51
|
Sousa AL, Alonso I, Magalhães M. A Portuguese rapid-onset dystonia-parkinsonism case with atypical features. Neurol Sci 2017; 38:1713-1714. [DOI: 10.1007/s10072-017-2996-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022]
|
52
|
Balint B, Valente EM. KMT2B: A new twist in dystonia genetics. Mov Disord 2017; 32:529. [PMID: 28218417 DOI: 10.1002/mds.26957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology Queen Square, London, UK
- Department of Neurology, University Hospital Heidelberg, Germany
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
53
|
Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. J Neural Transm (Vienna) 2017; 124:417-430. [PMID: 28160152 DOI: 10.1007/s00702-016-1656-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal movements and postures. There are many different clinical manifestations and underlying causes. Deep brain stimulation (DBS) provides an effect treatment, but outcomes can vary considerably among the different subtypes of dystonia. Several variables are thought to contribute to this variation including age of onset and duration of dystonia, specific characteristics of the dystonic movements, location of stimulation and stimulator settings, and others. The potential contributions of genetic factors have received little attention. In this review, we summarize evidence that some of the variation in DBS outcomes for dystonia is due to genetic factors. The evidence suggests that more methodical genetic testing may provide useful information in the assessment of potential surgical candidates, and in advancing our understanding of the biological mechanisms that influence DBS outcomes.
Collapse
|
54
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW This review highlights the recent developments in immune-mediated movement disorders and how they reflect on clinical practice and our understanding of the underlying pathophysiological mechanisms. RECENT FINDINGS The antibody spectrum associated with stiff person syndrome and related disorders (SPSD) has broadened and, apart from the classic glutamic acid decarboxylase (GAD)- and amphiphysin-antibodies, includes now also antibodies against dipeptidyl-peptidase-like protein-6 (DPPX), gamma-aminobutyric acid type A receptor (GABAAR), glycine receptor (GlyR) and glycine transporter 2 (GlyT2). The field of movement disorders with neuronal antibodies keeps expanding with the discovery for example of antibodies against leucine rich glioma inactivated protein 1 (LGI1) and contactin associated protein 2 (Caspr2) in chorea, or antibodies targeting ARHGAP26- or Na/K ATPase alpha 3 subunit (ATP1A3) in cerebellar ataxia. Moreover, neuronal antibodies may partly account for movement disorders attributed for example to Sydenham's chorea, coeliac disease, or steroid responsive encephalopathy with thyroid antibodies. Lastly, there is an interface of immunology, genetics and neurodegeneration, e.g. in Aicardi-Goutières syndrome or the tauopathy with IgLON5-antibodies. SUMMARY Clinicians should be aware of new antibodies such as dipeptidyl-peptidase-like protein-6, gamma-aminobutyric acid type A receptor and glycine transporter 2 in stiff person syndrome and related disorders, as well as of the expanding spectrum of immune-mediated movement disorders.
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Essential tremor has not been defined or used consistently in clinical diagnosis and research. Other monosymptomatic disorders are often referred to as essential tremor variants. RECENT FINDINGS There is now solid evidence that essential tremor, however defined, is a syndrome with multiple causes. SUMMARY A new tremor classification scheme is being developed by the International Parkinson and Movement Disorder Society Task Force on Tremor. In this scheme, tremor in the absence of other neurological signs is called isolated tremor, and tremor in combination with other signs is called combined tremor. Many isolated and combined tremor syndromes can be defined on the basis of commonly recurring or unique clinical symptoms and signs, including historical features (age at onset, family history, and temporal evolution) and tremor characteristics (body distribution, activation condition, associated features). Essential tremor, however defined, is simply a syndrome and not a specific disease. Essential tremor should be defined and used consistently, or this term should be abandoned. As essential tremor is an arbitrarily defined syndrome, it makes no sense to refer to other tremors as variants of essential tremor or essential tremor syndromes.
