51
|
Abubakar S, Tan ST, Liew JYC, Talib ZA, Sivasubramanian R, Vaithilingam CA, Indira SS, Oh WC, Siburian R, Sagadevan S, Paiman S. Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1025. [PMID: 36985919 PMCID: PMC10056750 DOI: 10.3390/nano13061025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe. However, this work focuses on intensive studies that have been reported on the synthesis of ZnO nanostructures with controlled morphologies and their subsequent influence on piezoelectric nanogenerators. It is important to note that the diatomic nature of zinc oxide as a potential solid semiconductor and its electromechanical influence are the two main phenomena that drive the mechanism of any piezoelectric device. The results of our findings confirm that the performance of piezoelectric devices can be significantly improved by controlling the morphology and initial growth conditions of ZnO nanorods, particularly in terms of the magnitude of the piezoelectric coefficient factor (d33). Moreover, from this review, a proposed facile synthesis of ZnO nanorods, suitably produced to improve coupling and switchable polarization in piezoelectric devices, has been reported.
Collapse
Affiliation(s)
- Shamsu Abubakar
- Department of Physics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Physics, Yobe State University, Damaturu P.M.B. 1144, Yobe State, Nigeria
| | - Sin Tee Tan
- Department of Physics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Zainal Abidin Talib
- Department of Physics, College of Natural Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Ramsundar Sivasubramanian
- Faculty of Innovation and Technology, Taylor’s University Malaysia, No. 1, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia
| | | | - Sridhar Sripadmanabhan Indira
- Faculty of Innovation and Technology, Taylor’s University Malaysia, No. 1, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si 356-706, Chungnam, Republic of Korea
| | - Rikson Siburian
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Indonesia
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Suriati Paiman
- Department of Physics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
52
|
Ahmad A, Qurashi A, Sheehan D. Nano packaging – Progress and future perspectives for food safety, and sustainability. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100997] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
53
|
Liu C, Usman M, Ji M, Sha J, Zhou L, Yan B. Response mechanisms of anaerobic fermentative sludge to zinc oxide nanoparticles during medium-chain carboxylates production from waste activated sludge. CHEMOSPHERE 2023; 317:137879. [PMID: 36657575 DOI: 10.1016/j.chemosphere.2023.137879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The conversion of waste activated sludge (WAS) into medium chain carboxylates (MCCs) has attracted much attention, while investigations of the impacts of ZnO nanoparticles (NPs) on this process are sparse. The present study showed that 8 mg/g-TSS of ZnO NPs have little effects on all key steps and the activity of anaerobes, and finally leading to unchanged MCCs production. Although 30 mg/g-TSS of ZnO NPs weakly inhibited the hydrolysis, acidogenesis, and chain elongation process, WAS solubilization was enhanced, thus, the improvement was enough to offset inhibition, also resulting in an insignificant impact on overall MCCs production. However, the improvement with ZnO NPs dosages above 100 mg/g-TSS was not sufficient to offset the biological inhibition, thus inducing negative impact on overall MCCs production. The decline of EPS induced by Zn2+ and generation of excessive reactive oxygen species (ROS) were the main factors responsible for the inhibitory effects of ZnO NPs on lower activity of anaerobes. For chain elongation process, the discriminative Clostridium IV (as MCCs-forming bacteria) with a strong adaptation to ZnO NPs (300 mg/g-TSS) was observed. The present study provided a deep understanding related to the effects of ZnO NPs on the production of MCCs production from WAS and identified a zinc resistance anaerobe, which would be significant for the evaluation of influence and alleviation of inhibition induced by ZnO NPs on the carbon cycle of organic wastes.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA
| | - Mengyuan Ji
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121, Padova, Italy
| | - Jun Sha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
54
|
