51
|
Blasco H, Patin F, Descat A, Garçon G, Corcia P, Gelé P, Lenglet T, Bede P, Meininger V, Devos D, Gossens JF, Pradat PF. A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS One 2018; 13:e0198116. [PMID: 29870556 PMCID: PMC5988280 DOI: 10.1371/journal.pone.0198116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
There is an urgent and unmet need for accurate biomarkers in Amyotrophic Lateral Sclerosis. A pharmaco-metabolomics study was conducted using plasma samples from the TRO19622 (olesoxime) trial to assess the link between early metabolomic profiles and clinical outcomes. Patients included in this trial were randomized into either Group O receiving olesoxime (n = 38) or Group P receiving placebo (n = 36). The metabolomic profile was assessed at time-point one (V1) and 12 months (V12) after the initiation of the treatment. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites (Biocrates® commercial kit). Multivariate analysis based on machine learning approaches (i.e. Biosigner algorithm) was performed. Metabolomic profiles at V1 and V12 and changes in metabolomic profiles between V1 and V12 accurately discriminated between Groups O and P (p<5×10–6), and identified glycine, kynurenine and citrulline/arginine as the best predictors of group membership. Changes in metabolomic profiles were closely linked to clinical progression, and correlated with glutamine levels in Group P and amino acids, lipids and spermidine levels in Group O. Multivariate models accurately predicted disease progression and highlighted the discriminant role of sphingomyelins (SM C22:3, SM C24:1, SM OH C22:2, SM C16:1). To predict SVC from SM C24:1 in group O and SVC from SM OH C22:2 and SM C16:1 in group P+O, we noted a median sensitivity between 67% and 100%, a specificity between 66.7 and 71.4%, a positive predictive value between 66 and 75% and a negative predictive value between 70% and 100% in the test sets. This proof-of-concept study demonstrates that the metabolomics has a role in evaluating the biological effect of an investigational drug and may be a candidate biomarker as a secondary outcome measure in clinical trials.
Collapse
Affiliation(s)
- Hélène Blasco
- Université François-Rabelais, Inserm, Tours, France
- Laboratoire de Biochimie, CHRU de Tours, Tours, France
- * E-mail:
| | - Franck Patin
- Université François-Rabelais, Inserm, Tours, France
- Laboratoire de Biochimie, CHRU de Tours, Tours, France
| | - Amandine Descat
- Centre Universitaire de Mesures et d'Analyses (CUMA), EA, Université de Lille, Lille, France
| | - Guillaume Garçon
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA, IMPECS, Lille, France
| | - Philippe Corcia
- Université François-Rabelais, Inserm, Tours, France
- Centre SLA, Service de Neurologie, CHRU Bretonneau, Tours, France
| | - Patrick Gelé
- Centre d'Investigation Clinique, Université de Lille, Lille, France
| | - Timothée Lenglet
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Peter Bede
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale,Paris, France
- Academic Unit of Neurology, Trinity College, Dublin, Ireland
| | | | - David Devos
- INSERM U1171, Pharmacologie Médicale & Neurologie, Université, Faculté de Médecine, CHU de Lille, Lille, France
| | - Jean François Gossens
- Centre Universitaire de Mesures et d'Analyses (CUMA), EA, Université de Lille, Lille, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale,Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| |
Collapse
|
52
|
Patent highlights from December 2017 to January 2018. Pharm Pat Anal 2018; 7:111-119. [PMID: 29676211 DOI: 10.4155/ppa-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
53
|
Andrews JA, Meng L, Kulke SF, Rudnicki SA, Wolff AA, Bozik ME, Malik FI, Shefner JM. Association Between Decline in Slow Vital Capacity and Respiratory Insufficiency, Use of Assisted Ventilation, Tracheostomy, or Death in Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol 2018; 75:58-64. [PMID: 29181534 PMCID: PMC5833488 DOI: 10.1001/jamaneurol.2017.3339] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/13/2017] [Indexed: 12/12/2022]
Abstract
Importance The prognostic value of slow vital capacity (SVC) in relation to respiratory function decline and disease progression in patients with amyotrophic lateral sclerosis (ALS) is not well understood. Objective To investigate the rate of decline in percentage predicted SVC and its association with respiratory-related clinical events and mortality in patients with ALS. Design, Setting, and Participants This retrospective study included 893 placebo-treated patients from 2 large clinical trials (EMPOWER and BENEFIT-ALS, conducted from March 28, 2011, to November 1, 2012, and from October 23, 2012, to March 21, 2014, respectively) and an ALS trial database (PRO-ACT, containing studies completed between 1990 and 2010) to investigate the rate of decline in SVC. Data from the EMPOWER trial (which enrolled adults with possible, probable, or definite ALS; symptom onset within 24 months before screening; and upright SVC at least 65% of predicted value for age, height, and sex) were used to assess the relationship of SVC to respiratory-related clinical events; 456 patients randomized to placebo were used in this analysis. The 2 clinical trials included patients from North America, Australia, and Europe. Main Outcomes and Measures Clinical events included the earlier of time to death or time to decline in the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) respiratory subdomain, time to onset of respiratory insufficiency, time to tracheostomy, and all-cause mortality. Results Among 893 placebo-treated patients with ALS, the mean (SD) patient age was 56.7 (11.2) years, and the mean (SD) SVC was 90.5% (17.1%) at baseline; 65.5% (585 of 893) were male, and 20.5% (183 of 893) had bulbar-onset ALS. In EMPOWER, average decline of SVC from baseline through 1.5-year follow-up was -2.7 percentage points per month. Steeper declines were found in patients older than 65 years (-3.6 percentage points per month [P = .005 vs <50 years and P = .007 vs 50-65 years) and in patients with an ALSFRS-R total score of 39 or less at baseline (-3.1 percentage points per month [P < .001 vs >39]). When the rate of decline of SVC was slower by 1.5 percentage points per month in the first 6 months, risk reductions for events after 6 months were 19% for decline in the ALSFRS-R respiratory subdomain or death after 6 months, 22% for first onset of respiratory insufficiency or death after 6 months, 23% for first occurrence of tracheostomy or death after 6 months, and 23% for death at any time after 6 months (P < .001 for all). Conclusions and Relevance The rate of decline in SVC is associated with meaningful clinical events in ALS, including respiratory failure, tracheostomy, or death, suggesting that it is an important indicator of clinical progression.