Collapse
|
57
|
Siokas V, Dardiotis E, Tsironi EE, Tsivgoulis G, Rikos D, Sokratous M, Koutsias S, Paterakis K, Deretzi G, Hadjigeorgiou GM. The Role of TOR1A Polymorphisms in Dystonia: A Systematic Review and Meta-Analysis. PLoS One 2017; 12:e0169934. [PMID: 28081261 PMCID: PMC5231385 DOI: 10.1371/journal.pone.0169934] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 01/28/2023] Open
Abstract
Importance A number of genetic loci were found to be associated with dystonia. Quite a few studies have been contacted to examine possible contribution of TOR1A variants to the risk of dystonia, but their results remain conflicting. The aim of the present study was to systematically evaluate the effect of TOR1A gene SNPs on dystonia and its phenotypic subtypes regarding the body distribution. Methods We performed a systematic review of Pubmed database to identify all available studies that reported genotype frequencies of TOR1A SNPs in dystonia. In total 16 studies were included in the quantitative analysis. Odds ratios (ORs) were calculated in each study to estimate the influence of TOR1A SNPs genotypes on the risk of dystonia. The fixed-effects model and the random effects model, in case of high heterogeneity, for recessive and dominant mode of inheritance as well as the free generalized odds ratio (ORG) model were used to calculate both the pooled point estimate in each study and the overall estimates. Results Rs1182 was found to be associated with focal dystonia in recessive mode of inheritance [Odds Ratio, OR (95% confidence interval, C.I.): 1.83 (1.14–2.93), Pz = 0.01]. In addition, rs1801968 was associated with writer’s cramp in both recessive and dominant modes [OR (95%C.I.): 5.99 (2.08–17.21), Pz = 0.00009] and [2.48 (1.36–4.51), Pz = 0.003) respectively and in model free-approach [ORG (95%C.I.): 2.58 (1.45–4.58)]. Conclusions Our meta-analysis revealed a significant implication of rs1182 and rs1801968 TOR1A variants in the development of focal dystonia and writer’s cramp respectively. TOR1A gene variants seem to be implicated in dystonia phenotype.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Evangelia E. Tsironi
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stylianos Koutsias
- Department of Vascular Surgery, University Hospital of Larissa, University of Thessalia Medical School, Larissa, Greece
| | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- * E-mail:
| |
Collapse
|
58
|
Bonifati V. Will New Genetic Techniques Like Exome Sequencing and Others Obviate the Need for Clinical Expertise? Yes. Mov Disord Clin Pract 2017; 4:36-38. [PMID: 30713946 DOI: 10.1002/mdc3.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Vincenzo Bonifati
- Department of Clinical Genetics Erasmus Medical Center Rotterdam the Netherlands
| |
Collapse
|
59
|
Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet 2016; 49:223-237. [PMID: 27992417 DOI: 10.1038/ng.3740] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
Abstract
Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.
Collapse
|
60
|
Rittiner JE, Caffall ZF, Hernández-Martinez R, Sanderson SM, Pearson JL, Tsukayama KK, Liu AY, Xiao C, Tracy S, Shipman MK, Hickey P, Johnson J, Scott B, Stacy M, Saunders-Pullman R, Bressman S, Simonyan K, Sharma N, Ozelius LJ, Cirulli ET, Calakos N. Functional Genomic Analyses of Mendelian and Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for Dystonia. Neuron 2016; 92:1238-1251. [PMID: 27939583 DOI: 10.1016/j.neuron.2016.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023]
Abstract
Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - James L Pearson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Department of RNAi Screening Facility, Duke University, Durham, NC 27708, USA
| | | | - Anna Y Liu
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Changrui Xiao
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Samantha Tracy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | | | - Patrick Hickey
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Julia Johnson
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Burton Scott
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Mark Stacy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth T Cirulli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Nicole Calakos
- Department of Neurology, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
61
|
Affiliation(s)
- A H V Schapira
- Clinical Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
