51
|
Mogie G, Shanks K, Nkyimbeng-Takwi EH, Smith E, Davila E, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP. Neuroimmune semaphorin 4A as a drug and drug target for asthma. Int Immunopharmacol 2013; 17:568-75. [PMID: 23994348 DOI: 10.1016/j.intimp.2013.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Neuroimmune semaphorin 4A (Sema4A) has been shown to play an important costimulatory role in T cell activation and regulation of Th1-mediated diseases such as multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), and experimental autoimmune myocarditis (EAM). Sema4A has three functional receptors, Tim-2 expressed on CD4+ T cells, Th2 cells in particular, and Plexin B1 and D1 predominantly expressed on epithelial and endothelial cells, correspondingly. We recently showed that Sema4A has a complex expression pattern in lung tissue in a mouse model of asthma. We and others have shown that corresponding Plexin expression can be found on immune cells as well. Moreover, we demonstrated that Sema4A-deficient mice displayed significantly higher lung local and systemic allergic responses pointing to its critical regulatory role in the disease. To determine the utility of Sema4A as a novel immunotherapeutic, we introduced recombinant Sema4A protein to the allergen-sensitized WT and Sema4A(-/-) mice before allergen challenge. We observed significant reductions in the allergic inflammatory lung response in Sema4A-treated mice as judged by tissue inflammation including eosinophilia and mucus production. Furthermore, we demonstrated that in vivo administration of anti-Tim2 Ab led to a substantial upregulation of allergic inflammation in WT mouse lungs. These data highlight the potential to develop Sema4A as a new therapeutic for allergic airway disease.
Collapse
Affiliation(s)
- G Mogie
- Center for Vascular and Inflammatory Diseases, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). ADVANCES IN PHARMACOLOGY 2013; 66:129-55. [PMID: 23433457 DOI: 10.1016/b978-0-12-404717-4.00004-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Originally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging impacts on both hematopoietic and nonhematopoietic cell lineages, including dendritic cells, basophils, eosinophils, mast cells, CD4⁺, CD8⁺ and natural killer T cells, B cells and epithelial cells. While TSLP's role in the promotion of TH2 responses has been extensively studied in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This chapter will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity and cancer. Importantly, these insights into TSLP's multifaceted roles could potentially allow for novel therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Gras D, Chanez P, Vachier I, Petit A, Bourdin A. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther 2013; 140:290-305. [PMID: 23880290 DOI: 10.1016/j.pharmthera.2013.07.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence of a critical role played by the bronchial epithelium in airway homeostasis is opening new therapeutic avenues. Its unique situation at the interface with the environment suggests that the subtle regulation orchestrated by the epithelium between tolerance and specific immune response might be impaired in asthma. Airway mucus is acting as a physical and a biological fluid between the environment and the epithelium, synergistically moved by the cilia. In asthma, excessive mucus production is a hallmark of airway remodeling. Since many years we tried to therapeutically target mucus hypersecretion, but actually this option is still not achieved. The present review discusses the dynamic processes regulating airway mucus production. Airway inflammation is central in current asthma management. Understanding of how the airway epithelium influences the TH2 paradigm in response to deleterious agents is improving. The multiple receptors expressed by the airway epithelium are the transducers of the biological signals induced by various invasive agents to develop the most adapted response. Airway remodeling is observed in severe chronic airway diseases and may result from ongoing disturbance of signal transduction and epithelial renewal. Chronic airway diseases such as asthma will require assessment of these epithelial abnormalities to identify phenotypic characteristics associated with predicting a clinical benefit for epithelial-directed therapies.
Collapse
Affiliation(s)
- Delphine Gras
- UMR INSERM U1067 CNRS 7333, Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
54
|
Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, Reibman J. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3757-63. [PMID: 23455502 DOI: 10.4049/jimmunol.1201165] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses, and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders, and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We show that DEP and ambient fine PM upregulate TSLP mRNA and human microRNA (hsa-miR)-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α-treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm(2)) downregulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared with resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Jang S, Morris S, Lukacs NW. TSLP promotes induction of Th2 differentiation but is not necessary during established allergen-induced pulmonary disease. PLoS One 2013; 8:e56433. [PMID: 23437132 PMCID: PMC3577905 DOI: 10.1371/journal.pone.0056433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/09/2013] [Indexed: 01/22/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) has been implicated in the development of allergic inflammation by promoting Th2-type responses and has become a potential therapeutic target. Using in vitro T cell differentiation cultures we were able to validate that TSLP played a more critical role in the early development of Th2 immune responses with less significant enhancement of already developed Th2 responses. Adoptive transfer of naive DO11.10 ovalbumin-specific T cells followed by airway exposure to ovalbumin showed an early impairment of Th2 immune response in TSLP−/− mice compared to wild type mice during the development of a Th2 response. In contrast, transfer of already differentiated Th2 cells into TSLP−/− mice did not change lung pathology or Th2 cytokine production upon ovalbumin challenge compared to transfer into wild type mice. An allergen-induced Th2 airway model demonstrated that there was only a difference in gob5 expression (a mucus-associated gene) between wild type and TSLP−/− mice. Furthermore, when allergic animals with established disease were treated with a neutralizing anti-TSLP antibody there was no change in airway hyperreponsiveness (AHR) or Th2 cytokine production compared to the control antibody treated animals, whereas a change in gob5 gene expression was also observed similar to the TSLP−/− mouse studies. In contrast, when animals were treated with anti-TSLP during the initial stages of allergen sensitization there was a significant change in Th2 cytokines during the final allergen challenge. Collectively, these studies suggest that in mice TSLP has an important role during the early development of Th2 immune responses, whereas its role at later stages of allergic disease may not be as critical for maintaining the Th2-driven allergic disease.
