51
|
Wang P, Zhang F, He Q, Wang J, Shiu HT, Shu Y, Tsang WP, Liang S, Zhao K, Wan C. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair. PLoS One 2016; 11:e0148372. [PMID: 26841115 PMCID: PMC4739592 DOI: 10.1371/journal.pone.0148372] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/18/2016] [Indexed: 11/23/2022] Open
Abstract
Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes including Mmp2, Mmp9, Mmp13, Adamts4 and Adamts5 was downregulated following Icariin treatment for 14 days. In a differentiation assay using bone marrow mesenchymal stem cells (MSCs) carrying HIF-1α floxed allele, the promotive effect of Icariin on chondrogenic differentiation is largely decreased following Cre recombinase-mediated deletion of HIF-1α in MSCs as indicated by Alcian blue staining for proteoglycan synthesis. In an alginate hydrogel 3D culture system, Icariin increases Safranin O positive (SO+) cartilage area. This phenotype is accompanied by upregulation of HIF-1α, increased proliferating cell nuclear antigen positive (PCNA+) cell numbers, SOX9+ chondrogenic cell numbers, and Col2 expression in the newly formed cartilage. Coincide with the micromass culture, Icariin treatment upregulates mRNA levels of Sox9, Col2α1, aggrecan and Col10α1 in the 3D cultures. We then generated alginate hydrogel 3D complexes incorporated with Icariin. The 3D complexes were transplanted in a mouse osteochondral defect model. ICRS II histological scoring at 6 and 12 weeks post-transplantation shows that 3D complexes incorporated with Icariin significantly enhance articular cartilage repair with higher scores particularly in selected parameters including SO+ cartilage area, subchondral bone and overall assessment than that of the controls. The results suggest that Icariin may inhibit PHD activity likely through competition for cellular iron ions and therefore it may serve as an HIF-1α activator to promote articular cartilage repair through regulating chondrocyte proliferation, differentiation and integration with subchondral bone formation.
Collapse
Affiliation(s)
- Pengzhen Wang
- Ministry of Education Key Laboratory of Regenerative Medicine (Jinan University - The Chinese University of Hong Kong), Guangzhou 510000, China.,School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qiling He
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Jianqi Wang
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hoi Ting Shiu
- Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yinglan Shu
- School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wing Pui Tsang
- School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shuang Liang
- School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai Zhao
- School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chao Wan
- Ministry of Education Key Laboratory of Regenerative Medicine (Jinan University - The Chinese University of Hong Kong), Guangzhou 510000, China.,School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory of Regenerative Medicine (The Chinese University of Hong Kong - Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
52
|
Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. INTERNATIONAL ORTHOPAEDICS 2016; 40:615-24. [PMID: 26762517 DOI: 10.1007/s00264-015-3099-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.
Collapse
|
53
|
Synergistic effects of hypoxia and morphogenetic factors on early chondrogenic commitment of human embryonic stem cells in embryoid body culture. Stem Cell Rev Rep 2016; 11:228-41. [PMID: 25618295 DOI: 10.1007/s12015-015-9584-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Derivation of articular chondrocytes from human stem cells would advance our current understanding of chondrogenesis, and accelerate development of new stem cell therapies for cartilage repair. Chondrogenic differentiation of human embryonic stem cells (hESCs) has been studied using supplemental and cell-secreted morphogenetic factors. The use of bioreactors enabled insights into the effects of physical forces and controlled oxygen tension. In this study, we investigated the interactive effects of controlled variation of oxygen tension and chondrocyte-secreted morphogenetic factors on chondrogenic differentiation of hESCs in the embryoid body format (hESC-EB). Transient hypoxic culture (2 weeks at 5 % O2 followed by 1 week at 21 % O2) of hESC-EBs in medium conditioned with primary chondrocytes up-regulated the expression of SOX9 and suppressed pluripotent markers OCT4 and NANOG. Pellets derived from these cells showed significant up-regulation of chondrogenic genes (SOX9, COL2A1, ACAN) and enhanced production of cartilaginous matrix (collagen type II and proteoglycan) as compared to the pellets from hESC-EBs cultured under normoxic conditions. Gene expression profiles corresponded to those associated with native cartilage development, with early expression of N-cadherin (indicator of cell condensation) and late expression of aggrecan (ACAN, indicator of proteoglycan production). When implanted into highly vascularized subcutaneous area in immunocompromised mice for 4 weeks, pellets remained phenotypically stable and consisted of cartilaginous extracellular matrix (ECM), without evidence of dedifferentiation or teratoma formation. Based on these results, we propose that chondrogenesis in hESC can be synergistically enhanced by a control of oxygen tension and morphogenetic factors secreted by chondrocytes.