62
|
Duarte GS, Castelão M, Rodrigues FB, Marques RE, Ferreira J, Sampaio C, Moore AP, Costa J. Botulinum toxin type A versus botulinum toxin type B for cervical dystonia. Cochrane Database Syst Rev 2016; 10:CD004314. [PMID: 27782297 PMCID: PMC6461154 DOI: 10.1002/14651858.cd004314.pub3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This is an update of a Cochrane review first published in 2003. Cervical dystonia is the most common form of focal dystonia and is a disabling disorder characterised by painful involuntary head posturing. There are two available formulations of botulinum toxin, with botulinum toxin type A (BtA) usually considered the first line therapy for this condition. Botulinum toxin type B (BtB) is an alternative option, with no compelling theoretical reason why it might not be as- or even more effective - than BtA. OBJECTIVES To compare the efficacy, safety and tolerability of botulinum toxin type A (BtA) versus botulinum toxin type B (BtB) in people with cervical dystonia. SEARCH METHODS To identify studies for this review we searched the Cochrane Movement Disorders Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, reference lists of articles and conference proceedings. All elements of the search, with no language restrictions, were last run in October 2016. SELECTION CRITERIA Double-blind, parallel, randomised, placebo-controlled trials (RCTs) comparing BtA versus BtB in adults with cervical dystonia. DATA COLLECTION AND ANALYSIS Two independent authors assessed records, selected included studies, extracted data using a paper pro forma, and evaluated the risk of bias. We resolved disagreements by consensus or by consulting a third author. We performed meta-analyses using the random-effects model, for the comparison BtA versus BtB to estimate pooled effects and corresponding 95% confidence intervals (95% CI). No prespecified subgroup analyses were carried out. The primary efficacy outcome was improvement on any validated symptomatic rating scale, and the primary safety outcome was the proportion of participants with adverse events. MAIN RESULTS We included three RCTs, all new to this update, of very low to low methodological quality, with a total of 270 participants.Two studies exclusively enrolled participants with a known positive response to BtA treatment. This raises concerns of population enrichment, with a higher probability of benefit from BtA treatment. None of the trials were free of for-profit bias, nor did they provide information regarding registered study protocols. All trials evaluated the effect of a single Bt treatment session, and not repeated treatment sessions, using doses from 100 U to 250 U of BtA (all onabotulinumtoxinA, or Botox, formulations) and 5000 U to 10,000 U of BtB (rimabotulinumtoxinB, or Myobloc/Neurobloc).We found no difference between the two types of botulinum toxin in terms of overall efficacy, with a mean difference of -1.44 (95% CI -3.58 to 0.70) points lower on the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) for BtB-treated participants, measured at two to four weeks after injection. The proportion of participants with adverse events was also not different between BtA and BtB (BtB versus BtA risk ratio (RR) 1.40; 95% CI 1.00 to 1.96). However, when compared to BtA, treatment with BtB was associated with an increased risk of one adverse events of special interest, namely treatment-related sore throat/dry mouth (BtB versus BtA RR of 4.39; 95% CI 2.43 to 7.91). Treatment-related dysphagia (swallowing difficulties) was not different between BtA and BtB (RR 2.89; 95% CI 0.80 to 10.41). The two types of botulinum toxin were otherwise clinically non-distinguishable in all the remaining outcomes. AUTHORS' CONCLUSIONS The previous version of this review did not include any trials, since these were still ongoing at the time. Therefore, with this update we are able to change the conclusions of this review. There is low quality evidence that a single treatment session of BtA (specifically onabotulinumtoxinA) and a single treatment session of BtB (rimabotulinumtoxinB) are equally effective and safe in the treatment of adults with certain types of cervical dystonia. Treatment with BtB appears to present an increased risk of sore throat/dry mouth, compared to BtA. Overall, there is no clinical evidence from these single-treatment trials to support or contest the preferential use of one form of botulinum toxin over the other.