Collapse
Affiliation(s)
- Sihyug Jang
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan Morris
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas W. Lukacs
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
56
|
Borowski A, Vetter T, Kuepper M, Wohlmann A, Krause S, Lorenzen T, Virchow JC, Luttmann W, Friedrich K. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain. Cytokine 2012. [PMID: 23199813 DOI: 10.1016/j.cyto.2012.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range.
Collapse
Affiliation(s)
- Andreas Borowski
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine expressed mainly by epithelial cells. Current studies provide compelling evidence that TSLP is capable of activating dendritic cells to promote T helper (Th) 2 immune responses. TSLP has also been shown to directly promote Th2 differentiation of naïve CD4(+) T cell and activate natural killer T cells, basophils and other innate immune cells at the initial stage of inflammation. In addition, TSLP affects B cell maturation and activation and can also influence regulatory T (Treg) cell differentiation and development. TSLP-induced Th2 responses are associated with the pathogenesis of allergic inflammatory diseases, including atopic dermatitis, asthma, and rhinitis. Based on recent findings in humans and mouse models, TSLP might also be involved in the pathogenesis of inflammatory bowel disease and progression of cancer. In this review, we will summarize our current understanding of the biology of TSLP and highlight the important issues for future investigations.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
58
|
Wang WL, Li HY, Zhang MS, Gao PS, He SH, Zheng T, Zhu Z, Zhou LF. Thymic stromal lymphopoietin: a promising therapeutic target for allergic diseases. Int Arch Allergy Immunol 2012; 160:18-26. [PMID: 22948028 DOI: 10.1159/000341665] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP), an interleukin 7-like cytokine, can trigger dendritic cell (DC)-mediated T-helper type 2 (Th2) inflammatory responses. Recent evidence demonstrates that cytokines TSLP and OX40 (CD134)/OX40 ligand seem to be important players in the maintenance of Th2 memory pool in the pathogenesis of asthma. Accumulating data reveal that the pathogenic T cells involved in asthma are likely to be inflammatory Th2 cells. TSLP is involved in the development of asthma through crosstalk with nuclear factor NF-ĸB. Progression of skin fibrosis in atopic dermatitis occurs via TSLP/TSLP receptor. TSLP-mediated dermal inflammation aggravates experimental allergic asthma. Also, TSLP polymorphisms are associated with susceptibility to asthma, atopic dermatitis, and eczema herpeticum. These findings suggest a master switch of TSLP in the initiation of allergic and adaptive inflammation through innate pathways at the epithelial cell-DC interface. The TSLP pathway is therefore a promising target for immunotherapy of allergic diseases.
Collapse
Affiliation(s)
- W L Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Ziegler SF. Thymic stromal lymphopoietin and allergic disease. J Allergy Clin Immunol 2012; 130:845-52. [PMID: 22939755 DOI: 10.1016/j.jaci.2012.07.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 12/19/2022]
Abstract
The importance of the epithelium in initiating and controlling immune responses is becoming more appreciated. For example, allergen contact first occurs at mucosal sites exposed to the external environment, such as the skin, airways, and gastrointestinal tract. This exposure leads to the production of a variety of cytokines and chemokines that are involved in driving allergic inflammatory responses. One such product is thymic stromal lymphopoietin (TSLP). Recent studies in both human subjects and murine models have implicated TSLP in the development and progression of allergic diseases. This review will highlight recent advances in the understanding of the role of TSLP in these inflammatory diseases. Importantly, these insights into TSLP's multifaceted role could potentially allow for novel therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
60
|
Urata Y, Osuga Y, Izumi G, Takamura M, Koga K, Nagai M, Harada M, Hirata T, Hirota Y, Yoshino O, Taketani Y. Interleukin-1β stimulates the secretion of thymic stromal lymphopoietin (TSLP) from endometrioma stromal cells: possible involvement of TSLP in endometriosis. Hum Reprod 2012; 27:3028-35. [DOI: 10.1093/humrep/des291] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
61
|
Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F. Novel identified receptors on mast cells. Front Immunol 2012; 3:238. [PMID: 22876248 PMCID: PMC3410575 DOI: 10.3389/fimmu.2012.00238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022] Open
Abstract
Mast cells (MC) are major participants in the allergic reaction. In addition they possess immunomodulatory roles in the innate and adaptive immune reactions. Their functions are modulated through a number of activating and inhibitory receptors expressed on their surface. This review deals with some of the most recently described receptors, their expression patterns, ligand(s), signal transduction mechanisms, possible cross-talk with other receptors and, last but not least, regulatory functions that the MC can perform based on their receptor expression in health or in disease. Where the receptor role on MC is still not clear, evidences from other hematopoietic cells expressing them is provided as a possible insight for their function on MC. Suggested strategies to modulate these receptors’ activity for the purpose of therapeutic intervention are also discussed.
