Lai
- 2Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4 Canada.,3Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH UK
| | - Tanmay Nath
- 1Hassenfeld Children's Hospital at NYU Langone Health, Department of Child and Adolescent Psychiatry, Child Study Center, 1 Park Avenue, New York City, NY 10016 USA
| | - Michael P Milham
- 4Center for the Developing Brain, Child Mind Institute, New York, NY 10022 USA.,5Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Adriana Di Martino
- 1Hassenfeld Children's Hospital at NYU Langone Health, Department of Child and Adolescent Psychiatry, Child Study Center, 1 Park Avenue, New York City, NY 10016 USA
| |
Collapse
|
71
|
Atypical structural and functional motor networks in autism. PROGRESS IN BRAIN RESEARCH 2018; 238:207-248. [DOI: 10.1016/bs.pbr.2018.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Procedural learning in Parkinson’s disease, specific language impairment, dyslexia, schizophrenia, developmental coordination disorder, and autism spectrum disorders: A second-order meta-analysis. Brain Cogn 2017; 117:41-48. [DOI: 10.1016/j.bandc.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
|
73
|
Ramot M, Kimmich S, Gonzalez-Castillo J, Roopchansingh V, Popal H, White E, Gotts SJ, Martin A. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback. eLife 2017; 6:28974. [PMID: 28917059 PMCID: PMC5626477 DOI: 10.7554/elife.28974] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. Even when we are at rest, our brains are always active. For example, areas of the brain involved in vision remain active in complete darkness. Different brain regions that connect together to perform a given task often show coordinated activity at rest. Past studies have shown that these resting connections are different in people with conditions such as autism. Some brain regions are more weakly connected while others are more strongly connected in people with autism spectrum disorder compared to those without. Furthermore, people with more severe symptoms seem to have more abnormal connections. “Neurofeedback training” is a method of changing the resting connections between different brain regions. Scientists measure a brain signal – the connection between different brain regions – from a person in real time. They then provide positive feedback to the person if this signal improves. For example, if a connection that is too weak becomes stronger, the scientists might reinforce this by providing feedback on the success. Previous work has shown that neurofeedback training may even change people’s behaviour. However, it has not yet been explored as a method of treating the abnormal connections seen in people with autism when their brains are at rest. To address this, Ramot et al. used a technique known as “functional magnetic resonance imaging” (or fMRI for short) to measure brain activity in young men with autism. First, certain brain regions were identified as having abnormal resting connections with each other. The participants were then asked to look at a blank screen and to try to reveal a picture hidden underneath. Whenever the connections between the chosen brain regions improved, part of the picture was revealed on the screen, accompanied by an upbeat sound. The participants were unaware that it was their brain signals causing this positive feedback. This form of neurofeedback training successfully changed the abnormal brain connections in most of the participants with autism, making their connections more similar to those seen in the wider population. These effects lasted up to a year after training. Early results also suggest that these changes were related to improvements in symptoms, although further work is needed to see if doctors could reliably use this method as a therapy. These findings show that neurofeedback training could potentially help treat not only autism spectrum disorder, but a range of other disorders that involve abnormal brain connections, including depression and schizophrenia.
