51
|
Leclair ATA, Drake DAR, Pratt TC, Mandrak NE. Seasonal variation in thermal tolerance of redside dace Clinostomus elongatus. CONSERVATION PHYSIOLOGY 2020; 8:coaa081. [PMID: 32904538 PMCID: PMC7456563 DOI: 10.1093/conphys/coaa081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/25/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Organisms living in environments with oscillating temperatures may rely on plastic traits to sustain thermal tolerance during high temperature periods. Phenotypic plasticity in critical thermal maximum (CTmax) is a powerful thermoregulative strategy that enables organisms to adjust CTmax when ambient temperatures do not match thermal preference. Given that global temperatures are increasing at an unprecedented rate, identifying factors that affect the plastic response in CTmax can help predict how organisms are likely to respond to changes in their thermal landscape. Using an experimental thermal chamber in the field, we investigated the effect of short-term acclimation on the CTmax and thermal safety margin (TSM) of wild-caught redside dace, Clinostomus elongatus, (n = 197) in a northern population in Two Tree River, Ontario. Streamside CTmax trials were used to identify the maximum temperature at which redside dace maintain equilibrium, providing a powerful tool for understanding how thermal stress affects individual performance. CTmax and TSM of redside dace were sensitive to changes in temperature, regardless of season, suggesting that temperature pulses caused by climate change or urban activities can impose negative fitness consequences year round. Interestingly, an individual's recent thermal history was more influential to its thermal tolerance than the current ambient water temperature. While the CTmax of redside dace increased with body size, the effect of body size on TSM remains unclear based on our models. The results provide insight into the thermal performance of redside dace that, to date, has been difficult to assess due to the species' rarity and lack of suitable streamside protocols.
Collapse
Affiliation(s)
- Alexandra T A Leclair
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcox Street, Toronto, Ontario M5S3B2, Canada
| | - D Andrew R Drake
- Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Sciences, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Thomas C Pratt
- Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Sciences, 1219 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcox Street, Toronto, Ontario M5S3B2, Canada
| |
Collapse
|
52
|
Sandoval-Castillo J, Gates K, Brauer CJ, Smith S, Bernatchez L, Beheregaray LB. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc Natl Acad Sci U S A 2020; 117:17112-17121. [PMID: 32647058 PMCID: PMC7382230 DOI: 10.1073/pnas.1921124117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Resilience to environmental stressors due to climate warming is influenced by local adaptations, including plastic responses. The recent literature has focused on genomic signatures of climatic adaptation, but little is known about how plastic capacity may be influenced by biogeographic and evolutionary processes. We investigate phenotypic plasticity as a target of climatic selection, hypothesizing that lineages that evolved in warmer climates will exhibit greater plastic adaptive resilience to upper thermal stress. This was experimentally tested by comparing transcriptomic responses within and among temperate, subtropical, and desert ecotypes of Australian rainbowfish subjected to contemporary and projected summer temperatures. Critical thermal maxima were estimated, and ecological niches delineated using bioclimatic modeling. A comparative phylogenetic expression variance and evolution model was used to assess plastic and evolved changes in gene expression. Although 82% of all expressed genes were found in the three ecotypes, they shared expression patterns in only 5 out of 236 genes that responded to the climate change experiment. A total of 532 genes showed signals of adaptive (i.e., genetic-based) plasticity due to ecotype-specific directional selection, and 23 of those responded to projected summer temperatures. Network analyses demonstrated centrality of these genes in thermal response pathways. The greatest adaptive resilience to upper thermal stress was shown by the subtropical ecotype, followed by the desert and temperate ecotypes. Our findings indicate that vulnerability to climate change will be highly influenced by biogeographic factors, emphasizing the value of integrative assessments of climatic adaptive traits for accurate estimation of population and ecosystem responses.