Collapse
Affiliation(s)
- Gonçalo S Duarte
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAvenida Professor Egas MonizLisboaLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Mafalda Castelão
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAvenida Professor Egas MonizLisboaLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Filipe B Rodrigues
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAvenida Professor Egas MonizLisboaLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Raquel E Marques
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAvenida Professor Egas MonizLisboaLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Joaquim Ferreira
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAvenida Professor Egas MonizLisboaLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAv. Prof. Egas MonizLisboaPortugal1649‐028
| | - Cristina Sampaio
- CHDI Foundation155 Village BoulevardSuite 200PrincetonNJUSA08540
| | - Austen P Moore
- The Walton Centre NHS Foundation TrustLower LaneLiverpoolUKL9 7LJ
| | - João Costa
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAvenida Professor Egas MonizLisboaLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAv. Prof. Egas MonizLisboaPortugal1649‐028
| | | |
Collapse
|
63
|
Duarte GS, Rodrigues FB, Prescott D, Ferreira J, Costa J. Deep brain stimulation for dystonia. Hippokratia 2016. [DOI: 10.1002/14651858.cd012405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gonçalo S Duarte
- Faculdade de Medicina de Lisboa; Laboratório de Farmacologia Clínica e Terapêutica; Avenida Professor Egas Moniz Lisboa Lisboa Portugal 1649-028
| | - Filipe B Rodrigues
- Faculdade de Medicina de Lisboa; Laboratório de Farmacologia Clínica e Terapêutica; Avenida Professor Egas Moniz Lisboa Lisboa Portugal 1649-028
| | - David Prescott
- Faculdade de Medicina de Lisboa; Laboratório de Farmacologia Clínica e Terapêutica; Avenida Professor Egas Moniz Lisboa Lisboa Portugal 1649-028
| | - Joaquim Ferreira
- Faculdade de Medicina de Lisboa; Laboratório de Farmacologia Clínica e Terapêutica; Avenida Professor Egas Moniz Lisboa Lisboa Portugal 1649-028
| | - João Costa
- Faculdade de Medicina de Lisboa; Laboratório de Farmacologia Clínica e Terapêutica; Avenida Professor Egas Moniz Lisboa Lisboa Portugal 1649-028
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW This article highlights the clinical and diagnostic tools used to assess and classify dystonia and provides an overview of the treatment approach. RECENT FINDINGS In the past 4 years, the definition and classification of dystonia have been revised, and new genes have been identified in patients with isolated hereditary dystonia (DYT23, DYT24, and DYT25). Expanded phenotypes were reported in patients with combined dystonia, such as those with mutations in ATP1A3. Treatment offerings have expanded as there are more neurotoxins, and deep brain stimulation has been employed successfully in diverse populations of patients with dystonia. SUMMARY Diagnosis of dystonia rests upon a clinical assessment that requires the examiner to understand the characteristic disease features that are elicited through a careful history and physical examination. The revised classification system uses two distinct nonoverlapping axes: clinical features and etiology. A growing understanding exists of both isolated and combined dystonia as new genes are identified and our knowledge of the phenotypic presentation of previously reported genes has expanded. Genetic testing is commercially available for some of these conditions. Treatment options for dystonia include pharmacologic therapy, chemodenervation, and surgical intervention. Deep brain stimulation benefits many patients with various types of dystonia.
Collapse
|
65
|
Marques RE, Duarte GS, Rodrigues FB, Castelão M, Ferreira J, Sampaio C, Moore AP, Costa J. Botulinum toxin type B for cervical dystonia. Cochrane Database Syst Rev 2016; 2016:CD004315. [PMID: 27176573 PMCID: PMC8552447 DOI: 10.1002/14651858.cd004315.pub3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND This is an update of a Cochrane review first published in 2004, and previously updated in 2009 (no change in conclusions). Cervical dystonia is a frequent and disabling disorder characterised by painful involuntary head posturing. Botulinum toxin type A (BtA) is usually considered the first line therapy for this condition, although botulinum toxin type B (BtB) is an alternative option. OBJECTIVES To compare the efficacy, safety and tolerability of botulinum toxin type B (BtB) versus placebo in people with cervical dystonia. SEARCH METHODS We identified studies for inclusion in the review using the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, reference lists of articles and conference proceedings, last run in October 2015. We ran the search from 1977 to 2015. The search was unrestricted by language. SELECTION CRITERIA Double-blind, parallel, randomised, placebo-controlled trials (RCTs) of BtB versus placebo in adults with cervical dystonia. DATA COLLECTION AND ANALYSIS Two