Collapse
Affiliation(s)
- Michal Ramot
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Sara Kimmich
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Javier Gonzalez-Castillo
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Vinai Roopchansingh
- Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Haroon Popal
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Emily White
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Stephen J Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
74
|
Chen H, Nomi JS, Uddin LQ, Duan X, Chen H. Intrinsic functional connectivity variance and state-specific under-connectivity in autism. Hum Brain Mapp 2017; 38:5740-5755. [PMID: 28792117 DOI: 10.1002/hbm.23764] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered brain connectivity. Previous neuroimaging research demonstrates inconsistent results, particularly in studies of functional connectivity in ASD. Typically, these inconsistent findings are results of studies using static measures of resting-state functional connectivity. Recent work has demonstrated that functional brain connections are dynamic, suggesting that static connectivity metrics fail to capture nuanced time-varying properties of functional connections in the brain. Here we used a dynamic functional connectivity approach to examine the differences in the strength and variance of dynamic functional connections between individuals with ASD and healthy controls (HCs). The variance of dynamic functional connections was defined as the respective standard deviations of the dynamic functional connectivity strength across time. We utilized a large multicenter dataset of 507 male subjects (209 with ASD and 298 HC, from 6 to 36 years old) from the Autism Brain Imaging Data Exchange (ABIDE) to identify six distinct whole-brain dynamic functional connectivity states. Analyses demonstrated greater variance of widespread long-range dynamic functional connections in ASD (P < 0.05, NBS method) and weaker dynamic functional connections in ASD (P < 0.05, NBS method) within specific whole-brain connectivity states. Hypervariant dynamic connections were also characterized by weaker connectivity strength in ASD compared with HC. Increased variance of dynamic functional connections was also related to ASD symptom severity (ADOS total score) (P < 0.05), and was most prominent in connections related to the medial superior frontal gyrus and temporal pole. These results demonstrate that greater intraindividual dynamic variance is a potential biomarker of ASD. Hum Brain Mapp 38:5740-5755, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Heng Chen
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, Florida
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida
| | - Xujun Duan
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Huafu Chen
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| |
Collapse
|
75
|
Takahashi T, Yamanishi T, Nobukawa S, Kasakawa S, Yoshimura Y, Hiraishi H, Hasegawa C, Ikeda T, Hirosawa T, Munesue T, Higashida H, Minabe Y, Kikuchi M. Band-specific atypical functional connectivity pattern in childhood autism spectrum disorder. Clin Neurophysiol 2017. [DOI: 10.1016/j.clinph.2017.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
76
|
What is the Nature of Motor Impairments in Autism, Are They Diagnostically Useful, and What Are the Implications for Intervention? CURRENT DEVELOPMENTAL DISORDERS REPORTS 2017. [DOI: 10.1007/s40474-017-0109-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
77
|
O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One 2017; 12:e0175870. [PMID: 28467487 PMCID: PMC5414938 DOI: 10.1371/journal.pone.0175870] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although it is well recognized that autism is associated with altered patterns of over- and under-connectivity, specifics are still a matter of debate. Little has been done so far to synthesize available literature using whole-brain electroencephalography (EEG) and magnetoencephalography (MEG) recordings. OBJECTIVES 1) To systematically review the literature on EEG/MEG functional and effective connectivity in autism spectrum disorder (ASD), 2) to synthesize and critically appraise findings related with the hypothesis that ASD is characterized by long-range underconnectivity and local overconnectivity, and 3) to provide, based on the literature, an analysis of tentative factors that are likely to mediate association between ASD and atypical connectivity (e.g., development, topography, lateralization). METHODS Literature reviews were done using PubMed and PsychInfo databases. Abstracts were screened, and only relevant articles were analyzed based on the objectives of this paper. Special attention was paid to the methodological characteristics that could have created variability in outcomes reported between studies. RESULTS Our synthesis provides relatively strong support for long-range underconnectivity in ASD, whereas the status of local connectivity remains unclear. This observation was also mirrored by a similar relationship with lower frequencies being often associated with underconnectivity and higher frequencies being associated with both under- and over-connectivity. Putting together these observations, we propose that ASD is characterized by a general trend toward an under-expression of lower-band wide-spread integrative processes compensated by more focal, higher-frequency, locally specialized, and segregated processes. Further investigation is, however, needed to corroborate the conclusion and its generalizability across different tasks. Of note, abnormal lateralization in ASD, specifically an elevated left-over-right EEG and MEG functional connectivity ratio, has been also reported consistently across studies. CONCLUSIONS The large variability in study samples and methodology makes a systematic quantitative analysis (i.e. meta-analysis) of this body of research impossible. Nevertheless, a general trend supporting the hypothesis of long-range functional underconnectivity can be observed. Further research is necessary to more confidently determine the status of the hypothesis of short-range overconnectivity. Frequency-band specific patterns and their relationships with known symptoms of autism also need to be further clarified.