Combination of 2- tert-Butyl-1,4-Benzoquinone (TBQ) and ZnO Nanoparticles, a New Strategy To Inhibit Biofilm Formation and Virulence Factors of Chromobacterium violaceum. mSphere 2023; 8:e0059722. [PMID: 36645278 PMCID: PMC9942565 DOI: 10.1128/msphere.00597-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drug-resistant bacteria have been raising serious social problems. Bacterial biofilms and different virulence factors are the main reasons for persistent infections. As a conditioned pathogen, Chromobacterium violaceum has evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development, contributing to multidrug resistance. However, there are few therapies to combat drug-resistant bacteria. Quorum sensing (QS) inhibitors (QSIs) are a promising strategy to solve antibiotic resistance. Our previous work suggested that 2-tert-butyl-1,4-benzoquinone (TBQ) is a potent QSI. In this study, the combination of zinc oxide nanoparticles (ZnO-NPs) and TBQ (ZnO-TBQ) was investigated for the treatment of Chromobacterium violaceum ATCC 12472 infection. ZnO-NPs attach to cell walls or biofilms, and the local dissolution of ZnO-NPs can lead to increased Zn2+ concentrations, which could destroy metal homeostasis, corresponding to disturbances in amino acid metabolism and nucleic acid metabolism. ZnO-NPs significantly improved the efficiency of TBQ in inhibiting the QS-related virulence factors and biofilm formation of C. violaceum ATCC 12472. ZnO-TBQ effectively reduces the expression of genes related to QS, which is conducive to limiting the infectivity of C. violaceum ATCC 12472. Caenorhabditis elegans nematodes treated with ZnO-TBQ presented a significant improvement in the survival rate by 46.7%. Overall, the combination of ZnO-NPs and TBQ offers a new strategy to attenuate virulence factors and biofilm formation synergistically in some drug-resistant bacteria. IMPORTANCE The combination of ZnO-NPs and TBQ (ZnO-TBQ) can compete with the inducer N-decanoyl-homoserine lactone (C10-HSL) by binding to CviR and downregulate genes related to the CviI/CviR system to interrupt the QS system of C. violaceum ATCC 12472. The downstream genes responding to cviR were also downregulated so that virulence factors and biofilm formation were inhibited. Furthermore, ZnO-TBQ presents multiple metabolic disturbances in C. violaceum ATCC 12472, which results in the reduced multidrug resistance and pathogenicity of C. violaceum ATCC 12472. In an in vivo assay, C. elegans nematodes treated with ZnO-TBQ presented a significant improvement in the survival rate by 46.7% by limiting the infectivity of C. violaceum ATCC 12472. In addition, ZnO-TBQ inhibited the generation of virulence factors and biofilm formation 2-fold compared to either ZnO-NPs or TBQ alone. The combination of ZnO-NPs with TBQ offers a potent synergistic strategy to reduce multidrug resistance and pathogenicity.
Collapse
|
55
|
Buzza KM, Pluen A, Doherty C, Cheesapcharoen T, Singh G, Ledder RG, Sreenivasan PK, McBain AJ. Modulation of Biofilm Formation and Permeability in Streptococcus mutans during Exposure To Zinc Acetate. Microbiol Spectr 2023; 11:e0252722. [PMID: 36809043 PMCID: PMC10100724 DOI: 10.1128/spectrum.02527-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/06/2023] [Indexed: 02/23/2023] Open
Abstract
The penetration of biofilms by antimicrobials is a potential limiting factor in biofilm control. This is relevant to oral health, as compounds that are used to control microbial growth and activities could also affect the permeability of dental plaque biofilm with secondary effects on biofilm tolerance. We investigated the effects of zinc salts on the permeability of Streptococcus mutans biofilms. Biofilms were grown with low concentrations of zinc acetate (ZA), and a transwell transportation assay was applied to test biofilm permeability in an apical-basolateral direction. Crystal violet assays and total viable counts were used to quantify the biofilm formation and viability, respectively, and short time frame diffusion rates within microcolonies were determined using spatial intensity distribution analysis (SpIDA). While the diffusion rates within biofilm microcolonies were not significantly altered, exposure to ZA significantly increased the overall permeability of S. mutans biofilms (P < 0.05) through decreased biofilm formation, particularly at concentrations above 0.3 mg/mL. Transport was significantly lower through biofilms grown in high sucrose conditions. IMPORTANCE Zinc salts are added to dentifrices to improve oral hygiene through the control of dental plaque. We describe a method for determining biofilm permeability and show a moderate inhibitory effect of zinc acetate on biofilm formation, and that this inhibitory effect is associated with increases in overall biofilm permeability.