Collapse
Affiliation(s)
- Jinsy A. Andrews
- Cytokinetics, Inc, South San Francisco, California
- currently with The Neurological Institute, Columbia University, New York, New York
| | - Lisa Meng
- Cytokinetics, Inc, South San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
54
|
Katyal N, Govindarajan R. Shortcomings in the Current Amyotrophic Lateral Sclerosis Trials and Potential Solutions for Improvement. Front Neurol 2017; 8:521. [PMID: 29033893 PMCID: PMC5626834 DOI: 10.3389/fneur.2017.00521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically progressive neurodegenerative syndrome predominantly affecting motor neurons and their associated tracts. Riluzole and edaravone are the only FDA certified drugs for treating ALS. Over the past two decades, almost all clinical trials aiming to develop a successful therapeutic strategy for this disease have failed. Genetic complexity, inadequate animal models, poor clinical trial design, lack of sensitive biomarkers, and diagnostic delays are some of the potential reasons limiting any significant development in ALS clinical trials. In this review, we have outlined the possible reasons for failure of ALS clinical trials, addressed the factors limiting timely diagnosis, and suggested possible solutions for future considerations for each of the shortcomings.
Collapse
Affiliation(s)
- Nakul Katyal
- Neurology, University of Missouri School of Medicine, University of Missouri, Columbia, MO, United States
| | - Raghav Govindarajan
- Neurology, University of Missouri School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
55
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
56
|
Hamidou B, Marin B, Lautrette G, Nicol M, Camu W, Corcia P, Arnes-Bes MC, Tranchant C, Clavelou P, Hannequin D, Maurice G, Beauvais K, Antoine JC, Danel-Brunaud V, Viader F, Preux PM, Couratier P. Exploring the diagnosis delay and ALS functional impairment at diagnosis as relevant criteria for clinical trial enrolment*. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:519-527. [DOI: 10.1080/21678421.2017.1353098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bello Hamidou
- INSERM UMR1094, Neuroépidémiologie Tropicale, Limoges, France,
- Université de Limoges, Faculté de Médicine, Institut d'Epidémiologie neurologique et Neurologie Tropicale, CNRS FR 3503 GEIST, Limoges, France,
| | - Benoit Marin
- INSERM UMR1094, Neuroépidémiologie Tropicale, Limoges, France,
- Université de Limoges, Faculté de Médicine, Institut d'Epidémiologie neurologique et Neurologie Tropicale, CNRS FR 3503 GEIST, Limoges, France,
- CHU Limoges, Centre d’Epidémiologie de Biostatistique et de Méthodologie de la Recherche, Limoges, France,
| | | | - Marie Nicol
- INSERM UMR1094, Neuroépidémiologie Tropicale, Limoges, France,
- CHU Limoges, Service de Neurologie, Centre SLA, Limoges, France,
| | - William Camu
- Centre SLA de Montpellier - Service de Neurologie, CHRU de Montpellier - Hôpital Gui de Chauliac, Montpellier, France,
| | - Philippe Corcia
- Centre SLA de Tours - Service de Neurologie, CHRU de Tours - Hôpital Bretonneau, Tours, France,
| | - Marie-Christine Arnes-Bes
- Centre SLA de Toulouse - Service de neurologie et d'explorations fonctionnelles, Pôle Neurosciences, Hall B - 3e étage, CHU de Toulouse - Hôpital Pierre-Paul Riquet, Toulouse, France,
| | - Christine Tranchant
- Centre SLA de Strasbourg - Hôpital de jour – Neurologie Pôle tête-cou/CETD, CHU de Strasbourg - Hôpital de Hautepierre, Strasbourg, France,
| | - Pierre Clavelou
- Centre SLA de Clermont-FD - Service de neurologie, CHU de Clermont-Ferrand - Hôpital Gabriel Montpied, Clermont-Ferrand, France,
| | - Didier Hannequin
- Centre SLA de Rouen - Centre national de référence pour les malades Alzheimer jeunes - Centre Mémoire de Ressource et Recherches, Département de neurologie - Unité de neuropsychologie, CHU de Rouen - Hôpital Charles Nicolle, Rouen, France,
| | - Giroud Maurice
- Centre SLA de Dijon - Neurologie Générale, Vasculaire et Dégénérative, CHU de Dijon Hôpital le BOCAGE, Limoges, France,
| | - Katell Beauvais
- Centre SLA de Dijon - Service de Neurophysiologie clinique, CHU Dijon Bourgogne - Hôpital François Mitterrand, Limoges, France,
| | - Jean-Christophe Antoine
- Centre SLA de Saint-Etienne - Service de Neurologie CHU de Saint-Etienne - Hôpital Nord, Saint-Etienne, France,
| | - Véronique Danel-Brunaud
- Centre SLA de Lille - Service de neurologie A, Pôle Neurosciences et Appareil Locomoteur, CHRU de Lille - Hôpital Roger Salengro, Lille, France,
| | - Fausto Viader
- Centre SLA de Caen - Service de neurologie, CHU de Caen - Hôpital de la Côte, Caen, France
| | - Pierre-Marie Preux
- INSERM UMR1094, Neuroépidémiologie Tropicale, Limoges, France,
- Université de Limoges, Faculté de Médicine, Institut d'Epidémiologie neurologique et Neurologie Tropicale, CNRS FR 3503 GEIST, Limoges, France,
- CHU Limoges, Centre d’Epidémiologie de Biostatistique et de Méthodologie de la Recherche, Limoges, France,
| | - Philippe Couratier
- INSERM UMR1094, Neuroépidémiologie Tropicale, Limoges, France,
- Université de Limoges, Faculté de Médicine, Institut d'Epidémiologie neurologique et Neurologie Tropicale, CNRS FR 3503 GEIST, Limoges, France,
- CHU Limoges, Service de Neurologie, Centre SLA, Limoges, France,
| |
Collapse
|
57
|
Information-seeking Behavior and Information Needs in Patients With Amyotrophic Lateral Sclerosis. ACTA ACUST UNITED AC 2017; 35:345-351. [DOI: 10.1097/cin.0000000000000333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
58
|
Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2017; 710:132933. [PMID: 28669745 DOI: 10.1016/j.neulet.2017.06.052] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are unique organelles that are essential for a variety of cellular processes including energy metabolism, calcium homeostasis, lipid biosynthesis, and apoptosis. Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases including motor neuron disorders such as amyotrophic lateral sclerosis (ALS). Disruption of mitochondrial structure, dynamics, bioenergetics and calcium buffering has been extensively reported in ALS patients and model systems and has been suggested to be directly involved in disease pathogenesis. Here we review the alterations in mitochondrial parameters in ALS and examine the common pathways to dysfunction.