Collapse
|
54
|
|
55
|
Polymodal Transient Receptor Potential Vanilloid (TRPV) Ion Channels in Chondrogenic Cells. Int J Mol Sci 2015; 16:18412-38. [PMID: 26262612 PMCID: PMC4581253 DOI: 10.3390/ijms160818412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV) receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.
Collapse
|
56
|
Yoon HJ, Kim SB, Somaiya D, Noh MJ, Choi KB, Lim CL, Lee HY, Lee YJ, Yi Y, Lee KH. Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1. BMC Musculoskelet Disord 2015; 16:141. [PMID: 26059549 PMCID: PMC4460646 DOI: 10.1186/s12891-015-0599-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Background A localized non-surgical delivery of allogeneic human chondrocytes (hChonJ) with irradiated genetically modified chondrocytes (hChonJb#7) expressing transforming growth factor-β1 (TGF-β1) showed efficacy in regenerating cartilage tissue in our pre-clinical studies and human Phase I and II clinical trials. These previous observations led us to investigate the molecular mechanisms of the cartilage regeneration. Methods Genetically modified TGF-β1preprotein was evaluated by monitoring cell proliferation inhibition activity. The effect of modified TGF-β1 on chondrocytes was evaluated based on the type II collagen mRNA levels and the amount of glycosaminoclycan (GAG) formed around chondrocytes, which are indicative markers of redifferentiated chondrocytes. Among the cartilage matrix components produced by hChonJb#7 cells, type II collagen and proteoglycan, in addition to TGF-β1, were also tested to see if they could induce hChonJ redifferentiation. The ability of chondrocytes to attach to artificially induced defects in rabbit cartilage was tested using fluorescent markers. Results Throughout these experiments, the TGF-β1 produced from hChonJb#7 was shown to be equally as active as the recombinant human TGF-β1. Type II collagen and GAG production were induced in hChonJ cells by TGF-β1 secreted from the irradiated hChonJb#7 cells when the cells were co-cultured in micro-masses. Both hChonJ and hChonJb#7 cells could attach efficiently to the defect area in the rabbit cartilage. Conclusions This study suggests that the mixture (TG-C) of allogeneic human chondrocytes (hChonJ) and irradiated genetically modified human chondrocytes expressing TGF-β1 (hChonJb#7) attach to the damaged cartilage area to produce type II collagen-GAG matrices by providing a continuous supply of active TGF-β1.
Collapse
Affiliation(s)
- Hyun Joo Yoon
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Suk Bum Kim
- Department of Rehabilitation and Personal training, Konyang University, 158, Gwanjeodong-ro, Daejeon, Seo-gu, Korea.