Collapse
Affiliation(s)
- Kara M. Buzza
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher Doherty
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tanaporn Cheesapcharoen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gurdeep Singh
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruth G. Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Prem K. Sreenivasan
- HITLAB, New York, New York, USA
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
56
|
Sow IS, Gelbcke M, Meyer F, Vandeput M, Marloye M, Basov S, Van Bael MJ, Berger G, Robeyns K, Hermans S, Yang D, Fontaine V, Dufrasne F. Synthesis and biological activity of iron(II), iron(III), nickel(II), copper(II) and zinc(II) complexes of aliphatic hydroxamic acids. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2166407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ibrahima Sory Sow
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Vandeput
- Pharmacognosy, Bioanalysis and Drug Discovery Research Unit (RD3-PBM), Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mickael Marloye
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sergey Basov
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Margriet J. Van Bael
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Dong Yang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
57
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
58
|
Hosseini-Alvand E, Khorasani MT. Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly( N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: characterization and antibacterial and cytocompatibility evaluation. J Mater Chem B 2023; 11:890-904. [PMID: 36597765 DOI: 10.1039/d2tb02179j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thermoresponsive nanofiber composites comprising biopolymers and ZnO nanoparticles with controlled release and antibacterial activity are fascinating scientific research areas. Herein, poly(N-isopropylacrylamide) (PNIPAm) was prepared and mixed with poly(vinyl alcohol) (PVA) in 75/25 and 50/50 weight ratios together with ZnO (0, 1, and 2 phr) to construct nanofiber composites. The morphology of the crosslinked nanofiber composites, ZnO content, and their mechanical behavior were assessed by SEM, EDX, and tensile analyses. The wettability results show an increment in nanofiber surface hydrophobicity by increasing the temperature above the LCST of PNIPAm. The in vitro ZnO release exhibits a faster release profile for the sample with 50 wt% PNIPAm (lower crosslinking density) compared to the one with 25 wt%. Besides, a strong interaction between PVA hydroxyl groups and ZnO can restrict the release content. However, by increasing the temperature from 28 to 32 °C, the relative ZnO release becomes half for both compositions. All crosslinked nanofiber composites demonstrated reliable biocompatibility against L929 fibroblast cells. Agar disc-diffusion and optical density methods showed thermo-controllable antibacterial activity against Staphylococcus aureus upon temperature variation between 28 and 32 °C. Furthermore, in vivo and histological results indicate the potentiality of the prepared multidisciplinary wound dressing for robust wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Ebrahim Hosseini-Alvand
- Biomaterial Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| | - Mohammad-Taghi Khorasani
- Biomaterial Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| |
Collapse
|
59
|
Paul S, Sen B, Basak N, Chakraborty N, Bhakat K, Das S, Islam E, Mondal S, Abbas SJ, Ali SI. Zn 3Sb 4O 6F 6 and KI-Doped Zn 3Sb 4O 6F 6: A Metal Oxyfluoride System for Photocatalytic Activity, Knoevenagel Condensation, and Bacterial Disinfection. Inorg Chem 2023; 62:1032-1046. [PMID: 36598860 DOI: 10.1021/acs.inorgchem.2c04006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zn3Sb4O6F6 crystallites were synthesized by a pH-regulated hydrothermal synthetic approach, while doping on Zn3Sb4O6F6 by KI was performed by the "incipient wetness impregnation technique." The effect of KI in Zn3Sb4O6F6 is found with the changes in morphology in the doped compound, i.e., needle-shaped particles with respect to the irregular cuboid and granular shaped in the pure compound. Closer inspection of the powder diffraction pattern of doped compounds also reveals the shifting of Braggs' peaks toward a lower angle and the difference in cell parameters compared to the pure compound. Both metal oxyfluoride comprising lone pair elements and their doped compounds have been successfully applied as photocatalysts for methylene blue dye degradation. Knoevenagel condensation reactions were performed using Zn3Sb4O6F6 as the catalyst and confirmed 99% yield even at 60 °C temperature under solvent-free conditions. Both pure and KI-doped compounds were tested against several standard bacterial strains, i.e., Enterobacter sp., Escherichia coli, Staphylococcus sp., Salmonella sp., Bacillus sp., Proteous sp., Pseudomonas sp., and Klebsiella sp. by the "disk diffusion method" and their antimicrobial activities were confirmed.