Collapse
Affiliation(s)
- Christian O’Reilly
- Douglas Mental Health University Institute, 6875 Boulevard Lasalle, Verdun, Canada
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada
| | - John D. Lewis
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, Canada
| | - Mayada Elsabbagh
- Douglas Mental Health University Institute, 6875 Boulevard Lasalle, Verdun, Canada
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada
| |
Collapse
|
78
|
Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data 2017; 4:170010. [PMID: 28291247 PMCID: PMC5349246 DOI: 10.1038/sdata.2017.10] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity.
Collapse
|
79
|
Modi ME, Sahin M. Translational use of event-related potentials to assess circuit integrity in ASD. Nat Rev Neurol 2017; 13:160-170. [DOI: 10.1038/nrneurol.2017.15] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
Fields C, Glazebrook JF. Disrupted development and imbalanced function in the global neuronal workspace: a positive-feedback mechanism for the emergence of ASD in early infancy. Cogn Neurodyn 2016; 11:1-21. [PMID: 28174609 DOI: 10.1007/s11571-016-9419-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/06/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is increasingly being conceptualized as a spectrum disorder of connectome development. We review evidence suggesting that ASD is characterized by a positive feedback loop that amplifies small functional variations in early-developing sensory-processing pathways into structural and functional imbalances in the global neuronal workspace. Using vision as an example, we discuss how early functional variants in visual processing may be feedback-amplified to produce variant object categories and disrupted top-down expectations, atypically large expectation-to-perception mismatches, problems re-identifying individual people and objects, socially inappropriate, generally aversive emotional responses and disrupted sensory-motor coordination. Viewing ASD in terms of feedback amplification of small functional variants allows a number of recent models of ASD to be integrated with neuroanatomical, neurofunctional and genetic data.
Collapse
Affiliation(s)
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL 61920 USA
| |
Collapse
|
81
|
Brain oscillations and connectivity in autism spectrum disorders (ASD): new approaches to methodology, measurement and modelling. Neurosci Biobehav Rev 2016; 71:601-620. [PMID: 27720724 DOI: 10.1016/j.neubiorev.2016.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022]
Abstract
Although atypical social behaviour remains a key characterisation of ASD, the presence of sensory and perceptual abnormalities has been given a more central role in recent classification changes. An understanding of the origins of such aberrations could thus prove a fruitful focus for ASD research. Early neurocognitive models of ASD suggested that the study of high frequency activity in the brain as a measure of cortical connectivity might provide the key to understanding the neural correlates of sensory and perceptual deviations in ASD. As our review shows, the findings from subsequent research have been inconsistent, with a lack of agreement about the nature of any high frequency disturbances in ASD brains. Based on the application of new techniques using more sophisticated measures of brain synchronisation, direction of information flow, and invoking the coupling between high and low frequency bands, we propose a framework which could reconcile apparently conflicting findings in this area and would be consistent both with emerging neurocognitive models of autism and with the heterogeneity of the condition.
Collapse
|
82
|
Takesaki N, Kikuchi M, Yoshimura Y, Hiraishi H, Hasegawa C, Kaneda R, Nakatani H, Takahashi T, Mottron L, Minabe Y. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study. PLoS One 2016; 11:e0163133. [PMID: 27631982 PMCID: PMC5025179 DOI: 10.1371/journal.pone.0163133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/03/2016] [Indexed: 12/12/2022] Open
Abstract
Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas.
Collapse
Affiliation(s)
- Natsumi Takesaki
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
- * E-mail:
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Reizo Kaneda
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hideo Nakatani
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Tetsuya Takahashi
- Health Administration Center, University of Fukui, Matsuokashimoaizuki, 910–1193, Japan
| | - Laurent Mottron
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| | - Yoshio Minabe
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| |
Collapse
|