| | - Dhara Somaiya
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Moon Jong Noh
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Kyoung-Baek Choi
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Chae-Lyul Lim
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Hyeon-Youl Lee
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Yeon-Ju Lee
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Youngsuk Yi
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Kwan Hee Lee
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| |
Collapse
|
57
|
Antunes JC, Tsaryk R, Gonçalves RM, Pereira CL, Landes C, Brochhausen C, Ghanaati S, Barbosa MA, Kirkpatrick CJ. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Eng Part A 2015; 21:1869-85. [PMID: 25760236 DOI: 10.1089/ten.tea.2014.0386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultured in basal medium (BM), chondrogenic medium (CM), and CM-γ-PGA-supplemented medium (CM+γ-PGA) over a period of 21 days. Pellet size/shape was monitored with time. At 14 and 21 days of culture, the presence of sulfated glycosaminoglycans (sGAGs), type II collagen (Col II), Sox-9, aggrecan, type XI collagen (Col XI), type X collagen (Col X), calcium deposits, and type I collagen (Col I) was analyzed. After excluding γ-PGA's cytotoxicity, earlier cell condensation, higher sGAG content, Col II, Sox-9 (day 14), aggrecan, and Col X (day 14) production was observed in γ-PGA-supplemented MSC cultures, with no signs of mineralization or Col I. These effects were not evident with NCs. However, Sox-9 (at day 14) and Col X (at days 14 and 21) were increased, decreased, or absent, respectively. Overall, γ-PGA improved chondrogenic differentiation of MSCs, increasing ECM production earlier in culture. It is proposed that γ-PGA incorporation in novel biomaterials has a beneficial impact on future approaches for cartilage regeneration.
Collapse
Affiliation(s)
- Joana C Antunes
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,3Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Roman Tsaryk
- 3Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,4Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Raquel M Gonçalves
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Catarina Leite Pereira
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,5ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Constantin Landes
- 6Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, University Medical Center of the Goethe University, Frankfurt am Main, Germany.,7Sana Hospital Offenbach, Offenbach, Germany
| | - Christoph Brochhausen
- 8REPAIR Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shahram Ghanaati
- 6Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, University Medical Center of the Goethe University, Frankfurt am Main, Germany.,7Sana Hospital Offenbach, Offenbach, Germany.,8REPAIR Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mário A Barbosa
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,5ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - C James Kirkpatrick
- 8REPAIR Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
58
|
Guha Thakurta S, Budhiraja G, Subramanian A. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis. J Tissue Eng 2015; 6:2041731414566529. [PMID: 25610590 PMCID: PMC4300305 DOI: 10.1177/2041731414566529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022] Open
Abstract
Ultrasound at 5.0 MHz was noted to be chondro-inductive, with improved SOX-9 gene and COL2A1 protein expression in constructs that allowed for cell-to-cell contact. To achieve tissue-engineered cartilage using macroporous scaffolds, it is hypothesized that a combination of ultrasound at 5.0 MHz and transforming growth factor-β3 induces human mesenchymal stem cell differentiation to chondrocytes. Expression of miR-145 was used as a metric to qualitatively assess the efficacy of human mesenchymal stem cell conversion. Our results suggest that in group 1 (no transforming growth factor-β3, no ultrasound), as anticipated, human mesenchymal stem cells were not efficiently differentiated into chondrocytes, judging by the lack of decrease in the level of miR-145 expression. Human mesenchymal stem cells differentiated into chondrocytes in group 2 (transforming growth factor-β3, no ultrasound) and group 3 (transforming growth factor-β3, ultrasound) with group 3 having a 2-fold lower miR-145 when compared to group 2 at day 7, indicating a higher conversion to chondrocytes. Transforming growth factor-β3-induced chondrogenesis with and without ultrasound stimulation for 14 days in the ultrasound-assisted bioreactor was compared and followed by additional culture in the absence of growth factors. The combination of growth factor and ultrasound stimulation (group 3) resulted in enhanced COL2A1, SOX-9, and ACAN protein expression when compared to growth factor alone (group 2). No COL10A1 protein expression was noted. Enhanced cell proliferation and glycosaminoglycan deposition was noted with the combination of growth factor and ultrasound stimulation. These results suggest that ultrasound at 5.0 MHz could be used to induce chondrogenic differentiation of mesenchymal stem cells for cartilage tissue engineering.