Collapse
Affiliation(s)
- Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nirman Chakraborty
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Kiron Bhakat
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| |
Collapse
|
60
|
Donmez S, Keyvan E. Green synthesis of zinc oxide nanoparticles using grape seed extract and evaluation of their antibacterial and antioxidant activities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Soner Donmez
- Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Erhan Keyvan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
61
|
Malczewska B, Lochyński P, Charazińska S, Sikora A, Farnood R. Electrospun Silica-Polyacrylonitrile Nanohybrids for Water Treatments. MEMBRANES 2023; 13:72. [PMID: 36676879 PMCID: PMC9861717 DOI: 10.3390/membranes13010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/12/2023]
Abstract
In this work, the removal of NOM (natural organic matter) as represented by humic acid by means of electrospun nanofiber adsorptive membranes (ENAMs) is described. Polyacrylonitrile (PAN) was used for the preparation of ENAMs incorporating silica nanoparticles as adsorbents. The addition of silica to the polymer left visible changes on the structural morphology and fibers' properties of the membrane. The membrane samples were characterized by pure water permeability, contact angle measurement, SEM, XPS, and XRD. This study assesses the preliminary performance of PAN-Si membranes for the removal of natural organic matter (NOM). The membrane rejected the humic acid, a surrogate of NOM, from 69.57% to 87.5%.
Collapse
Affiliation(s)
- Beata Malczewska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-365 Wroclaw, Poland
| | - Paweł Lochyński
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-365 Wroclaw, Poland
| | - Sylwia Charazińska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-365 Wroclaw, Poland
| | - Andrzej Sikora
- Department of Nanometrology, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland
| | - Ramin Farnood
- Department of Chemical Engineering & Applied Chemistry, Faculty of Applied Science & Engineering, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
62
|
Ikram M, Shahzadi A, Bilal M, Haider A, Ul-Hamid A, Nabgan W, Haider J, Ali S, Imran M. Strontium-doped chromium oxide for RhB reduction and antibacterial activity with evidence of molecular docking analysis. Front Chem 2023; 11:1167701. [PMID: 37123878 PMCID: PMC10133565 DOI: 10.3389/fchem.2023.1167701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The emergence of multi-drug resistance (MDR) in aquatic pathogens and the presence of cationic dyes are the leading causes of water contamination on a global scale. In this context, nanotechnology holds immense promise for utilizing various nanomaterials with catalytic and antibacterial properties. This study aimed to evaluate the catalytic and bactericidal potential of undoped and Sr-doped Cr2O3 nanostructures (NSs) synthesized through the co-precipitation method. In addition, the morphological, optical, and structural properties of the resultant NSs were also examined. The optical bandgap energy of Cr2O3 has been substantially reduced by Sr doping, as confirmed through extracted values from absorption spectra recorded by UV-Vis studies. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) micrographs illustrate that the composition of Cr2O3 primarily consisted of agglomerated, irregularly shaped NSs with a morphology resembling nanoflakes. Moreover, the presence of Sr in the lattice of Cr2O3 increased the roughness of the resulting NSs. The catalytic activity of synthesized NSs was analyzed by their reduction ability of Rhodamine B (RhB) dye in the dark under different pH conditions. Their antibacterial activity was evaluated against MDR Escherichia coli (E. coli). Sr doping increased antibacterial efficiency against MDR E. coli, as indicated by inhibition zone measurements of 10.15 and 11.75 mm at low and high doses, respectively. Furthermore, a molecular docking analysis was conducted to determine the binding interaction pattern between NSs and active sites in the target cell protein. The findings corroborated antimicrobial test results indicating that Sr-Cr2O3 is the most effective inhibitor of FabH and DHFR enzymes.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Pakistan
- *Correspondence: Muhammad Ikram, ; Walid Nabgan,
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Muhammad Ikram, ; Walid Nabgan,
| | - Junaid Haider
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Salamat Ali
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran
- Government College University Faisalabad, Sahiwal, Punjab, Pakistan
| |
Collapse
|
63
|