Collapse
Affiliation(s)
| | - Katie Gates
- Molecular Ecology Lab, Flinders University, Bedford Park, SA 5042, Australia
| | - Chris J Brauer
- Molecular Ecology Lab, Flinders University, Bedford Park, SA 5042, Australia
| | - Steve Smith
- Molecular Ecology Lab, Flinders University, Bedford Park, SA 5042, Australia
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | | |
Collapse
|
53
|
Nyboer EA, Chrétien E, Chapman LJ. Divergence in aerobic scope and thermal tolerance is related to local thermal regime in two populations of introduced Nile perch (Lates niloticus). JOURNAL OF FISH BIOLOGY 2020; 97:231-245. [PMID: 32333608 DOI: 10.1111/jfb.14355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
We tested whether thermal tolerance and aerobic performance differed between two populations of Nile perch (Lates niloticus) originating from the same source population six decades after their introduction into two lakes in the Lake Victoria basin in East Africa. We used short-term acclimation of juvenile fish to a range of temperatures from ambient to +6°C, and performed critical thermal maximum (CTmax ) and respirometry tests to measure upper thermal tolerance, resting and maximum metabolic rates, and aerobic scope (AS). Across acclimation temperatures, Nile perch from the cooler lake (Lake Nabugabo, Uganda) tended to have lower thermal tolerance (i.e., CTmax ) and lower aerobic performance (i.e., AS) than Nile perch from the warmer waters of Lake Victoria (Bugonga region, Uganda). Effects of temperature acclimation were more pronounced in the Lake Victoria population, with the Lake Nabugabo fish showing less thermal plasticity in most metabolic traits. Our results suggest phenotypic divergence in thermal tolerance between these two introduced populations in a direction consistent with an adaptive response to local thermal regimes.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Montreal, Canada
- Department of Biology, Carleton Univeristy, Ottawa, Canada
| | - Emmanuelle Chrétien
- Département de sciences biologiques, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
54
|
Pagliaro MD, Knouft JH. Differential effects of the urban heat island on thermal responses of freshwater fishes from unmanaged and managed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138084. [PMID: 32224401 DOI: 10.1016/j.scitotenv.2020.138084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
A lack of understanding exists regarding how freshwater species will respond to increases in temperature associated with ongoing changes in climate. Non-urban to urban thermal gradients generated by urban heat islands can serve as models to characterize the effects of relatively consistent increases in temperature on freshwater ecosystems over several decades. This study investigates the apparent responses of two freshwater fish species, Campostoma anomalum (Central Stoneroller) and Lepomis macrochirus (Bluegill), to directional changes in temperature over the past century across the non-urban to urban gradient in the Saint Louis, Missouri region in the central United States. Differences in air temperature across this gradient have increased by approximately 3 °C since 1920. Critical thermal maximum (CTMax) assays were conducted on individuals from fish populations across this gradient from either streams (C. anomalum) or ponds (L. macrochirus) to assess whether thermal tolerance is associated with water temperature among sites. According to expectations based on the effect of an urban heat island, maximum water temperature at stream sites was positively correlated with percent urban landcover around the sites. Moreover, CTMax among populations of C. anomalum was positively correlated with maximum water temperature at each site, suggesting that this species has likely responded to increases in temperature over the past several decades. There was no relationship between percent urban landcover and maximum water temperature in the pond systems. There was also no relationship between CTMax and maximum water temperature among L. macrochirus populations. The pond systems and populations of L. macrochirus are highly managed, which may limit local physical and biological responses to increases in air temperature. Results suggest that freshwater habitats in urban environments and the species inhabiting these areas are responding differently to recent increases in air temperature, highlighting the complexity of the physical and biological components of these systems.
Collapse
Affiliation(s)
- Megan D Pagliaro
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Jason H Knouft
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| |
Collapse
|
55
|
Burton T, Lakka HK, Einum S. Acclimation capacity and rate change through life in the zooplankton Daphnia. Proc Biol Sci 2020; 287:20200189. [PMID: 32228409 PMCID: PMC7209067 DOI: 10.1098/rspb.2020.0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
When a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the process of acclimation. While acclimation has been studied for more than half a century, global environmental change has stimulated renewed interest in quantifying variation in the rate and capacity with which this process occurs, particularly among ectothermic organisms. Yet, despite the likely ecological importance of acclimation capacity and rate, how these traits change throughout life among members of the same species is largely unstudied. Here we investigate these relationships by measuring the acute heat tolerance of the clonally reproducing zooplankter Daphnia magna of different size/age and acclimation status. The heat tolerance of individuals completely acclimated to relatively warm (28°C) or cool (17°C) temperatures diverged during development, indicating that older, larger individuals had a greater capacity to increase heat tolerance. However, when cool acclimated individuals were briefly exposed to the warm temperature (i.e. were 'heat-hardened'), it was younger, smaller animals with less capacity to acclimate that were able to do so more rapidly because they obtained or came closer to obtaining complete acclimation of heat tolerance. Our results illustrate that within a species, individuals can differ substantially in how rapidly and by how much they can respond to environmental change. We urge greater investigation of the intraspecific relationship between acclimation and development along with further consideration of the factors that might contribute to these enigmatic patterns of phenotypic variation.