independent authors assessed records, selected included studies, extracted data using a paper pro forma and evaluated the risk of bias. We resolved disagreements by consensus or by consulting a third author. We performed one meta-analysis for the comparison BtB versus placebo. We used random-effects models when there was heterogeneity and fixed-effect models when there was no heterogeneity. In addition, we performed pre-specified subgroup analyses according to BtB doses and BtA previous clinical responsiveness. The primary efficacy outcome was overall improvement on any validated symptomatic rating scale. The primary safety outcome was the number of participants with any adverse event. MAIN RESULTS We included four RCTs of moderate overall methodological quality, including 441 participants with cervical dystonia. Three studies excluded participants known to have poorer response to Bt treatment, therefore including an enriched population with a higher probability of benefiting from Bt treatment. None of the trials were independently funded. All RCTs evaluated the effect of a single Bt treatment session using doses between 2500 U and 10,000 U. BtB was associated with an improvement of 14.7% (95% CI 9.8% to 19.5) in the patients' baseline clinical status as assessed by investigators, with reduction of 6.8 points in the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS-total score) at week 4 after injection (95% CI 4.54 to 9.01). Mean difference (MD) in TWSTRS-pain score at week 4 was 2.20 (95% CI 1.25 to 3.15). Overall, both participants and clinicians reported an improvement of subjective clinical status. There were no differences between groups in the withdrawals rate due to adverse events or in the proportion of participants with adverse events. However, BtB-treated patients had a 7.65 (95% CI 2.75 to 21.32) and a 6.78 (95% CI 2.42 to 19.05) increased risk of treatment-related dry mouth and dysphagia, respectively. Statistical heterogeneity between studies was low to moderate for most outcomes. All tested dosages were efficacious against placebo without clear-cut evidence of a dose-response gradient. However, duration of effect (time until return to baseline TWSTRS-total score) and risk of dry mouth and dysphagia were greater in the subgroup of participants treated with higher BtB doses. Subgroup analysis showed a higher improvement with BtB among BtA-non-responsive participants, although there were no differences in the effect size between the BtA-responsive and non-responsive subgroups. AUTHORS' CONCLUSIONS A single BtB-treatment session is associated with a significant and clinically relevant reduction of cervical dystonia impairment including severity, disability and pain, and is well tolerated, when compared with placebo. However, BtB-treated patients are at an increased risk of dry mouth and dysphagia. There are no data from RCTs evaluating the effectiveness and safety of repeated BtB injection cycles. There are no RCT data to allow us to draw definitive conclusions on the optimal treatment intervals and doses, usefulness of guidance techniques for injection, and impact on quality of life.
Collapse
Affiliation(s)
- Raquel E Marques
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAv. Professor Egas MonizLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAvenida Professor Egas MonizLisboaPortugal1649‐028
| | - Gonçalo S Duarte
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAv. Professor Egas MonizLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAvenida Professor Egas MonizLisboaPortugal1649‐028
| | - Filipe B Rodrigues
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAv. Professor Egas MonizLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAvenida Professor Egas MonizLisboaPortugal1649‐028
| | - Mafalda Castelão
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAv. Professor Egas MonizLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAvenida Professor Egas MonizLisboaPortugal1649‐028
| | - Joaquim Ferreira
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAv. Professor Egas MonizLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAvenida Professor Egas MonizLisboaPortugal1649‐028
| | - Cristina Sampaio
- CHDI Foundation155 Village BoulevardSuite 200PrincetonNJUSA08540
| | - A Peter Moore
- The Walton Centre NHS Foundation TrustLower LaneLiverpoolUKL9 7LJ
| | - João Costa
- Faculdade de Medicina de LisboaLaboratório de Farmacologia Clínica e TerapêuticaAv. Professor Egas MonizLisboaPortugal1649‐028
- Instituto de Medicina MolecularClinical Pharmacology UnitAvenida Professor Egas MonizLisboaPortugal1649‐028
| | | |
Collapse
|
66
|
Bhagat SL, Qiu S, Caffall ZF, Wan Y, Pan Y, Rodriguiz RM, Wetsel WC, Badea A, Hochgeschwender U, Calakos N. Mouse model of rare TOR1A variant found in sporadic focal dystonia impairs domains affected in DYT1 dystonia patients and animal models. Neurobiol Dis 2016; 93:137-45. [PMID: 27168150 DOI: 10.1016/j.nbd.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
Abstract
Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.