Malhotra A, Chauhan SR, Rahaman M, Tripathi R, Khanuja M, Chauhan A. Phyto-assisted synthesis of zinc oxide nanoparticles for developing antibiofilm surface coatings on central venous catheters. Front Chem 2023; 11:1138333. [PMID: 37035110 PMCID: PMC10076889 DOI: 10.3389/fchem.2023.1138333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Medical devices such as Central Venous Catheters (CVCs), are routinely used in intensive and critical care settings. In the present scenario, incidences of Catheter-Related Blood Stream Infections (CRBSIs) pose a serious challenge. Despite considerable advancements in the antimicrobial therapy and material design of CVCs, clinicians continue to struggle with infection-related complications. These complications are often due colonization of bacteria on the surface of the medical devices, termed as biofilms, leading to infections. Biofilm formation is recognized as a critical virulence trait rendering infections chronic and difficult to treat even with 1,000x, the minimum inhibitory concentration (MIC) of antibiotics. Therefore, non-antibiotic-based solutions that prevent bacterial adhesion on medical devices are warranted. In our study, we report a novel and simple method to synthesize zinc oxide (ZnO) nanoparticles using ethanolic plant extracts of Eupatorium odoratum. We investigated its physio-chemical characteristics using Field Emission- Scanning Electron Microscopy and Energy dispersive X-Ray analysis, X-Ray Diffraction (XRD), Photoluminescence Spectroscopy, UV-Visible and Diffuse Reflectance spectroscopy, and Dynamic Light Scattering characterization methods. Hexagonal phase with wurtzite structure was confirmed using XRD with particle size of ∼50 nm. ZnO nanoparticles showed a band gap 3.25 eV. Photoluminescence spectra showed prominent peak corresponding to defects formed in the synthesized ZnO nanoparticles. Clinically relevant bacterial strains, viz., Proteus aeruginosa PAO1, Escherichia coli MTCC 119 and Staphylococcus aureus MTCC 7443 were treated with different concentrations of ZnO NPs. A concentration dependent increase in killing efficacy was observed with 99.99% killing at 500 μg/mL. Further, we coated the commercial CVCs using green synthesized ZnO NPs and evaluated it is in vitro antibiofilm efficacy using previously optimized in situ continuous flow model. The hydrophilic functionalized interface of CVC prevents biofilm formation by P. aeruginosa, E. coli and S. aureus. Based on our findings, we propose ZnO nanoparticles as a promising non-antibiotic-based preventive solutions to reduce the risk of central venous catheter-associated infections.
Collapse
Affiliation(s)
- Akshit Malhotra
- Department of Microbiology, Tripura University, Suryamaninagar, Tripura, India
- Invisiobiome, New Delhi, India
| | - Suchitra Rajput Chauhan
- Centre for Advanced Materials and Devices (CAMD), School of Engineering and Technology, BML Munjal University, Gurgaon, Haryana, India
| | - Mispaur Rahaman
- Central Instrumentation Centre, Tripura University, Suryamaninagar, Tripura, India
| | - Ritika Tripathi
- Centre for Advanced Materials and Devices (CAMD), School of Engineering and Technology, BML Munjal University, Gurgaon, Haryana, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Suryamaninagar, Tripura, India
- *Correspondence: Ashwini Chauhan,
| |
Collapse
|
64
|
Hakeem MJ, Feng J, Ma L, Ma L, Lu X. Whole transcriptome sequencing analysis of synergistic combinations of plant-based antimicrobials and zinc oxide nanoparticles against Campylobacter jejuni. Microbiol Res 2023; 266:127246. [DOI: 10.1016/j.micres.2022.127246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
65
|
Kumbhar GS, Patil SV, Sarvalkar PD, Vadanagekar AS, Karvekar OS, Patil SS, Rane MR, Sharma KKK, Kurhe DN, Prasad NR. Synthesis of a Ag/rGO nanocomposite using Bos taurus indicus urine for nitroarene reduction and biological activity. RSC Adv 2022; 12:35598-35612. [PMID: 36545061 PMCID: PMC9746299 DOI: 10.1039/d2ra06280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The present study develops a unique in situ synthesis of a catalytically and biologically active Ag/reduced graphene oxide (rGO) nanocomposite. Herein, we employed Bos taurus indicus urine to synthesize a Ag/rGO nanocomposite in an environmentally benign, facile, economical, and sustainable manner. The elemental composition analysis reveals the presence of Ag, O and C elements. The scanning electron micrograph shows the formation of spherical silver in nanoform whereas rGO is found to be flake shaped with a wrinkled nature. The synthesized nanomaterial and its composite shows a positive catalytic effect in simple organic transformation for the reduction of nitroarene compounds. Investigations were conducted into the catalytic effectiveness of the prepared nanomaterials for diverse nitroarene reduction. Then, using NaBH4 at 25 °C, the catalytic roles of Ag and the Ag/rGO nano-catalyst were assessed towards the catalytic reduction of several environmental pollutants such as 2-, 3- and 4-nitroaniline and 4-nitrophenol into their respective amino compounds. To test their catalytic performance, bio-mimetically synthesized Ag NPs were thermally treated at 200 °C and compared with the Ag/rGO nanocomposite. Furthermore, biomedical applications such as the antibacterial and antioxidant properties of the as-prepared nanomaterials were investigated in this study.