Collapse
Affiliation(s)
- Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
| |
Collapse
|
59
|
Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, Lusakowska A, Comi GP, Cuisset JM, Abitbol JL, Scherrer B, Ducray PS, Buchbjerg J, Vianna E, van der Pol WL, Vuillerot C, Blaettler T, Fontoura P. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16:513-522. [PMID: 28460889 DOI: 10.1016/s1474-4422(17)30085-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/27/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a progressive motor neuron disease causing loss of motor function and reduced life expectancy, for which limited treatment is available. We investigated the safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 SMA. METHODS This randomised, double-blind, placebo-controlled, phase 2 study was done in 22 neuromuscular care centres in Belgium, France, Germany, Italy, Netherlands, Poland, and the UK. Safety and efficacy of olesoxime were assessed in patients aged 3-25 years with genetically confirmed type 2 or non-ambulatory type 3 SMA. A centralised, computerised randomisation process allocated patients (2:1 with stratification by SMA type and centre) to receive olesoxime (10 mg/kg per day) in an oral liquid suspension or placebo for 24 months. Patients, investigators assessing outcomes, and sponsor study personnel were masked to treatment assignment. The primary outcome measure was change from baseline compared with 24 months between the two treatment groups in functional domains 1 and 2 of the Motor Function Measure (MFM D1 + D2) assessed in the full analysis population. A shorter, 20-item version of the MFM, which was specifically adapted for young children, was used to assess patients younger than 6 years. Safety was assessed in all patients who received one or more doses of the study drug. The trial is registered with ClinicalTrials.gov, number NCT01302600. FINDINGS The trial was done between Nov 18, 2010, and Oct 9, 2013. Of 198 patients screened, 165 were randomly assigned to olesoxime (n=108) or placebo (n=57). Five patients in the olesoxime group were not included in the primary outcome analysis because of an absence of post-baseline assessments. The change from baseline to month 24 on the primary outcome measure was 0·18 for olesoxime and -1·82 for placebo (treatment difference 2·00 points, 96% CI -0·25 to 4·25, p=0·0676). Olesoxime seemed to be safe and generally well tolerated, with an adverse event profile similar to placebo. The most frequent adverse events in the olesoxime group were pyrexia (n=34), cough (n=32), nasopharyngitis (n=25), and vomiting (n=25). There were two patient deaths (one in each group), but these were not deemed to be related to the study treatment. INTERPRETATION Olesoxime was safe at the doses studied, for the duration of the trial. Although the primary endpoint was not met, secondary endpoints and sensitivity analyses suggest that olesoxime might maintain motor function in patients with type 2 or type 3 SMA over a period of 24 months. Based on these results, olesoxime might provide meaningful clinical benefits for patients with SMA and, given its mode of action, might be used in combination with other drugs targeting other mechanisms of disease, although additional evidence is needed. FUNDING AFM Téléthon and Trophos SA.
Collapse
Affiliation(s)
- Enrico Bertini
- Department of Neurosciences and Neurorehabilitation, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy.
| | | | - Eugenio Mercuri
- Paediatric Neurology and Nemo Center, Catholic University and Policlinico Gemelli, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carol Reid
- Biostatistics, Roche Products Limited, Welwyn Garden City, UK
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Giacomo P Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jean-Marie Cuisset
- Department of Neuropediatrics, Neuromuscular Disease Reference Centre, Roger-Salengro Hospital, Regional University Teaching Hospital, Lille, France
| | | | - Bruno Scherrer
- Bruno Scherrer Conseil, Saint-Arnoult-en-Yvelines, France
| | - Patricia Sanwald Ducray
- Roche Pharma Research and Early Development, Clinical Pharmacology, Roche Innovation Center Basel, Switzerland
| | - Jeppe Buchbjerg
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eduardo Vianna
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carole Vuillerot
- Department of Paediatric Physical Medicine and Rehabilitation, Hôpital Femme Mère Enfant, Centre Hospitalier Universitaire de Lyon, France
| | - Thomas Blaettler
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paulo Fontoura
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
60
|
Petrov D, Mansfield C, Moussy A, Hermine O. ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment? Front Aging Neurosci 2017; 9:68. [PMID: 28382000 PMCID: PMC5360725 DOI: 10.3389/fnagi.2017.00068] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating condition with an estimated mortality of 30,000 patients a year worldwide. The median reported survival time since onset ranges from 24 to 48 months. Riluzole is the only currently approved mildly efficacious treatment. Riluzole received marketing authorization in 1995 in the USA and in 1996 in Europe. In the years that followed, over 60 molecules have been investigated as a possible treatment for ALS. Despite significant research efforts, the overwhelming majority of human clinical trials (CTs) have failed to demonstrate clinical efficacy. In the past year, oral masitinib and intravenous edaravone have emerged as promising new therapeutics with claimed efficacy in CTs in ALS patients. Given their advanced phase of clinical development one may consider these drugs as the most likely near-term additions to the therapeutic arsenal available for patients with ALS. In terms of patient inclusion, CT with masitinib recruited a wider, more representative, less restrictive patient population in comparison to the only successful edaravone CT (edaravone eligibility criteria represents only 18% of masitinib study patients). The present manuscript reviews >50 CTs conducted in the last 20 years since riluzole was first approved. A special emphasis is put on the analysis of existing evidence in support of the clinical efficacy of edaravone and masitinib and the possible implications of an eventual marketing authorisation in the treatment of ALS.
Collapse
Affiliation(s)
| | | | | | - Olivier Hermine
- AB ScienceParis, France
- Imagine Institute, Necker HospitalParis, France
- INSERM, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, UMR 1163Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité UniversityParis, France
- CNRS, ERL 8254Paris, France
- Laboratory of Excellence GR-ExParis, France
- Equipe Labélisée par la Ligue Nationale Contre le CancerParis, France
- Department of Hematology, Necker HospitalParis, France
| |
Collapse
|
61
|
Schaller S, Buttigieg D, Alory A, Jacquier A, Barad M, Merchant M, Gentien D, de la Grange P, Haase G. Novel combinatorial screening identifies neurotrophic factors for selective classes of motor neurons. Proc Natl Acad Sci U S A 2017; 114:E2486-E2493. [PMID: 28270618 PMCID: PMC5373341 DOI: 10.1073/pnas.1615372114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous neurotrophic factors promote the survival of developing motor neurons but their combinatorial actions remain poorly understood; to address this, we here screened 66 combinations of 12 neurotrophic factors on pure, highly viable, and standardized embryonic mouse motor neurons isolated by a unique FACS technique. We demonstrate potent, strictly additive, survival effects of hepatocyte growth factor (HGF), ciliary neurotrophic factor (CNTF), and Artemin through specific activation of their receptor complexes in distinct subsets of lumbar motor neurons: HGF supports hindlimb motor neurons through c-Met; CNTF supports subsets of axial motor neurons through CNTFRα; and Artemin acts as the first survival factor for parasympathetic preganglionic motor neurons through GFRα3/Syndecan-3 activation. These data show that neurotrophic factors can selectively promote the survival of distinct classes of embryonic motor neurons. Similar studies on postnatal motor neurons may provide a conceptual framework for the combined therapeutic use of neurotrophic factors in degenerative motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy, and spinobulbar muscular atrophy.