Collapse
Affiliation(s)
- Srishti L Bhagat
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sunny Qiu
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yehong Wan
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yuanji Pan
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - William C Wetsel
- Duke Institute of Brain Sciences, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Alexandra Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ute Hochgeschwender
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States
| | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Duke Institute of Brain Sciences, United States.
| |
Collapse
|
67
|
Association Analysis of NALCN Polymorphisms rs1338041 and rs61973742 in a Chinese Population with Isolated Cervical Dystonia. PARKINSONS DISEASE 2016; 2016:9281790. [PMID: 27239368 PMCID: PMC4864546 DOI: 10.1155/2016/9281790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 02/05/2023]
Abstract
Background. A genome-wide association study (GWAS) demonstrated a possible association between cervical dystonia (CD) and a sodium leak channel, nonselective (NALCN) gene. However, the association between NALCN and CD was largely unknown in Asian population. The present study was carried out to examine the associations between the two single nucleotide polymorphisms (SNPs) rs1338041 and rs61973742 in the NALCN gene and CD in a Chinese population. Methods. In a cohort of 201 patients with isolated CD, we genotyped the two SNPs rs1338041 and rs61973742 using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). We also included 289 unrelated, age- and sex-matched healthy controls (HCs) from the same region. Result. No significant differences were observed in either the genotype distributions or the minor allele frequencies (MAFs) of the two SNPs between the CD patients and the HCs. There were no significant differences between early-onset and late-onset CD patients, between patients with and without a positive family history of dystonia, or between patients with and without tremor or sensory tricks. Conclusion. Lack of association between the SNPs of NALCN and CD suggests that the SNPs of NALCN do not play a role in CD in a Chinese population.
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW The dystonias are a family of related disorders with many different clinical manifestations and causes. This review summarizes recent developments regarding these disorders, focusing mainly on advances with direct clinical relevance from the past 2 years. RECENT FINDINGS The dystonias are generally defined by their clinical characteristics, rather than by their underlying genetic or neuropathological defects. The many varied clinical manifestations and causes contribute to the fact that they are one of the most poorly recognized of all movement disorders. A series of recent publications has addressed these issues, offering a revised definition and more logical means for classifying the many subtypes. Our understanding of the genetic and neurobiological mechanisms responsible for different types of dystonias also has grown rapidly, creating new opportunities and challenges for diagnosis, and identifying increasing numbers of rare subtypes for which specific treatments are available. SUMMARY Recent advances in describing the clinical phenotypes and determining associated causes have pointed to the need for new strategies for diagnosis, classification, and treatment of the dystonias.
Collapse
Affiliation(s)
- Hyder A Jinnah
- aDepartment of Neurology, Human Genetics & Pediatrics, Emory University, Atlanta, Georgia bDystonia Medical Research Foundation, Chicago, Illinois cNational Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
69
|
Kumar N, Rizek P, Jog M. Neuroferritinopathy: Pathophysiology, Presentation, Differential Diagnoses and Management. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:355. [PMID: 27022507 PMCID: PMC4795517 DOI: 10.7916/d8kk9bhf] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
Background Neuroferritinopathy (NF) is a rare autosomal dominant disease caused by
mutations in the ferritin light chain 1 (FTL1) gene
leading to abnormal excessive iron accumulation in the brain, predominantly in the
basal ganglia. Methods A literature search was performed on Pubmed, for English-language articles,
utilizing the terms iron metabolism, neurodegeneration with brain iron
accumulation, and NF. The relevant articles were reviewed with a focus on the
pathophysiology, clinical presentation, differential diagnoses, and management of
NF. Results There have been nine reported mutations worldwide in the FTL1
gene in 90 patients, the most common mutation being 460InsA. Chorea and dystonia
are the most common presenting symptoms in NF. There are specific features, which
appear to depend upon the genetic mutation. We discuss the occurrence of specific
mutations in various regions along with their associated presenting phenomenology.