Collapse
Affiliation(s)
- Tim Burton
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Hanna-Kaisa Lakka
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| |
Collapse
|
56
|
Bates A, Morley S. Interpreting empirical estimates of experimentally derived physiological and biological thermal limits in ectotherms. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2018-0276] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole-organism function is underpinned by physiological and biological processes, which respond to temperature over a range of time scales. Given that environmental temperature controls biological rates within ectotherms, different experimental protocols are needed to assess the ability of organisms to withstand extreme weather events versus gradual temperature change. Here we emphasize the importance of time in shaping ecological and evolutionary processes, and as an experimental parameter that is key when interpreting physiology studies reporting thermal limits. We discuss how acute and chronic thermal performance is underpinned by mechanisms operating at different time scales — resistance, acclimation, and adaptation. We offer definitions of common physiological and biological temperature metrics and identify challenges inherent to compiling the wealth of historical temperature limit data now available into meta-analytic frameworks. We use a case study, data across temperate fishes, to highlight that false positives may occur when differences in the thermal tolerances of species are in fact due to experimental protocols. We further illustrate that false negatives can arise if researchers fail to recognize differences in thermal limits of species emerging from macrophysiological approaches that are due to biological mechanisms. We strongly advocate for the careful design, interpretation, and reporting of experimental results to ensure that conclusions arising from data synthesis efforts are grounded in theory.
Collapse
Affiliation(s)
- A.E. Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - S.A. Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB30ET, U.K
| |
Collapse
|
57
|
Turko AJ, Nolan CB, Balshine S, Scott GR, Pitcher TE. Thermal tolerance depends on season, age and body condition in imperilled redside dace Clinostomus elongatus. CONSERVATION PHYSIOLOGY 2020; 8:coaa062. [PMID: 32765883 PMCID: PMC7397480 DOI: 10.1093/conphys/coaa062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 05/19/2023]
Abstract
Urbanization tends to increase water temperatures in streams and rivers and is hypothesized to be contributing to declines of many freshwater fishes. However, factors that influence individual variation in thermal tolerance, and how these may change seasonally, are not well understood. To address this knowledge gap, we studied redside dace Clinostomus elongatus, an imperilled stream fish native to rapidly urbanizing areas of eastern North America. In wild redside dace from rural Ohio, USA, acute upper thermal tolerance (i.e. critical thermal maximum, CTmax) ranged between ~34°C in summer (stream temperature ~22°C) and 27°C in winter (stream temperature ~2°C). Juveniles had higher CTmax than adults in spring and summer, but in winter, CTmax was higher in adults. Thermal safety margins (CTmax - ambient water temperature; ~11°C) were less than the increases in peak water temperature predicted for many redside dace streams due to the combined effects of climate change and urbanization. Furthermore, behavioural agitation occurred 5-6°C below CTmax. Safety margins were larger (>20°C) in autumn and winter. In addition, redside dace were more sensitive (2.5°C lower CTmax) than southern redbelly dace Chrosomus erythrogaster, a non-imperilled sympatric cyprinid. Body condition (Fulton's K) of adult redside dace was positively correlated with CTmax, but in juveniles, this relationship was significant only in one of two summers of experiments. Next, we measured CTmax of captive redside dace fed experimentally manipulated diets. In adults, but not juveniles, CTmax was higher in fish fed a high- vs. low-ration diet, indicating a causal link between nutrition and thermal tolerance. We conclude that redside dace will be challenged by predicted future summer temperatures, especially in urbanized habitats. Thus, habitat restoration that mitigates temperature increases is likely to benefit redside dace. We also suggest habitat restoration that improves food availability may increase thermal tolerance, and thus population resilience.