Collapse
Affiliation(s)
- Helena Migalovich-Sheikhet
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | |
Collapse
|
62
|
Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med 2012; 18:736-49. [PMID: 22561837 DOI: 10.1038/nm.2754] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current therapies for asthma and allergy are relatively safe and effective at controlling symptoms but do not change the chronic course of disease. There is no established method to prevent asthma and allergy, and major unmet needs in this area include the better control of the severe forms of these diseases and the developments of curative therapies. Two major therapeutic strategies for asthma and allergy are currently being developed, and I here discuss the advances and challenges for future therapeutic development in these two areas. The first approach, allergen-specific immunotherapy, aims to induce specific immune tolerance and has a long-term disease-modifying effect. The second approach is the use of biological immune response modifiers to decrease pathological immune responses. Combination strategies using both of these approaches may also provide a route for addressing the unmet clinical needs in allergic diseases.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Switzerland.
| |
Collapse
|
63
|
Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H, Ziegler SF. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol 2012; 91:877-86. [PMID: 22442496 DOI: 10.1189/jlb.1211622] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Originally shown to promote the growth and activation of B cells, TSLP is now known to have wide-ranging impacts on hematopoietic and nonhematopoietic cell lineages, including DCs, basophils, eosinophils, mast cells, CD4(+), CD8(+), and NK T cells, B cells, and epithelial cells. Whereas the role of TSLP in the promotion of TH2 responses has been studied extensively in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This review will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity, and cancer. Importantly, these insights into the multifaceted roles of TSLP could potentially allow for novel, therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Florence Roan
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
64
|
Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol 2012; 143:222-35. [PMID: 22534317 DOI: 10.1016/j.clim.2012.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Asthma is an inflammatory disorder of the airways, characterized by infiltration of mast cells, eosinophils, and Th2-type CD4+ T cells in the airway wall. Airway epithelium constitutes the first line of interaction with our atmospheric environment. The protective barrier function of the airway epithelium is likely impaired in asthma. Furthermore, recent studies suggest critical immunogenic and immunomodulatory functions of airway epithelium. In particular, a triad of cytokines, including IL-25, IL-33 and TSLP, is produced and released by airway epithelial cells in response to various environmental and microbial stimuli or by cellular damage. These cytokines induce and promote Th2-type airway inflammation and cause remodeling and pathological changes in the airway walls, suggesting their pivotal roles in the pathophysiology of asthma. Thus, the airway epithelium can no longer be regarded as a mere structural barrier, but must be considered an active player in the pathogenesis of asthma and other allergic disorders.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
65
|
Kool M, Hammad H, Lambrecht BN. Cellular networks controlling Th2 polarization in allergy and immunity. F1000 BIOLOGY REPORTS 2012; 4:6. [PMID: 22403589 PMCID: PMC3292286 DOI: 10.3410/b4-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction.