Collapse
Affiliation(s)
- Sébastien Schaller
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Dorothée Buttigieg
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Alysson Alory
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Arnaud Jacquier
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Marc Barad
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille University, 13288 Marseille, France
| | | | - David Gentien
- Institut Curie, Translational Research Department, Genomic Platform, PSL Research University, 75248 Paris, France
| | - Pierre de la Grange
- GenoSplice Technology, Institut du Cerveau et de la Moëlle (ICM), Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Georg Haase
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France;
| |
Collapse
|
62
|
Selection and Prioritization of Candidate Drug Targets for Amyotrophic Lateral Sclerosis Through a Meta-Analysis Approach. J Mol Neurosci 2017; 61:563-580. [PMID: 28236105 PMCID: PMC5359376 DOI: 10.1007/s12031-017-0898-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disease. Although several compounds have shown promising results in preclinical studies, their translation into clinical trials has failed. This clinical failure is likely due to the inadequacy of the animal models that do not sufficiently reflect the human disease. Therefore, it is important to optimize drug target selection by identifying those that overlap in human and mouse pathology. We have recently characterized the transcriptional profiles of motor cortex samples from sporadic ALS (SALS) patients and differentiated these into two subgroups based on differentially expressed genes, which encode 70 potential therapeutic targets. To prioritize drug target selection, we investigated their degree of conservation in superoxide dismutase 1 (SOD1) G93A transgenic mice, the most widely used ALS animal model. Interspecies comparison of our human expression data with those of eight different SOD1G93A datasets present in public repositories revealed the presence of commonly deregulated targets and related biological processes. Moreover, deregulated expression of the majority of our candidate targets occurred at the onset of the disease, offering the possibility to use them for an early and more effective diagnosis and therapy. In addition to highlighting the existence of common key drivers in human and mouse pathology, our study represents the basis for a rational preclinical drug development.
Collapse
|
63
|
Tefera TW, Borges K. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments. Front Neurosci 2017; 10:611. [PMID: 28119559 PMCID: PMC5222822 DOI: 10.3389/fnins.2016.00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS.
Collapse
Affiliation(s)
| | - Karin Borges
- Laboratory for Neurological Disorders and Metabolism, School of Biomedical Sciences, Department of Pharmacology, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
64
|
Lee JM, Tan V, Lovejoy D, Braidy N, Rowe DB, Brew BJ, Guillemin GJ. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis. Neuropharmacology 2017; 112:346-364. [DOI: 10.1016/j.neuropharm.2016.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
65
|
Abstract
The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.
Collapse
Affiliation(s)
- Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital and University of Queensland Centre for Clinical Research, Herston, Brisbane, 4006, Australia.
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane & Women's Hospital and University of Queensland Centre for Clinical Research, Herston, Brisbane, 4006, Australia
| |
Collapse
|
66
|
Lu H, Le WD, Xie YY, Wang XP. Current Therapy of Drugs in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2016; 14:314-21. [PMID: 26786249 PMCID: PMC4876587 DOI: 10.2174/1570159x14666160120152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly termed as motor neuron disease (MND) in UK, is a chronically lethal disorder among the neurodegenerative diseases, meanwhile. ALS is basically irreversible and progressive deterioration of upper and lower motor neurons in the motor cortex, brain stem and medulla spinalis. Riluzole, used for the treatment of ALS, was demonstrated to slightly delay the initiation of respiratory dysfunction and extend the median survival of patients by a few months. In this study, the key biochemical defects were discussed, such as: mutant Cu/Zn superoxide dismutase, mitochondrial protectants, and anti-excitotoxic/ anti-oxidative / anti-inflammatory/ anti-apoptotic agents, so the related drug candidates that have been studied in ALS models would possibly be further used in ALS patients.
Collapse
Affiliation(s)
| | | | | | - Xiao-Ping Wang
- Department of Neurology, Shanghai First People's Hospital , Shanghai Jiao-Tong University, China, 200080.
| |
Collapse
|
67
|
Calder AN, Androphy EJ, Hodgetts KJ. Small Molecules in Development for the Treatment of Spinal Muscular Atrophy. J Med Chem 2016; 59:10067-10083. [PMID: 27490705 PMCID: PMC5744254 DOI: 10.1021/acs.jmedchem.6b00670] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease resulting from pathologically low levels of survival motor neuron (SMN) protein. The majority of mRNA from the SMN2 allele undergoes alternative splicing and excludes critical codons, causing an SMN protein deficiency. While there is currently no FDA-approved treatment for SMA, early therapeutic efforts have focused on testing repurposed drugs such as phenylbutyrate (2), valproic acid (3), riluzole (6), hydroxyurea (7), and albuterol (9), none of which has demonstrated clinical effectiveness. More recently, clinical trials have focused on novel small-molecule compounds identified from high-throughput screening and medicinal chemistry optimization such as olesoxime (11), CK-2127107, RG7800, LMI070, and RG3039 (17). In this paper, we review both repurposed drugs and small-molecule compounds discovered following medicinal chemistry optimization for the potential treatment of SMA.
Collapse
Affiliation(s)
- Alyssa N. Calder
- Laboratory for Drug Discovery in Neurodegeneration, Brigham & Women’s Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J. Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Brigham & Women’s Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
68
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
69
|
Lee J. Mitochondrial drug targets in neurodegenerative diseases. Bioorg Med Chem Lett 2016; 26:714-720. [PMID: 26806044 DOI: 10.1016/j.bmcl.2015.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 142-732, Republic of Korea.
| |
Collapse
|
70
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
71
|
Yates E, Rafiq MK. Prognostic factors for survival in patients with amyotrophic lateral sclerosis: analysis of a multi-centre clinical trial. J Clin Neurosci 2016; 32:51-6. [PMID: 27401224 DOI: 10.1016/j.jocn.2015.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 12/13/2022]
Abstract
Information regarding factors influencing prognosis and quality of life (QoL) in patients with amyotrophic lateral sclerosis (ALS) is useful for clinicians and also for patients and their carers. The aims of this study are to identify prognostic factors for survival in ALS and to determine the physical factors influencing QoL. This study is a retrospective analysis of a cohort of 512 patients who participated in a phase II/III clinical trial of olesoxime. Cox multivariate regression analysis found older age, bulbar onset disease, low baseline forced vital capacity, low baseline manual muscle test (MMT) scores and a shorter diagnostic delay to be independently associated with poor survival outcome. Physical factors shown to have the strongest correlation with poor QoL were low weight and a reduced ability to climb stairs. Therapeutic interventions including gastrostomy and non-invasive ventilation had no positive impact on QoL in this cohort. The prognostic factors for survival identified here are consistent with other studies of ALS patients, with the additional identification of baseline MMT score as another predictor of prognosis. Furthermore, the correlation between both weight and poor lower limb function with QoL is novel and underlines the importance of careful nutritional management in this hypercatabolic condition.