Collapse
Affiliation(s)
- Andy J Turko
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Drive West, Windsor, ON, N9C 1A2, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Corresponding author: Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Drive West, Windsor, ON, N9C 1A2, Canada.
| | - Colby B Nolan
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Drive West, Windsor, ON, N9C 1A2, Canada
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
58
|
Galego de Oliveira A, Bailly D, Cassemiro FAS, do Couto EV, Bond N, Gilligan D, Rangel TF, Agostinho AA, Kennard MJ. Coupling environment and physiology to predict effects of climate change on the taxonomic and functional diversity of fish assemblages in the Murray-Darling Basin, Australia. PLoS One 2019; 14:e0225128. [PMID: 31774852 PMCID: PMC6880973 DOI: 10.1371/journal.pone.0225128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
This study uses species distribution modeling and physiological and functional traits to predict the impacts of climate change on native freshwater fish in the Murray-Darling Basin, Australia. We modelled future changes in taxonomic and functional diversity in 2050 and 2080 for two scenarios of carbon emissions, identifying areas of great interest for conservation. Climatic-environmental variables were used to model the range of 23 species of native fish under each scenario. The consensus model, followed by the physiological filter of lethal temperature was retained for interpretation. Our study predicts a severe negative impact of climate change on both taxonomic and functional components of ichthyofauna of the Murray-Darling Basin. There was a predicted marked contraction of species ranges under both scenarios. The predictions showed loss of climatically suitable areas, species and functional characters. There was a decrease in areas with high values of functional richness, dispersion and uniqueness. Some traits are predicted to be extirpated, especially in the most pessimistic scenario. The climatic refuges for fish fauna are predicted to be in the southern portion of the basin, in the upper Murray catchment. Incorporating future predictions about the distribution of ichthyofauna in conservation management planning will enhance resilience to climate change.
Collapse
Affiliation(s)
- Anielly Galego de Oliveira
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Ictiologia, Limnologia e Aquicultura (NUPÉLIA), Universidade Estadual de Maringá, Maringá, PR, Brazil
- * E-mail:
| | - Dayani Bailly
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Ictiologia, Limnologia e Aquicultura (NUPÉLIA), Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Fernanda A. S. Cassemiro
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Nick Bond
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria, Australia
| | - Dean Gilligan
- NSW Department of Primary Industries–Fisheries, Batemans Bay Fisheries Office, Batemans Bay, New South Wales, Australia
| | - Thiago F. Rangel
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Angelo Antonio Agostinho
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Ictiologia, Limnologia e Aquicultura (NUPÉLIA), Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mark J. Kennard
- Australian Rivers Institute, Griffith University, Nathan, Brisbane, Queensland, Australia
| |
Collapse
|
59
|
Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat Ecol Evol 2019; 3:1321-1330. [DOI: 10.1038/s41559-019-0970-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 11/09/2022]
|
60
|
Hoffmann AA, Sgrò CM. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: How much environmental control is needed? Integr Zool 2019; 13:355-371. [PMID: 29168624 PMCID: PMC6099205 DOI: 10.1111/1749-4877.12297] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Researchers and practitioners are increasingly using comparative assessments of critical thermal and physiological limits to assess the relative vulnerability of ectothermic species to extreme thermal and aridity conditions occurring under climate change. In most assessments of vulnerability, critical limits are compared across taxa exposed to different environmental and developmental conditions. However, many aspects of vulnerability should ideally be compared when species are exposed to the same environmental conditions, allowing a partitioning of sources of variation such as used in quantitative genetics. This is particularly important when assessing the importance of different types of plasticity to critical limits, using phylogenetic analyses to test for evolutionary constraints, isolating genetic variants that contribute to limits, characterizing evolutionary interactions among traits limiting adaptive responses, and when assessing the role of cross generation effects. However, vulnerability assessments based on critical thermal/physiological limits also need to take place within a context that is relevant to field conditions, which is not easily provided under controlled environmental conditions where behavior, microhabitat, stress exposure rates and other factors will differ from field conditions. There are ways of reconciling these requirements, such as by taking organisms from controlled environments and then testing their performance under field conditions (or vice versa). While comparisons under controlled environments are challenging for many taxa, assessments of critical thermal limits and vulnerability will always be incomplete unless environmental effects within and across generations are considered, and where the ecological relevance of assays measuring critical limits can be established.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
61
|
Perricone V, Collin R. Larvae of Caribbean Echinoids Have Small Warming Tolerances for Chronic Stress in Panama. THE BIOLOGICAL BULLETIN 2019; 236:115-129. [PMID: 30933644 DOI: 10.1086/701666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In species with complex life cycles, early developmental stages are often less thermally tolerant than adults, suggesting that they are key to predicting organismal response to environmental warming. Here we document the optimal and lethal temperatures of larval sea urchins, and we use those to calculate the warming tolerance and the thermal safety margin of early larval stages of seven tropical species. Larvae of Echinometra viridis, Echinometra lucunter, Lytechinus williamsi, Eucidaris tribuloides, Tripneustes ventricosus, Clypeaster rosaceus, and Clypeaster subdepressus were reared at 26, 28, 30, 32, and 34 °C for 6 days. The temperatures at which statistically significant reductions in larval performance are evident are generally the same temperatures at which statistically significant reductions in larval survival were detected, showing that the optimal temperature is very close to the lethal temperature. The two Echinometra species had significantly higher thermal tolerance than the other species, with some surviving culture temperatures of 34 °C and showing minimal impacts on growth and survival at 32 °C. In the other species, larval growth and survival were depressed at and above 30 or 32 °C. Overall, these larvae have lower warming tolerances (1 to 5 °C) and smaller thermal safety margins (-3 to 3 °C) than adults. Survival differences among treatments were evident by the first sampling on day 2, and survival at the highest temperatures increased when embryos were exposed to warming after spending the first 24 hours at ambient temperature. This suggests that the first days of development are more sensitive to thermal stress than are later larval stages.