We have compared and contrasted the commonly occurring syndromes in the
differential diagnosis of NF to guide the clinician. Discussion NF must be considered in patients presenting clinically as a progressive movement
disorder with variable phenotype and imaging evidence of iron deposition within
the brain, decreased serum ferritin, and negative genetic testing for other more
common movement disorders such as Huntington’s disease. In the absence of a
disease-specific treatment, symptomatic drug therapy for specific movement
disorders may be used, although with variable success.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Philippe Rizek
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
70
|
Miocinovic S, de Hemptinne C, Qasim S, Ostrem JL, Starr PA. Patterns of Cortical Synchronization in Isolated Dystonia Compared With Parkinson Disease. JAMA Neurol 2016; 72:1244-51. [PMID: 26409266 DOI: 10.1001/jamaneurol.2015.2561] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Isolated dystonia and Parkinson disease (PD) are disorders of the basal gangliothalamocortical network. They have largely distinct clinical profiles, but both disorders respond to deep brain stimulation (DBS) in the same subcortical targets using similar stimulation paradigms, suggesting pathophysiologic overlap. We hypothesized that, similar to PD, isolated dystonia is associated with elevated cortical neuronal synchronization. OBJECTIVE To investigate the electrophysiologic characteristics of the sensorimotor cortex arm-related area using a temporary subdural electrode strip in patients with isolated dystonia and PD undergoing DBS implantation in the awake state. DESIGN, SETTING, AND PARTICIPANTS An observational study recruited patients scheduled for DBS at the University of California, San Francisco and the San Francisco Veterans Affairs Medical Center. Data were collected from May 1, 2008, through April 1, 2015. Findings are reported for 22 patients with isolated cervical or segmental dystonia (8 with [DYST-ARM] and 14 without [DYST] arm symptoms) and 14 patients with akinetic rigid PD. Data were analyzed from November 1, 2014, through May 1, 2015. MAIN OUTCOMES AND MEASURES Cortical local field potentials, power spectral density, and phase-amplitude coupling (PAC). RESULTS Among our 3 groups that together included 36 patients, cortical PAC was present in primary motor and premotor arm-related areas for all groups, but the DYST group was less likely to exhibit increased PAC (P = .008). Similar to what has been shown for patients with PD, subthalamic DBS reversibly decreased PAC in a subset of patients with dystonia who were studied before and during intraoperative test stimulation (n = 4). At rest, broadband gamma (50-200 Hz) power in the primary motor cortex was greater in the DYST-ARM and PD groups compared with the DYST group, whereas alpha (8-13 Hz) and beta (13-30 Hz) power was comparable in all 3 groups. During movement, the DYST-ARM group had impaired beta and low gamma desynchronization in the primary motor cortex. CONCLUSIONS AND RELEVANCE Isolated dystonia and PD have physiologic overlap with respect to high levels of motor cortex synchronization and reduction of cortical synchronization by subthalamic DBS, providing an explanation for their similar therapeutic response to basal ganglia stimulation.
Collapse
Affiliation(s)
- Svjetlana Miocinovic
- Movement Disorder and Neuromodulation Center, Department of Neurology, University of California, San Francisco
| | | | - Salman Qasim
- Department of Neurological Surgery, University of California, San Francisco
| | - Jill L Ostrem
- Movement Disorder and Neuromodulation Center, Department of Neurology, University of California, San Francisco
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
71
|
Koht J, Løstegaard SO, Wedding I, Vidailhet M, Louha M, Tallaksen CM. Benign hereditary chorea, not only chorea: a family case presentation. CEREBELLUM & ATAXIAS 2016; 3:3. [PMID: 26839702 PMCID: PMC4736661 DOI: 10.1186/s40673-016-0041-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/08/2016] [Indexed: 02/02/2023]
Abstract
Background Benign hereditary chorea is a rare disorder which is characterized by early onset, non-progressive choreic movement disturbance, with other hyperkinetic movements and unsteadiness also commonly seen. Hypothyroidism and lung disease are frequent additional features. The disorder is caused by mutations of the NKX2-1 gene on chromosome 14. Case presentation A Norwegian four-generation family with eight affected was identified. All family members had an early onset movement disorder, starting before one year of age with motor delay and chorea. Learning difficulties were commonly reported from early school years. The family presented with choreic movements at rest, but other movements were seen; myoclonus, dystonia, ataxia, stuttering and tics-like movements. All patients reported unsteadiness and ataxic gait was observed in two patients. Videos are provided in the supplementary material. Most affected family members had asthma and a subclinical or clinical hypothyroidism. Sequencing revealed a mutation in the NKX2-1 gene in all eight affected family members. Conclusions This is the first Norwegian family with benign hereditary chorea due to a mutation in the NKX2-1 gene, c.671 T > G (p.Leu224Arg). This family demonstrates well the wide phenotype, including dystonia, myoclonus and ataxia. Electronic supplementary material The online version of this article (doi:10.1186/s40673-016-0041-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanette Koht