Collapse
Affiliation(s)
| | - Gaurav Budhiraja
- Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anuradha Subramanian
- Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
59
|
Nooeaid P, Schulze-Tanzil G, Boccaccini AR. Stratified Scaffolds for Osteochondral Tissue Engineering. Methods Mol Biol 2015; 1340:191-200. [PMID: 26445840 DOI: 10.1007/978-1-4939-2938-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stratified scaffolds are promising devices finding application in the field of osteochondral tissue engineering. In this scaffold type, different biomaterials are chosen to fulfill specific features required to mimic the complex osteochondral tissue interface, including cartilage, interlayer tissue, and subchondral bone. Here, the biomaterials and fabrication methods currently used to manufacture stratified multilayered scaffolds as well as cell seeding techniques for their characterization are presented.
Collapse
Affiliation(s)
- Patcharakamon Nooeaid
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91052, Erlangen, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Nuremberg, Germany
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin, Campus Benjamin Franklin, Garystrasse 5, 90419, Berlin, Nuremberg, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91052, Erlangen, Germany.
| |
Collapse
|
60
|
Wolfstadt JI, Cole BJ, Ogilvie-Harris DJ, Viswanathan S, Chahal J. Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports Health 2015; 7:38-44. [PMID: 25553211 PMCID: PMC4272690 DOI: 10.1177/1941738114529727] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Context: The number of adults with osteoarthritis in the United States is expected to nearly double from 21.4 million in 2005 to 41.1 million by 2030. As a result, medical costs and associated comorbidity will exponentially increase in the coming decades. In the past decade, mesenchymal stem cells (MSCs) have emerged as a novel treatment for degenerative joint disease. Evidence Acquisition: PubMed (from 1990 to 2013) was searched to identify relevant studies. Reference lists of included studies were also reviewed. Study Design: Clinical review. Level of Evidence: Level 3. Results: We identified 9 animal and 7 human studies investigating the use of MSCs in the treatment of osteoarthritis, with varying levels of support for this therapy. Conclusion: While MSCs have shown potential for improving function and decreasing inflammation in animal studies, translation to patients is still in question. There is a great deal of heterogeneity in treatment methods. Standardizing the manufacturing and characterization of MSCs will allow for better comparisons.
Collapse
Affiliation(s)
- Jesse I Wolfstadt
- University Health Network Arthritis Program, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Cole
- Rush University Medical Centre, Chicago, Illinois
| | - Darrell J Ogilvie-Harris
- University Health Network Arthritis Program, University of Toronto, Toronto, Ontario, Canada ; University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Sowmya Viswanathan
- Cell Therapy Program, University Health Network, Toronto, Ontario, Canada
| | - Jaskarndip Chahal
- University Health Network Arthritis Program, University of Toronto, Toronto, Ontario, Canada ; University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Lach M, Trzeciak T, Richter M, Pawlicz J, Suchorska WM. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment. J Tissue Eng 2014; 5:2041731414552701. [PMID: 25383175 PMCID: PMC4221915 DOI: 10.1177/2041731414552701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022] Open
Abstract
In recent years, increases in the number of articular cartilage injuries caused by environmental factors or pathological conditions have led to a notable rise in the incidence of premature osteoarthritis. Osteoarthritis, considered a disease of civilization, is the leading cause of disability. At present, standard methods for treating damaged articular cartilage, including autologous chondrocyte implantation or microfracture, are short-term solutions with important side effects. Emerging treatments include the use of induced pluripotent stem cells, a technique that could provide a new tool for treatment of joint damage. However, research in this area is still early, and no optimal protocol for transforming induced pluripotent stem cells into chondrocytes has yet been established. Developments in our understanding of cartilage developmental biology, together with the use of modern technologies in the field of tissue engineering, provide an opportunity to create a complete functional model of articular cartilage.
Collapse
Affiliation(s)
- Michał Lach
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jarosław Pawlicz
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
62
|
Candela ME, Yasuhara R, Iwamoto M, Enomoto-Iwamoto M. Resident mesenchymal progenitors of articular cartilage. Matrix Biol 2014; 39:44-9. [PMID: 25179676 DOI: 10.1016/j.matbio.2014.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage.