Collapse
|
62
|
Jarić I, Lennox RJ, Kalinkat G, Cvijanović G, Radinger J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. GLOBAL CHANGE BIOLOGY 2019; 25:448-458. [PMID: 30417977 DOI: 10.1111/gcb.14518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio-temporal distributions and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life-history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life history, and climatic niche, with climate-change-susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate-change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities.
Collapse
Affiliation(s)
- Ivan Jarić
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Robert J Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Gregor Kalinkat
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Gorčin Cvijanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Johannes Radinger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
63
|
Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc Biol Sci 2019. [PMID: 29540521 DOI: 10.1098/rspb.2018.0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Comparative analyses of ectotherm susceptibility to climate change often focus on thermal extremes, yet responses to aridity may be equally important. Here we focus on plasticity in desiccation resistance, a key trait shaping distributions of Drosophila species and other small ectotherms. We examined the extent to which 32 Drosophila species, varying in their distribution, could increase their desiccation resistance via phenotypic plasticity involving hardening, linking these responses to environment, phylogeny and basal resistance. We found no evidence to support the seasonality hypothesis; species with higher hardening plasticity did not occupy environments with higher and more seasonal precipitation. As basal resistance increased, the capacity of species to respond via phenotypic plasticity decreased, suggesting plastic responses involving hardening may be constrained by basal resistance. Trade-offs between basal desiccation resistance and plasticity were not universal across the phylogeny and tended to occur within specific clades. Phylogeny, environment and trade-offs all helped to explain variation in plasticity for desiccation resistance but in complex ways. These findings suggest some species have the ability to counter dry periods through plastic responses, whereas others do not; and this ability will depend to some extent on a species' placement within a phylogeny, along with its basal level of resistance.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
64
|
Shuman JL, Coughlin DJ. Red muscle function and thermal acclimation to cold in rainbow smelt, Osmerus mordax, and rainbow trout, Oncorhynchus mykiss. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:547-556. [PMID: 30101480 DOI: 10.1002/jez.2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/29/2018] [Accepted: 07/07/2018] [Indexed: 02/02/2023]
Abstract
Climate change affects the thermal environment of aquatic organisms. Changes in the thermal environment may affect muscle function in the eurythermal rainbow smelt, Osmerus mordax, and relatively more stenothermal rainbow trout, Oncorhynchus mykiss. Literature suggests that the trout will be more sensitive to changes in environmental temperature, as they experience a more limited range of environmental temperatures. To examine the effects of thermal environment on red muscle function, both the smelt and trout were thermally acclimated to either a warm (12-15°C) or cold (4-5°C) temperature, after which studies of swimming performance and muscle mechanics were performed. The data on swimming performance and maximum muscle shortening velocity in rainbow smelt were previously published. In both species, cold-acclimated (CA) fish swam with a significantly faster maximum aerobic swimming speed than warm-acclimated fish, when tested at a common temperature of 10°C. Similarly, CA smelt and trout had faster red muscle contraction kinetics. However, smelt displayed a greater shift in contractile properties, such as having a significant shift in maximum muscle shortening velocity that was not observed in trout. The smelt red muscle outperformed trout, with twitch and tetanic times of relaxation being significantly faster for CA smelt compared with CA trout, especially when contraction kinetics were tested at 2°C. The smelt shows a greater thermal acclimation response compared with trout, with more robust increases in maximum swimming speed and faster muscle contractile properties. These differences in acclimation response may contribute to understanding how smelt and trout cope with climate change.