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | | | - Iselin Wedding
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway ; Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Marie Vidailhet
- Department of Neurology, Salpêtrière Hospital, APHP, Sorbonne Universités, UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Malek Louha
- Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Armand Trousseau- AP-HP, Paris, France
| | - Chantal Me Tallaksen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway ; Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
| |
Collapse
|
72
|
Jochim A, Zech M, Gora-Stahlberg G, Winkelmann J, Haslinger B. The clinical phenotype of early-onset isolated dystonia caused by recessiveCOL6A3mutations (DYT27). Mov Disord 2015; 31:747-50. [DOI: 10.1002/mds.26501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Angela Jochim
- Department of Neurology; Klinikum rechts der Isar Technical University Munich; Munich Germany
| | - Michael Zech
- Department of Neurology; Klinikum rechts der Isar Technical University Munich; Munich Germany
- Institute for Neurogenomics, Helmholtz Zentrum München; Munich Germany
| | - Gina Gora-Stahlberg
- Department of Neurology; Klinikum rechts der Isar Technical University Munich; Munich Germany
| | - Juliane Winkelmann
- Institute for Neurogenomics, Helmholtz Zentrum München; Munich Germany
- Munich Cluster for Systems Neurology, SyNergy; Munich Germany
| | - Bernhard Haslinger
- Department of Neurology; Klinikum rechts der Isar Technical University Munich; Munich Germany
| |
Collapse
|
73
|
Zhou Q, Chen Y, Yang J, Cao B, Wei Q, Ou R, Song W, Zhao B, Wu Y, Shang H. Association analysis of TOR1A polymorphisms rs2296793 and rs3842225 in a Chinese population with cervical dystonia. Neurosci Lett 2015; 612:185-188. [PMID: 26704435 DOI: 10.1016/j.neulet.2015.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND TOR1A (torsinA, DYT1) is the leading cause of early-onset generalized dystonia, however, the associations between common TOR1A single nucleotide polymorphisms (SNPs) and primary adult-onset focal dystonia are controversial. METHODS In a cohort of 201 focal cervical dystonia (CD) patients, we genotyped rs2296793 and rs3842225 SNPs in TOR1A using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. We also included 289 unrelated, age- and sex-matched healthy controls (HCs) from the same region. RESULT No significant differences were found in either the genotype distributions or minor allele frequencies (MAFs) of rs2296793 and rs3842225 between CD patients and HCs. There were no significant differences between early-onset and late-onset CD patients, between patients with and without a positive family history of dystonia, or between patients with and without tremor or sensory tricks. CONCLUSION Our study suggests that the common rs2296793 and rs3842225 SNPs of TOR1A do not play a major role in CD in a Chinese population.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
74
|
Vittal P, Hall DA, Dames S, Mao R, Berry-Kravis E. BCAP31 Mutation Causing a Syndrome of Congenital Dystonia, Facial Dysorphism and Central Hypomyelination Discovered Using Exome Sequencing. Mov Disord Clin Pract 2015; 3:197-199. [PMID: 30713915 DOI: 10.1002/mdc3.12250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- Padmaja Vittal
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| | - Deborah A Hall
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| | - Shale Dames
- ARUP Research and Experimental Institute Salt Lake City Utah USA
| | - Rong Mao
- ARUP Laboratories Salt Lake City Utah USA.,Department of Pathology University of Utah Salt Lake City Utah USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry Rush University Medical Center Chicago Illinois USA
| |
Collapse
|
75
|
Albanese A, Romito LM, Calandrella D. Therapeutic advances in dystonia. Mov Disord 2015; 30:1547-56. [DOI: 10.1002/mds.26384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alberto Albanese
- Istituto Clinico Humanitas; Rozzano Milano Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore; Milano Italy
| | - Luigi M. Romito
- Neurologia I, Istituto Neurologico Carlo Besta; Milano Italy
| | | |
Collapse
|