Collapse
Affiliation(s)
- Maria Elena Candela
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rika Yasuhara
- Division of Pathology, Department of Diagnostic Science, School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; McKay Orthopaedic Research Laboratory, Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; McKay Orthopaedic Research Laboratory, Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
63
|
Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 2014; 32:795-803. [PMID: 25093887 PMCID: PMC4422171 DOI: 10.1038/nbt.2978] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell-extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell-niche interactions.
Collapse
Affiliation(s)
- Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - David A Williams
- 1] Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
64
|
Cuervo B, Rubio M, Sopena J, Dominguez JM, Vilar J, Morales M, Cugat R, Carrillo JM. Hip osteoarthritis in dogs: a randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors. Int J Mol Sci 2014; 15:13437-60. [PMID: 25089877 PMCID: PMC4159804 DOI: 10.3390/ijms150813437] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs) versus plasma rich in growth factors (PRGF) as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA). Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM), owner’s and veterinary investigator visual analogue scale (VAS), and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months.
Collapse
Affiliation(s)
- Belen Cuervo
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| | - Monica Rubio
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| | - Joaquin Sopena
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| | - Juan Manuel Dominguez
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain.
| | - Jose Vilar
- Department of Animal Medicine and Surgery, University of Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain.
| | - Manuel Morales
- Department of Animal Medicine and Surgery, University of Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain.
| | - Ramón Cugat
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Jose Maria Carrillo
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| |
Collapse
|
65
|
Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, Cugat R, Sopena J, Carrillo JM. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res 2014; 10:143. [PMID: 24984756 PMCID: PMC4085658 DOI: 10.1186/1746-6148-10-143] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/19/2014] [Indexed: 12/23/2022] Open
Abstract
Background Regenerative medicine using Mesenchymal Stem Cells (MSC) alone or combined with Plasma Rich in Growth Factors (PRGF) is a rapidly growing area of clinical research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify and quantify the efficacy of different therapeutic strategies for the treatment of OA in dogs including MSC associated to PRGF, but never with AD-MSC alone. The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA. Results Ten lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved within the first three months post-treatment in the OA group, increasing 9% and 2.5% body weight, respectively, at day 30. After this, the effect seems to decrease reaching initial values. Conclusion Intraarticular ADMSC therapy objectively improved limb function in dogs with hip OA. The duration of maximal effect was less than 3 months.
Collapse
Affiliation(s)
- Jose M Vilar
- Department of Animal Pathology, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Trasmontaña S/N, Arucas, 35413 Las Palmas, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Jenner F, IJpma A, Cleary M, Heijsman D, Narcisi R, van der Spek PJ, Kremer A, van Weeren R, Brama P, van Osch GJVM. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev 2014; 23:1883-98. [PMID: 24738827 DOI: 10.1089/scd.2013.0235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nascent embryonic joints, interzones, contain a distinct cohort of progenitor cells responsible for the formation of the majority of articular tissues. However, to date the interzone has largely been studied using in situ analysis for candidate genes in the context of the embryo rather than using an unbiased genome-wide expression analysis on isolated interzone cells, leaving significant controversy regarding the exact role of the intermediate and outer interzone layers in joint formation. Therefore, in this study, using laser capture microdissection (three biological replicates), we selectively harvested the intermediate and outer interzones of mouse embryos at gestational age 15.5 days, just prior to cavitation, when the differences between the layers should be most profound. Microarray analysis (Agilent Whole Mouse Genome Oligo Microarrays) was performed and the differential gene expression between the intermediate interzone cells and outer interzone cells was examined by performing a two-sided paired Student's t-test and pathway analysis. One hundred ninety-seven genes were differentially expressed (≥ 2-fold) between the intermediate interzone and the outer interzone with a P-value ≤ 0.01. Of these, 91 genes showed higher expression levels in the intermediate interzone and 106 were expressed higher in the outer interzone. Pathway analysis of differentially expressed genes suggests an important role for inflammatory processes in the interzone layers, especially in the intermediate interzone, and hence in joint and articular cartilage development. The high representation of genes relevant to chondrocyte hypertrophy and endochondral ossification in the outer interzone suggests that it undergoes endochondral ossification.