Collapse
Affiliation(s)
- Mirjam Kool
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Respiratory Diseases, University HospitalGhentBelgium
- Department of Pulmonary Medicine, Erasmus University Medical CentreRotterdamThe Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Respiratory Diseases, University HospitalGhentBelgium
- Department of Molecular Biomedical Research, Flemish Institute of BiotechnologyVIB, GhentBelgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Respiratory Diseases, University HospitalGhentBelgium
- Department of Pulmonary Medicine, Erasmus University Medical CentreRotterdamThe Netherlands
- Department of Molecular Biomedical Research, Flemish Institute of BiotechnologyVIB, GhentBelgium
| |
Collapse
|
66
|
Oliphant CJ, Barlow JL, McKenzie ANJ. Insights into the initiation of type 2 immune responses. Immunology 2012; 134:378-85. [PMID: 22044021 DOI: 10.1111/j.1365-2567.2011.03499.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 immune responses, characterized by the differentiation of CD4+ T helper type 2 (Th2) cells and the production of the type 2 cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, are associated with parasitic helminth infections and inflammatory conditions such as asthma and allergies. Until recently the initiating factors associated with type 2 responses had been poorly understood. This review addresses the recent advances in identifying the diverse range of antigens/allergens associated with type 2 responses and the function, expression and sources of type-2-initiating cytokines (thymic stromal lymphopoietin, IL-25 and IL-33). We also discuss the latest findings regarding innate lymphoid cells, such as nuocytes, as early sources of type 2 cytokines and their importance in protective immunity to helminth infections. These developments represent major breakthroughs in our understanding of type 2 immunity, and highlight the increased complexity existing between the innate and adaptive arms of these responses. These additional steps in the type 2 immune pathway also offer potential targets for therapeutic intervention.
Collapse
|
67
|
Cho JY. Recent advances in mechanisms and treatments of airway remodeling in asthma: a message from the bench side to the clinic. Korean J Intern Med 2011; 26:367-83. [PMID: 22205837 PMCID: PMC3245385 DOI: 10.3904/kjim.2011.26.4.367] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022] Open
Abstract
Airway remodeling in asthma is a result of persistent inflammation and epithelial damage in response to repetitive injury. Recent studies have identified several important mediators associated with airway remodeling in asthma, including transforming growth factor-β, interleukin (IL)-5, basic fibroblast growth factor, vascular endothelial growth factor, LIGHT, tumor necrosis factor (TNF)-α, thymic stromal lymphopoietin, IL-33, and IL-25. In addition, the epithelium mesenchymal transformation (EMT) induced by environmental factors may play an important role in initiating this process. Diagnostic methods using sputum and blood biomarkers as well as radiological interventions have been developed to distinguish between asthma sub-phenotypes. Human clinical trials have been conducted to evaluate biological therapies that target individual inflammatory cells or mediators including anti IgE, anti IL-5, and anti TNF-α. Furthermore, new drugs such as c-kit/platelet-derived growth factor receptor kinase inhibitors, endothelin-1 receptor antagonists, calcium channel inhibitors, and HMG-CoA reductase inhibitors have been developed to treat asthma-related symptoms. In addition to targeting specific inflammatory cells or mediators, preventing the initiation of EMT may be important for targeted treatment. Interestingly, bronchial thermoplasty reduces smooth muscle mass in patients with severe asthma and improves asthma-specific quality of life, particularly by reducing severe exacerbation and healthcare use. A wide range of different therapeutic approaches has been developed to address the immunological processes of asthma and to treat this complex chronic illness. An important future direction may be to investigate the role of mediators involved in the development of airway remodeling to enhance asthma therapy.
Collapse
Affiliation(s)
- Jae Youn Cho
- Division of Allergy/Immunology, University of California San Diego School of Medicine, La Jolla, CA 92093-0635, USA.
| |
Collapse
|
68
|
Willart M, Hammad H. Lung dendritic cell-epithelial cell crosstalk in Th2 responses to allergens. Curr Opin Immunol 2011; 23:772-7. [PMID: 22074731 DOI: 10.1016/j.coi.2011.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/28/2011] [Indexed: 12/01/2022]
Abstract
Dendritic cells (DC) have been shown to be responsible for the initiation and maintenance of adaptive Th2 responses in asthma. It is increasingly clear that DC functions are strongly influenced by crosstalk with neighboring cells like epithelial cells, which can release a number of innate cytokines promoting Th2 responses. Clinically relevant allergens often interfere directly or indirectly with the innate immune functions of airway epithelial cells and DC. A better understanding of these interactions might lead to a better prevention and ultimately to new treatments for asthma.
Collapse
Affiliation(s)
- Monique Willart
- Laboratory of Immunoregulation and Mucosal Immunology, University of Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | |
Collapse
|
69
|
Snelgrove RJ, Godlee A, Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 2011; 32:328-34. [PMID: 21612981 DOI: 10.1016/j.it.2011.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
The lung is exposed to a myriad of innocuous antigens on a daily basis and must maintain a state of immune ignorance or tolerance to these harmless stimuli to retain pulmonary homeostasis and to prevent potentially fatal immunopathology. Here, we examine how, in the lower airways, resident cell populations contribute to the immune regulatory strategies that restrain inflammation. During influenza infection, these suppressive signals must be overcome to elicit a protective immune response that eliminates the virus. We also discuss how, after resolution of infection, the lung does not return to the original homeostatic state, and how the induced altered state can persist for long periods, which leaves the lung more susceptible to other infectious insults.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, SW7 2AZ, UK
| | | | | |
Collapse
|