Collapse
Affiliation(s)
- Jacie L Shuman
- Department of Biology, Widener University, Chester, Pennsylvania
| | - David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania
| |
Collapse
|
65
|
Ørsted M, Hoffmann AA, Rohde PD, Sørensen P, Kristensen TN. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity (Edinb) 2018; 122:315-325. [PMID: 30050062 DOI: 10.1038/s41437-018-0117-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022] Open
Abstract
Most organisms experience variable and sometimes suboptimal environments in their lifetime. While stressful environmental conditions are normally viewed as a strong selective force, they can also impact directly on the genetic basis of traits such as through environment-dependent gene action. Here, we used the Drosophila melanogaster Genetic Reference Panel to investigate the impact of developmental temperature on variance components and evolutionary potential of cold tolerance. We reared 166 lines at five temperatures and assessed cold tolerance of adult male flies from each line and environment. We show (1) that the expression of genetic variation for cold tolerance is highly dependent on developmental temperature, (2) that the genetic correlation of cold tolerance between environments decreases as developmental temperatures become more distinct, (3) that the correlation between cold tolerance at individual developmental temperatures and plasticity for cold tolerance differs across developmental temperatures, and even switches sign across the thermal developmental gradient, and (4) that evolvability decrease with increasing developmental temperatures. Our results show that the quantitative genetic basis of low temperature tolerance is environment specific. This conclusion is important for the understanding of evolution in variable thermal environments and for designing experiments aimed at pinpointing candidate genes and performing functional analyses of thermal resistance.
Collapse
Affiliation(s)
- Michael Ørsted
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg E, 9220, Denmark. .,Department of Bioscience, Section of Genetics, Ecology and Evolution, Aarhus University, Aarhus C, 8000, Denmark.
| | - Ary Anthony Hoffmann
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg E, 9220, Denmark.,School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Palle Duun Rohde
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, 8830, Denmark
| | - Peter Sørensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, 8830, Denmark
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Aalborg E, 9220, Denmark.,Department of Bioscience, Section of Genetics, Ecology and Evolution, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
66
|
MEESTER LD, STOKS R, BRANS KI. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr Zool 2018; 13:372-391. [PMID: 29168625 PMCID: PMC6221008 DOI: 10.1111/1749-4877.12298] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, food web alterations, changed intensities of host-parasite interactions, and extinctions. An increasing number of studies have documented evolutionary changes in traits such as phenology and thermal tolerance. In this opinion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strongly among taxa and populations. Second, there can be costs associated with genetic adaptation, such as a reduced evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to tradeoffs. Third, the differential capacity of taxa to genetically respond to climate change results in novel interactions because different organism groups respond to a different degree with local compared to regional (dispersal and range shift) responses. These complexities result in additional changes in the selection pressures on populations. We conclude that evolution can provide an initial buffer against climate change for some taxa and populations but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how biota will respond to climate change and will impact which taxa will be the winners or losers at the local, metacommunity and regional scales.
Collapse
Affiliation(s)
- Luc De MEESTER
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| | - Robby STOKS
- Evolutionary Stress Ecology and EcotoxicologyLeuvenBelgium
| | - Kristien I. BRANS
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| |
Collapse
|
67
|
Brandão ML, Colognesi G, Bolognesi MC, Costa-Ferreira RS, Carvalho TB, Gonçalves-de-Freitas E. Water temperature affects aggressive interactions in a Neotropical cichlid fish. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT Changes in water temperature may affect the aggressive behavior of aquatic organisms, such as fish, either by changing some physiological mechanisms or by increasing the probability of encounters between individuals as a result of variation in their swimming activity. In our study, we evaluated the influence of increasing and decreasing temperature on the aggressive behavior of the Neotropical cichlid fish Cichlasoma paranaense. Firstly, we tested the critical thermal maximum (CTMax) tolerated by this species. Then, we tested the effect of decreasing or increasing the water temperature in 6o C (starting at 27° C) on the aggressive interactions of fish under isolation or housed in groups. We found a CTMax value of 39° C for C. paranaense. We also observe that a 6° C decrease in water temperature lowers swimming activity and aggressive interactions in both isolated and group-housed fish, as expected. On the other hand, the increase in temperature had no effect on the fish’s aggressive behavior, neither for isolated nor for grouped fish. We concluded that C. paranaense shows high tolerance to elevated temperatures and, in turn, it does not affect aggressive behavior. Nevertheless, we cannot dismiss possible effects of elevated temperatures on aggressive interactions over longer periods.
Collapse
|