Collapse
Affiliation(s)
- Emma Yates
- From the Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), 385A Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK
| | - Muhammad K Rafiq
- From the Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), 385A Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
72
|
Shefner JM, Liu D, Leitner ML, Schoenfeld D, Johns DR, Ferguson T, Cudkowicz M. Quantitative strength testing in ALS clinical trials. Neurology 2016; 87:617-24. [PMID: 27385750 DOI: 10.1212/wnl.0000000000002941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/26/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To study the attributes of quantitative strength testing using hand-held dynamometry (HHD) as an efficacy measure in 2 large phase 3 amyotrophic lateral sclerosis (ALS) trials. METHODS In the phase 3 trials of ceftriaxone and dexpramipexole, 513 and 943 patients, respectively, were enrolled in double-blind, randomized, placebo-controlled trials with planned follow-up of at least 1 year. Patients were studied every 3 months in the ceftriaxone study and every 2 months in the dexpramipexole study. Evaluators of HHD were trained and had to show evidence of adequate performance of strength testing; the testing paradigm involved testing 9 muscle groups in the upper and lower extremity bilaterally. Neither drug significantly affected any outcome measure. Strength measurements were evaluated by individual muscle and by megascores, which averaged scaled strength measures to produce an overall measure of muscle strength. RESULTS A measure combining rate of decline with both within- and between-patient variabilities of measurement, the coefficient of variation for rate of change, was calculated, and showed that HHD overall performed slightly less well than Amyotrophic Lateral Sclerosis Functional Rating Scale-revised (ALSFRS-R) but better than vital capacity. Individual muscles were highly correlated to the identical muscles on the contralateral side, as well as to other muscles in the same body region. Strength decline was correlated both with ALSFRS-R and vital capacity. CONCLUSION Quantitative strength testing using HHD is a reliable and reproducible measure of decline in ALS.
Collapse
Affiliation(s)
- Jeremy M Shefner
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston.
| | - Dawei Liu
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston
| | - Melanie L Leitner
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston
| | - David Schoenfeld
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston
| | - Donald R Johns
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston
| | - Toby Ferguson
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston
| | - Merit Cudkowicz
- From the Department of Neurology (J.M.S.), Barrow Neurological Institute, Phoenix, AZ; Biogen (D.L., M.L.L., D.R.J., T.F.), Cambridge; and Department of Neurology (D.S., M.C.), Massachusetts General Hospital, Boston
| |
Collapse
|
73
|
Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection. Expert Opin Pharmacother 2016; 17:1669-82. [PMID: 27356036 DOI: 10.1080/14656566.2016.1202919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), one in a family of age-related neurodegenerative disorders, is marked by predominantly cryptogenic causes, partially elucidated pathophysiology, and elusive treatments. The challenges of ALS are illustrated by two decades of negative drug trials. AREAS COVERED In this article, we lay out the current understanding of disease genesis and physiology in relation to drug development in ALS, stressing important accomplishments and gaps in knowledge. We briefly consider clinical ALS, the ongoing search for biomarkers, and the latest in trial design, highlighting major recent and ongoing clinical trials; and we discuss, in a concluding section on future directions, the prion-protein hypothesis of neurodegeneration and what steps can be taken to end the drought that has characterized drug discovery in ALS. EXPERT OPINION Age-related neurodegenerative disorders are fast becoming major public health problems for the world's aging populations. Several agents offer promise in the near-term, but drug development is hampered by an interrelated cycle of obstacles surrounding etiological, physiological, and biomarkers discovery. It is time for the type of government-funded, public-supported offensive on neurodegenerative disease that has been effective in other fields.
Collapse
Affiliation(s)
- H Blasco
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - F Patin
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - C R Andres
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - P Corcia
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,d Centre SLA, Service de Neurologie , CHRU Bretonneau , Tours , France
| | - P H Gordon
- e Northern Navajo Medical Center , Neurology Unit , Shiprock , NM , USA
| |
Collapse
|
74
|
Ferraro D, Consonni D, Fini N, Fasano A, Del Giovane C, Mandrioli J. Amyotrophic lateral sclerosis: a comparison of two staging systems in a population-based study. Eur J Neurol 2016; 23:1426-32. [DOI: 10.1111/ene.13053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- D. Ferraro
- Department of Biomedical Metabolic and Neurosciences; Nuovo Ospedale Civile S. Agostino Estense; University of Modena and Reggio Emilia; Modena
| | - D. Consonni
- Epidemiology Unit; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico; Milan
| | - N. Fini
- Department of Biomedical Metabolic and Neurosciences; Nuovo Ospedale Civile S. Agostino Estense; University of Modena and Reggio Emilia; Modena
| | - A. Fasano
- Department of Biomedical Metabolic and Neurosciences; Nuovo Ospedale Civile S. Agostino Estense; University of Modena and Reggio Emilia; Modena
| | - C. Del Giovane
- Department of Diagnostic and Clinical Medicine and Public Health; University of Modena and Reggio Emilia; Modena Italy
| | - J. Mandrioli
- Department of Biomedical Metabolic and Neurosciences; Nuovo Ospedale Civile S. Agostino Estense; University of Modena and Reggio Emilia; Modena
| | | |
Collapse
|
75
|
Weber JJ, Ortiz Rios MM, Riess O, Clemens LE, Nguyen HP. The calpain-suppressing effects of olesoxime in Huntington's disease. Rare Dis 2016; 4:e1153778. [PMID: 27141414 PMCID: PMC4838320 DOI: 10.1080/21675511.2016.1153778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 02/08/2023] Open
Abstract
Olesoxime, a small molecule drug candidate, has recently attracted attention due to its significant beneficial effects in models of several neurodegenerative disorders including Huntington's disease. Olesoxime's neuroprotective effects have been assumed to be conveyed through a direct, positive influence on mitochondrial function. In a long-term treatment study in BACHD rats, the latest rat model of Huntington's disease, olesoxime revealed a positive influence on mitochondrial function and improved specific behavioral and neuropathological phenotypes. Moreover, a novel target of the compound was discovered, as olesoxime was found to suppress the activation of the calpain proteolytic system, a major contributor to the cleavage of the disease-causing mutant huntingtin protein into toxic fragments, and key player in degenerative processes in general. Results from a second model of Huntington's disease, the HdhQ111 knock-in mouse, confirm olesoxime's calpain-suppressing effects and support the therapeutic value of olesoxime for Huntington's disease and other disorders involving calpain overactivation.