Collapse
Affiliation(s)
- Gouri S Kumbhar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Shubham V Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Prashant D Sarvalkar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Apurva S Vadanagekar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Omkar S Karvekar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | | | - Manali R Rane
- Department of Biotechnology, Shivaji University Kolhapur-416004 MH India
| | - Kiran Kumar K Sharma
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Deepti N Kurhe
- Department of Biochemistry, Shivaji University Kolhapur-416004 MH India
| | - Neeraj R Prasad
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
- Jaysingpur College, Jaysingpur, Affiliated to Shivaji University Kolhapur 416234 MH India
| |
Collapse
|
66
|
Wang H, Xiong C, Yu Z, Zhang J, Huang Y, Zhou X. Research Progress on Antibacterial Coatings for Preventing Implant-Related Infection in Fractures: A Literature Review. COATINGS 2022; 12:1921. [DOI: 10.3390/coatings12121921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Implant-related infection is a difficult problem in orthopaedics as it not only leads to failure in internal fixation, but also increases the financial burden and perioperative risk on patients. In the past, orthopaedic implants were designed as mechanical fixation devices simply to maintain mechanical and biological properties, not to regulate the surrounding biological microenvironment. More recently, antimicrobial biocoatings have been incorporated into orthopaedic implants to prevent and treat implant-related infections through the modulation of the local environment. This article reviews the application of orthopaedic-implant biocoating in the prevention of implant-caused infection. Although there are many candidate coatings, they are still in the preclinical testing stage, and thus additional research by biomaterials and clinicians is necessary to identify the ideal implant coatings for patients who require fracture surgery.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Junjie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture 811800, China
| |
Collapse
|
67
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
68
|
Antimicrobial impacts of zinc oxide nanoparticles on shiga toxin-producing Escherichia coli (serotype O26). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) has received significant attention worldwide due to the emergence of multidrug-resistant microorganisms. Shiga toxin-producing Escherichia coli is a major foodborne pathogen that causes gastroenteritis that may be complicated by hemorrhagic colitis or hemolytic uremic syndrome. Therefore, this study aimed to evaluate the antimicrobial effect of ZnO NPs against E. coli O26 and its Shiga toxin type 2 (Stx2). Multidrug resistance phenotype was observed in E. coli O26, with co-resistance to several unrelated families of antimicrobial agents. Different concentrations of ZnO NPs nanoparticles (20 nm) were tested against different cell densities of E. coli O26 (108, 106 and 105 CFU/ml). The minimum inhibitory concentration (MIC) value was 1 mg/ml. Minimum bactericidal concentration (MBC) was 1.5 mg/ml, 2.5 mg/ml and 3 mg/ml, respectively, depending on ZnO NPs concentrations and bacterial cell density. Results showed a significant (P≤0.05) decrease in Stx2 level in a response to ZnO NPs treatment. As detected by quantitative real-time PCR, ZnO NPs down-regulated the expression of the Stx2 gene (P≤0.05). Moreover, various concentrations of ZnO NPs considerably reduced the total protein content in E. coli O26. There was a significant reduction in protein expression with increased ZnO NPs concentration compared to the non-treated control. Scanning electron micrographs (SEM) of the treated bacteria showed severe disruptive effects on E. coli O26 with increasing ZnO NPs concentration. The results revealed a strong correlation between the antibacterial effect and ZnO NPs concentrations. ZnO NPs exert their antibacterial activities through various mechanisms and could be used as a potent antibacterial agent against E. coli O26.