Collapse
Affiliation(s)
- Florien Jenner
- 1 Equine University Hospital, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna , Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Nanduri V, Tattikota SM, T AR, Sriramagiri VRR, Kantipudi S, Pande G. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes. Orthop J Sports Med 2014; 2:2325967114539122. [PMID: 26535340 PMCID: PMC4555603 DOI: 10.1177/2325967114539122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). Purpose: To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Study Design: Descriptive laboratory study. Methods: Two-dimensional cultures of human AC–derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm–thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Results: Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. Conclusion: This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage tissue with properties similar to the deep layer of HC in vitro. Clinical Relevance: The HC tissue obtained by the method described can be used to develop an implantable product for the replacement of damaged or malformed AC, especially in younger patients where the lesions are caused by trauma or mechanical stress.
Collapse
Affiliation(s)
- Vibudha Nanduri
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Surendra Mohan Tattikota
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India. ; Center for Thrombosis & Hemostasis, Universitaetsmedizin Mainz, Mainz, Germany
| | - Avinash Raj T
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Suma Kantipudi
- Sridevi Maternity & Nursing Home, Warasiguda, Hyderabad, India
| | - Gopal Pande
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
68
|
Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:596-608. [PMID: 24749845 DOI: 10.1089/ten.teb.2013.0771] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio
| | | | | | | |
Collapse
|
69
|
El-Sayed FG, Camden JM, Woods LT, Khalafalla MG, Petris MJ, Erb L, Weisman GA. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells. Am J Physiol Cell Physiol 2014; 307:C83-96. [PMID: 24760984 DOI: 10.1152/ajpcell.00380.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.
Collapse
Affiliation(s)
- Farid G El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Mahmoud G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri; and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
70
|
Iwamoto M, Ohta Y, Larmour C, Enomoto-Iwamoto M. Toward regeneration of articular cartilage. ACTA ACUST UNITED AC 2014; 99:192-202. [PMID: 24078496 DOI: 10.1002/bdrc.21042] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site.
Collapse
Affiliation(s)
- Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perleman School of Medicine, University of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
71
|
Arendt EA, Miller LE, Block JE. Early knee osteoarthritis management should first address mechanical joint overload. Orthop Rev (Pavia) 2014; 6:5188. [PMID: 24744839 PMCID: PMC3980155 DOI: 10.4081/or.2014.5188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/30/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Early knee osteoarthritis poses a therapeutic dilemma to the musculoskeletal clinician. Despite the recent interest in arthroscopic and injectable regenerative therapies intended to repair or restore a focal target such as cartilage, meniscus, or subchondral bone, none have been shown to slow disease progression. A likely cause of these disappointing treatment outcomes is the failure to address chronic and excessive loading of the knee joint. A growing body of evidence suggests that first-line therapies for early knee osteoarthritis should emphasize unloading the knee joint since any potential therapeutic benefit of regenerative therapies will likely be attenuated by excessive mechanical demand at the knee joint. Minimally invasive medical devices such as patient-specific interpositional implants and extracapsular joint unloading implants are currently in development to address this clinical need.
Collapse
Affiliation(s)
- Elizabeth A Arendt
- Department of Orthopedic Surgery, University of Minnesota , Minneapolis, MN, USA
| | - Larry E Miller
- Miller Scientific Consulting Inc., Asheville, NC, USA ; The Jon Block Group, San Francisco, CA, USA
| | | |
Collapse
|
72
|
Wang ZH, Li XL, He XJ, Wu BJ, Xu M, Chang HM, Zhang XH, Xing Z, Jing XH, Kong DM, Kou XH, Yang YY. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. ACTA ACUST UNITED AC 2014; 47:279-86. [PMID: 24652327 PMCID: PMC4075291 DOI: 10.1590/1414-431x20133539] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific
transcription factor that plays essential roles in chondrocyte differentiation and
cartilage formation. The aim of this study was to investigate the feasibility of
genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical
cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from
human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were
untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The
cells were assessed for morphology and chondrogenic differentiation. The isolated
cells with a fibroblast-like morphology in monolayer culture were positive for the
MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers
CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9
overexpression induced accumulation of sulfated proteoglycans, without altering the
cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9
markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs
compared with empty vector-transfected counterparts. Reverse transcription-polymerase
chain reaction analysis further confirmed the elevation of aggrecan and type II
collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9
overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential
implications in cartilage tissue engineering.