Collapse
Affiliation(s)
- Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Midea M Ortiz Rios
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Laura E Clemens
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany; Current institution: QPS Austria, Grambach, Austria
| | - Huu P Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
76
|
Tortelli R, Copetti M, Panza F, Fontana A, Cortese R, Capozzo R, Introna A, D'Errico E, Zoccolella S, Arcuti S, Seripa D, Simone IL, Logroscino G. Time to generalization and prediction of survival in patients with amyotrophic lateral sclerosis: a retrospective observational study. Eur J Neurol 2016; 23:1117-25. [PMID: 27016147 DOI: 10.1111/ene.12994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE A strong association between time to generalization (TTG), considered as the time of spreading of the clinical signs from spinal or bulbar localization to both, and survival was recently identified in patients with amyotrophic lateral sclerosis (ALS). Thus, TTG may be used as an early to intermediate end-point in survival studies. The aim of the present study was to test TTG as a predictor of survival in ALS. METHODS This was an observational retrospective study of ALS patients from a tertiary referral centre over a 5-year follow-up period. RESULTS In 212 ALS patients, TTG was associated with time to death/tracheostomy [R 0.62, 95% confidence interval (CI) 0.53-0.70; P < 0.001]. In a time-to-event analysis, longer TTG resulted in lower risk to reach a composite outcome (death or tracheostomy) both in univariate [hazard ratio (HR) 0.98, 95% CI 0.97-0.99] and multivariate Cox analyses (HR 0.98, 95% CI 0.96-0.99). TTG predicted death/tracheostomy at 4 years (C-statistic 0.58; 95% CI 0.53-0.63) and at 5 years (C-statistic 0.58; 95% CI 0.53-0.62). CONCLUSIONS Based on the present results from a large clinical cohort, TTG may be used as a new early to intermediate end-point to describe the ALS natural history. TTG may be potentially useful as a new primary outcome measure for clinical trials.
Collapse
Affiliation(s)
- R Tortelli
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - M Copetti
- Unit of Biostatistics, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - F Panza
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy.,Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - A Fontana
- Unit of Biostatistics, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - R Cortese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - R Capozzo
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - A Introna
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - E D'Errico
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - S Zoccolella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - S Arcuti
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - D Seripa
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - I L Simone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - G Logroscino
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
77
|
Shefner JM, Wolff AA, Meng L, Bian A, Lee J, Barragan D, Andrews JA. A randomized, placebo-controlled, double-blind phase IIb trial evaluating the safety and efficacy of tirasemtiv in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:426-435. [DOI: 10.3109/21678421.2016.1148169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Lisa Meng
- Cytokinetics, Inc., South San Francisco, California, USA
| | - Amy Bian
- Cytokinetics, Inc., South San Francisco, California, USA
| | - Jacqueline Lee
- Cytokinetics, Inc., South San Francisco, California, USA
| | - Donna Barragan
- Cytokinetics, Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
78
|
Moujalled D, White AR. Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis. CNS Drugs 2016; 30:227-43. [PMID: 26895253 DOI: 10.1007/s40263-016-0317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset, neurodegenerative disease characterized by the degeneration of upper and lower motor neurons. Over recent years, numerous genes ha ve been identified that promote disease pathology, including SOD1, TARDBP, and the expanded hexanucleotide repeat (GGGGCC) within C9ORF72. However, despite these major advances in identifying genes contributing to ALS pathogenesis, there remains only one currently approved therapeutic: the glutamate antagonist, riluzole. Seminal breakthroughs in the pathomechanisms and genetic factors associated with ALS have heavily relied on the use of rodent models that recapitulate the ALS phenotype; however, while many therapeutics have proved to be significant in animal models by prolonging life and rescuing motor deficits, they have failed in human clinical trials. This may be due to fundamental differences between rodent models and human disease, the fact that animal models are based on overexpression of mutated genes, and confounding issues such as difficulties mimicking the dosing schedules and regimens implemented in mouse models to humans. Here, we review the major pathways associated with the pathology of ALS, the rodent models engineered to test efficacy of candidate drugs, the advancements being made in stem cell therapy for ALS, and what strategies may be important to circumvent the lack of successful translational studies in the clinic.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Anthony R White
- Department of Pathology and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
79
|
Chen KS, Sakowski SA, Feldman EL. Intraspinal stem cell transplantation for amyotrophic lateral sclerosis. Ann Neurol 2016; 79:342-53. [PMID: 26696091 DOI: 10.1002/ana.24584] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only US Food and Drug Administration-approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS, because they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. Various stem cell types are being evaluated in preclinical and early clinical applications; here, we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of phase I and IIa clinical trials involving direct intraspinal transplantation in humans.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI
| | - Eva L Feldman
- A. Alfred Taubman Medical Research Institute and Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
80
|
Zhang Y, Song J, Zhang X, Xiao Y. LIGAND-RECEPTOR INTERACTIONS AND DRUG DESIGN. BIOCHEMISTRY INSIGHTS 2015; 8:21-3. [PMID: 26715850 PMCID: PMC4687977 DOI: 10.4137/bci.s37978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanling Zhang
- Assistant Professor, Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, China
| | - Jianrui Song
- PhD Candidate, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaojun Zhang
- Research Associate, University of Southern California, Los Angeles, CA, USA
| | - Yuanyuan Xiao
- Research Scientist, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
81
|
Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses. Stem Cell Res 2015; 15:459-468. [DOI: 10.1016/j.scr.2015.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022] Open
|
82
|
Tramacere I, Dalla Bella E, Chiò A, Mora G, Filippini G, Lauria G. The MITOS system predicts long-term survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2015; 86:1180-5. [PMID: 25886781 DOI: 10.1136/jnnp-2014-310176] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The choice of adequate proxy for long-term survival, the ultimate outcome in randomised clinical trials (RCT) assessing disease-modifying treatments for amyotrophic lateral sclerosis (ALS), is a key issue. The intrinsic limitations of the ALS Functional Rating Scale-Revised (ALSFRS-R), including non-linearity, multidimensionality and floor-effect, have emerged and its usefulness argued. The ALS Milano-Torino staging (ALS-MITOS) system was proposed as a novel tool to measure the progression of ALS and overcome these limitations. This study was performed to validate the ALS-MITOS as a 6-month proxy of survival in 200 ALS patients followed up to 18 months. METHODS Analyses were performed on data from the recombinant human erythropoietin RCT that failed to demonstrate differences between groups for both primary and secondary outcomes. The ALS-MITOS system is composed of four key domains included in the ALSFRS-R scale (walking/self-care, swallowing, communicating and breathing), each with a threshold reflecting the loss of function in the specific ALSFRS-R subscores. Sensitivity, specificity and the area under the curve of the receiver operating characteristic curves of the ALS-MITOS system stages and ALSFRS-R decline at 6 months were calculated and compared with the primary outcome (survival, tracheotomy or >23-hour non-invasive ventilation) at 12 and 18 months Predicted probabilities of the ALS-MITO system at 6 months for any event at 12 and 18 months were computed through logistic regression models. RESULTS Disease progression from baseline to 6 months as defined by the ALS-MITOS system predicted death, tracheotomy or >23-hour non-invasive ventilation at 12 months with 82% sensitivity (95% CI 71% to 93%, n=37/45) and 63% specificity (95% CI 55% to 71%, n=92/146), and at 18 months with 71% sensitivity (95% CI 61% to 82%, n=50/70) and 68% specificity (95% CI 60% to 77%, n=76/111). The analysis of ALS-MITOS and ALSFRS-R progression at 6-month follow-up showed that the best cut-off to predict survival at 12 and 18 months was 1 for the ALS-MITOS (ie, loss of at least one function) and a decline ranging from 6 to 9 points for the ALSFRS-R. CONCLUSIONS The ALS-MITOS system can reliably predict the course of ALS up to 18 months and can be considered a novel and valid outcome measure in RCTs.