Collapse
Affiliation(s)
- Z H Wang
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X L Li
- Department of Dermatology, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X J He
- Department of Orthopedics, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - B J Wu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - M Xu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - H M Chang
- Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - X H Zhang
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Z Xing
- Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - X H Jing
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - D M Kong
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X H Kou
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Y Y Yang
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
73
|
Weegman BP, Nash P, Carlson AL, Voltzke KJ, Geng Z, Jahani M, Becker BB, Papas KK, Firpo MT. Nutrient regulation by continuous feeding removes limitations on cell yield in the large-scale expansion of Mammalian cell spheroids. PLoS One 2013; 8:e76611. [PMID: 24204645 PMCID: PMC3799778 DOI: 10.1371/journal.pone.0076611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/25/2013] [Indexed: 02/06/2023] Open
Abstract
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications.
Collapse
Affiliation(s)
- Bradley P. Weegman
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter Nash
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexandra L. Carlson
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristin J. Voltzke
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zhaohui Geng
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marjan Jahani
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin B. Becker
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Klearchos K. Papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, Arizona, United States of America
| | - Meri T. Firpo
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
74
|
Abstract
The treatment of osteochondral lesions and osteoarthritis
remains an ongoing clinical challenge in orthopaedics. This review
examines the current research in the fields of cartilage regeneration,
osteochondral defect treatment, and biological joint resurfacing, and
reports on the results of clinical and pre-clinical studies. We
also report on novel treatment strategies and discuss their potential
promise or pitfalls. Current focus involves the use of a scaffold
providing mechanical support with the addition of chondrocytes or mesenchymal
stem cells (MSCs), or the use of cell homing to differentiate the
organism’s own endogenous cell sources into cartilage. This method
is usually performed with scaffolds that have been coated with a
chemotactic agent or with structures that support the sustained
release of growth factors or other chondroinductive agents. We also
discuss unique methods and designs for cell homing and scaffold
production, and improvements in biological joint resurfacing. There
have been a number of exciting new studies and techniques developed
that aim to repair or restore osteochondral lesions and to treat
larger defects or the entire articular surface. The concept of a
biological total joint replacement appears to have much potential. Cite this article: Bone Joint Res 2013;2:193–9.
Collapse
Affiliation(s)
- K R Myers
- North Shore University Hospital/Long IslandJewish Medical Center, 260-05 76th Ave, New HydePark, New York 11040, USA
| | | | | |
Collapse
|
75
|
Vilar JM, Morales M, Santana A, Spinella G, Rubio M, Cuervo B, Cugat R, Carrillo JM. Controlled, blinded force platform analysis of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs. BMC Vet Res 2013; 9:131. [PMID: 23819757 PMCID: PMC3716942 DOI: 10.1186/1746-6148-9-131] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/24/2013] [Indexed: 12/26/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cell (ADMSC) therapy in regenerative medicine is a rapidly growing area of research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify the efficacy of different therapeutic strategies for the treatment of OA in dogs, but never with AD-MSC. The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA. Results Eight lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved after treatment of the OA groups, reaching 53.02% and 14.84% of body weight, respectively, at day 180, compared with only 43.56% and 12.16% at day 0. Conclusion This study objectively demonstrated that intraarticular ADMSC therapy resulted in reduced lameness due to OA.
Collapse
Affiliation(s)
- Jose M Vilar
- Department of Animal Pathology, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Trasmontaña S/N, Arucas 35413 Las Palmas, Spain.
| | | | | | | | | | | | | | | |
Collapse
|