Collapse
Affiliation(s)
- Irene Tramacere
- Neuroepidemiology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit, Motor Neuron Diseases Centre, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | - Adriano Chiò
- Department of Neurosciences, ALS Centre, "Rita Levi Montalcini", University of Turin and Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | | | - Graziella Filippini
- Neuroepidemiology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit, Motor Neuron Diseases Centre, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | | |
Collapse
|
83
|
Clemens LE, Weber JJ, Wlodkowski TT, Yu-Taeger L, Michaud M, Calaminus C, Eckert SH, Gaca J, Weiss A, Magg JCD, Jansson EKH, Eckert GP, Pichler BJ, Bordet T, Pruss RM, Riess O, Nguyen HP. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 2015; 138:3632-53. [PMID: 26490331 DOI: 10.1093/brain/awv290] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further investigations on the use of olesoxime as a therapeutic for Huntington's disease.
Collapse
Affiliation(s)
- Laura E Clemens
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Jonasz J Weber
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Tanja T Wlodkowski
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Libo Yu-Taeger
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Magali Michaud
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Carsten Calaminus
- 4 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Schamim H Eckert
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Janett Gaca
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Andreas Weiss
- 6 Novartis Institutes for BioMedical Research, Klybeckstrasse 141, 4057 Basel, Switzerland
| | - Janine C D Magg
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Erik K H Jansson
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Gunter P Eckert
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Bernd J Pichler
- 4 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Thierry Bordet
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Olaf Riess
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Huu P Nguyen
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| |
Collapse
|
84
|
Abstract
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease.
Collapse
|
85
|
Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection. Biochem Soc Trans 2015; 43:559-65. [DOI: 10.1042/bst20150028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/14/2022]
Abstract
The translocator protein (TSPO, 18 kDa), mainly localized in the outer mitochondrial membrane of steroidogenic tissues, is involved in several cellular functions. TSPO level alterations have been reported in a number of human disorders, particularly in cancer, psychiatric and neurological diseases. In the central nervous system (CNS), TSPO is usually expressed in glial cells, but also in some neuronal cell types. Interestingly, the expression of TSPO on glial cells rises after brain injury and increased TSPO expression is often observed in neurological disorders, gliomas, encephalitis and traumatic injury. Since TSPO is up-regulated in brain diseases, several structurally different classes of ligands targeting TSPO have been described as potential diagnostic or therapeutic agents. Recent researches have reported that TSPO ligands might be valuable in the treatment of brain diseases. This review focuses on currently available TSPO ligands, as useful tools for the treatment of neurodegeneration, neuro-inflammation and neurotrauma.
Collapse
|
86
|
Rafiq MK, Lee E, Bradburn M, McDermott CJ, Shaw PJ. Effect of lipid profile on prognosis in the patients with amyotrophic lateral sclerosis: Insights from the olesoxime clinical trial. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:478-84. [DOI: 10.3109/21678421.2015.1062517] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad K. Rafiq
- The Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Ellen Lee
- The Clinical Trials Research Unit, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Michael Bradburn
- The Clinical Trials Research Unit, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Christopher J. McDermott
- The Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J. Shaw
- The Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
87
|
Kremer D, Hartung HP, Stangel M, Küry P. [New therapeutic strategies for remyelination in multiple sclerosis]. DER NERVENARZT 2015; 86:934-46. [PMID: 26122637 DOI: 10.1007/s00115-014-4249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple sclerosis (MS) is characterized by oligodendrocyte death and myelin sheath destruction of the central nervous system (CNS) in response to autoinflammatory processes. Besides demyelination axonal degeneration constitutes the second histopathological hallmark of this disease. A large number of immunomodulatory and targeted immunosuppression treatments have been approved for relapsing remitting (RR) MS where they effectively reduce relapse rates; however, currently no treatment options exist to repair injured axonal tracts or myelin damage that accumulates over time particularly in progressive MS. In light of the growing available therapeutic repertoire of highly potent immunomodulatory medications there is an increasing interest in the development of therapies aimed at neutralizing neurodegenerative damage. Endogenous remyelination processes occur mainly as a result of oligodendrocyte precursor cell (OPC) activation, recruitment and maturation; however, this repair activity appears to be limited and increasingly fails during disease progression. Based on these observations OPCs are considered as promising targets for the regenerative treatment of all stages of MS. This article presents an overview of approved medications with a suggested role in regeneration, regenerative treatments that are currently being tested in clinical trials, as well as promising future therapeutic approaches derived from basic glial cell research aiming at the promotion of the endogenous repair activity of the brain.
Collapse
Affiliation(s)
- D Kremer
- Neurologische Klinik, Medizinische Fakultät, Heinrich-Heine-Universität, Moorenstr. 5, 40225, Düsseldorf , Deutschland
| | | | | | | |
Collapse
|
88
|
van der Kleij LA, Jones AR, Steen IN, Young CA, Shaw PJ, Shaw CE, Leigh PN, Turner MR, Al-Chalabi A. Regionality of disease progression predicts prognosis in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:442-7. [DOI: 10.3109/21678421.2015.1051987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lisa A. van der Kleij
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - I Nick Steen
- Institute of Health and Society, University of Newcastle, UK
| | | | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - P. Nigel Leigh
- Brighton and Sussex Medical School, Trafford Centre for Biomedical Research, Falmer, Brighton, UK
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
89
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
90
|
Abstract
The past year has seen some extraordinary activity in clinical amyotrophic lateral sclerosis (ALS) research. Two trials were completed, with negative results, but the discovery of novel ALS-associated genes, and body fluid and imaging biomarkers warrants cautious optimism. Here, we provide a snapshot of some of the main findings in 2014.
Collapse
Affiliation(s)
- Adriano Chiò
- Rita Levi Montalcini' Department of Neuroscience, University of Torino, via Cherasco 15, 10126 Torino, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
91
|
Kremer D, Küry P, Dutta R. Promoting remyelination in multiple sclerosis: current drugs and future prospects. Mult Scler 2015; 21:541-9. [PMID: 25623245 DOI: 10.1177/1352458514566419] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin destruction due to inflammatory oligodendrocyte cell damage or death in conjunction with axonal degeneration are among the major histopathological hallmarks of multiple sclerosis (MS). The majority of available immunomodulatory medications for MS are approved for relapsing-remitting (RR) MS, for which they reduce relapse rate, MRI measures of inflammation, and the accumulation of disability. These medications are, however, of little benefit during progressive MS where axonal degeneration following demyelination outweighs inflammation. This has sparked great interest in the development of new remyelination therapies aimed at reversing the neurodegenerative damage observed in this disease. Remyelination as a result of oligodendrocyte production from oligodendrocyte precursor cells (OPCs) is considered a promising potential target for the treatment of all stages of MS. In this review we present an overview of a) approved medications (some of them FDA-and EMA-approved for other diseases) with a proposed role in regeneration, b) regenerative treatments under investigation in clinical trials, and c) promising future therapeutic approaches aiming specifically at facilitating endogenous repair.
Collapse
Affiliation(s)
- David Kremer
- Department of Neurology, Medical Faculty, University of Düsseldorf, Germany/Department of Neurosciences, Lerner Research Institute, USA
| | - Patrick Küry
- Department of Neurology, Medical Faculty, University of Düsseldorf, Germany
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, USA
| |
Collapse
|
92
|
Zhu Y, Fotinos A, Mao LL, Atassi N, Zhou EW, Ahmad S, Guan Y, Berry JD, Cudkowicz ME, Wang X. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today 2015; 20:65-75. [DOI: 10.1016/j.drudis.2014.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022]
|
93
|
Martin LJ, Fancelli D, Wong M, Niedzwiecki M, Ballarini M, Plyte S, Chang Q. GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:433. [PMID: 25565966 PMCID: PMC4271619 DOI: 10.3389/fncel.2014.00433] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder in humans characterized by progressive degeneration of skeletal muscle and motor neurons in spinal cord, brainstem, and cerebral cortex causing skeletal muscle paralysis, respiratory insufficiency, and death. There are no cures or effective treatments for ALS. ALS can be inherited, but most cases are not associated with a family history of the disease. Mitochondria have been implicated in the pathogenesis but definitive proof of causal mechanisms is lacking. Identification of new clinically translatable disease mechanism-based molecular targets and small molecule drug candidates are needed for ALS patients. We tested the hypothesis in an animal model that drug modulation of the mitochondrial permeability transition pore (mPTP) is therapeutic in ALS. A prospective randomized placebo-controlled drug trial was done in a transgenic (tg) mouse model of ALS. We explored GNX-4728 as a therapeutic drug. GNX-4728 inhibits mPTP opening as evidenced by increased mitochondrial calcium retention capacity (CRC) both in vitro and in vivo. Chronic systemic treatment of G37R-human mutant superoxide dismutase-1 (hSOD1) tg mice with GNX-4728 resulted in major therapeutic benefits. GNX-4728 slowed disease progression and significantly improved motor function. The survival of ALS mice was increased significantly by GNX-4728 treatment as evidence by a nearly 2-fold extension of lifespan (360 days-750 days). GNX-4728 protected against motor neuron degeneration and mitochondrial degeneration, attenuated spinal cord inflammation, and preserved neuromuscular junction (NMJ) innervation in the diaphragm in ALS mice. This work demonstrates that a mPTP-acting drug has major disease-modifying efficacy in a preclinical mouse model of ALS and establishes mitochondrial calcium retention, and indirectly the mPTP, as targets for ALS drug development.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Pathobiology Graduate Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Mark Niedzwiecki
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | | | - Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
94
|
Gouarné C, Tracz J, Paoli MG, Deluca V, Seimandi M, Tardif G, Xilouri M, Stefanis L, Bordet T, Pruss RM. Protective role of olesoxime against wild-type α-synuclein-induced toxicity in human neuronally differentiated SHSY-5Y cells. Br J Pharmacol 2014; 172:235-45. [PMID: 25220617 DOI: 10.1111/bph.12939] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is usually diagnosed clinically from classical motor symptoms, while definitive diagnosis is made postmortem, based on the presence of Lewy bodies and nigral neuron cell loss. α-Synuclein (ASYN), the main protein component of Lewy bodies, clearly plays a role in the neurodegeneration that characterizes PD. Additionally, mutation in the SNCA gene or copy number variations are associated with some forms of familial PD. Here, the objective of the study was to evaluate whether olesoxime, a promising neuroprotective drug can prevent ASYN-mediated neurotoxicity. EXPERIMENTAL APPROACH We used here a novel, mechanistically approachable and attractive cellular model based on the inducible overexpression of human wild-type ASYN in neuronally differentiated human neuroblastoma (SHSY-5Y) cells. This model demonstrates gradual cellular degeneration, coinciding temporally with the appearance of soluble and membrane-bound ASYN oligomers and cell death combining both apoptotic and non-apoptotic pathways. KEY RESULTS Olesoxime fully protected differentiated SHSY-5Y cells from cell death, neurite retraction and cytoplasmic shrinkage induced by moderate ASYN overexpression. This protection was associated with a reduction in cytochrome c release from mitochondria and caspase-9 activation suggesting that olesoxime prevented ASYN toxicity by preserving mitochondrial integrity and function. In addition, olesoxime displayed neurotrophic effects on neuronally differentiated SHSY-5Y cells, independent of ASYN expression, by promoting their differentiation. CONCLUSIONS AND IMPLICATIONS Because ASYN is a common underlying factor in many cases of PD, olesoxime could be a promising therapy to slow neurodegeneration in PD.
Collapse
Affiliation(s)
- C Gouarné
- Trophos, Parc Scientifique de Luminy, Luminy Biotech Entreprises, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 2014; 13:1127-1138. [DOI: 10.1016/s1474-4422(14)70129-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
96
|
Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, Michaud M, Lemesre V, Patassini S, De La Rosa K, Mulligan CK, Sioshansi PC, Zhu C, Coppola G, Bordet T, Pruss RM, Chesselet MF. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014; 69:263-75. [PMID: 24844147 DOI: 10.1016/j.nbd.2014.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022] Open
Abstract
Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Vera Medvedeva
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Patrick Lee
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Nicholas Bove
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Sheila M Fleming
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Magali Michaud
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Vincent Lemesre
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Stefano Patassini
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Krystal De La Rosa
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Caitlin K Mulligan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Pedrom C Sioshansi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Chunni Zhu
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Giovanni Coppola
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Thierry Bordet
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Marie-Françoise Chesselet
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|