Collapse
|
69
|
Serov DA, Baimler IV, Burmistrov DE, Baryshev AS, Yanykin DV, Astashev ME, Simakin AV, Gudkov SV. The Development of New Nanocomposite Polytetrafluoroethylene/Fe 2O 3 NPs to Prevent Bacterial Contamination in Meat Industry. Polymers (Basel) 2022; 14:polym14224880. [PMID: 36433009 PMCID: PMC9695638 DOI: 10.3390/polym14224880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
The bacterial contamination of cutting boards and other equipment in the meat processing industry is one of the key reasons for reducing the shelf life and consumer properties of products. There are two ways to solve this problem. The first option is to create coatings with increased strength in order to prevent the formation of micro damages that are favorable for bacterial growth. The second possibility is to create materials with antimicrobial properties. The use of polytetrafluoroethylene (PTFE) coatings with the addition of metal oxide nanoparticles will allow to the achieving of both strength and bacteriostatic effects at the same time. In the present study, a new coating based on PTFE and Fe2O3 nanoparticles was developed. Fe2O3 nanoparticles were synthesized by laser ablation in water and transferred into acetone using the developed procedures. An acetone-based colloidal solution was mixed with a PTFE-based varnish. Composites with concentrations of Fe2O3 nanoparticles from 0.001-0.1% were synthesized. We studied the effect of the obtained material on the generation of ROS (hydrogen peroxide and hydroxyl radicals), 8-oxoguanine, and long-lived active forms of proteins. It was found that PTFE did not affect the generation of all the studied compounds, and the addition of Fe2O3 nanoparticles increased the generation of H2O2 and hydroxyl radicals by up to 6 and 7 times, respectively. The generation of 8-oxoguanine and long-lived reactive protein species in the presence of PTFE/Fe2O3 NPs at 0.1% increased by 2 and 3 times, respectively. The bacteriostatic and cytotoxic effects of the developed material were studied. PTFE with the addition of Fe2O3 nanoparticles, at a concentration of 0.001% or more, inhibited the growth of E. coli by 2-5 times compared to the control or PTFE without NPs. At the same time, PTFE, even with the addition of 0.1% Fe2O3 nanoparticles, did not significantly impact the survival of eukaryotic cells. It was assumed that the resulting composite material could be used to cover cutting boards and other polymeric surfaces in the meat processing industry.
Collapse
|
70
|
Dinga E, Mthiyane DMN, Marume U, Botha TL, Horn S, Pieters R, Wepener V, Ekennia A, Onwudiwe DC. Biosynthesis of ZnO nanoparticles using Melia azedarach seed extract: Evaluation of the cytotoxic and antimicrobial potency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
71
|
Kerek Á, Sasvári M, Jerzsele Á, Somogyi Z, Janovák L, Abonyi-Tóth Z, Dékány I. Photoreactive Coating Material as an Effective and Durable Antimicrobial Composite in Reducing Bacterial Load on Surfaces in Livestock. Biomedicines 2022; 10:biomedicines10092312. [PMID: 36140413 PMCID: PMC9496029 DOI: 10.3390/biomedicines10092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Titanium dioxide (TiO2) is a well-known photocatalytic compound that can be used to effectively reduce the presence of pathogens in human and animal hospitals via ROS release. The aim of this study was to investigate the efficacy of a polymer-based composite layer containing TiO2 and zinc oxide (ZnO) against Escherichia coli (E. coli) of animal origin. We showed that the photocatalyst coating caused a significant (p < 0.001) reduction in pathogen numbers compared to the control with an average reduction of 94% over 30 min. We used six light sources of different wattages (4 W, 7 W, 9 W, 12 W, 18 W, 36 W) at six distances (35 cm, 100 cm, 150 cm, 200 cm, 250 cm, 300 cm). Samples (n = 2160) were taken in the 36 settings and showed no significant difference in efficacy between light intensity and distance. We also investigated the influence of organic contaminant that resulted in lower activity as well as the effect of a water jet and a high-pressure device on the antibacterial activity. We found that the latter completely removed the coating from the surface, which significantly (p < 0.0001) reduced its antibacterial potential. As a conclusion, light intensity and distance does not reduce the efficacy of the polymer, but the presence of organic contaminants does.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
- Correspondence: (Á.K.); (I.D.)
| | - Mátyás Sasvári
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Zsolt Abonyi-Tóth
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Correspondence: (Á.K.); (I.D.)
| |
Collapse
|
72
|
Fandzloch M, Bodylska W, Barszcz B, Trzcińska-Wencel J, Roszek K, Golińska P, Lukowiak A. Effect of ZnO on sol–gel glass properties toward (bio)application. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Nano-biofertilizers on soil health, chemistry, and microbial community: benefits and risks. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00094-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
The Evaluation of Various Biological Properties for Bismuth Oxychloride Nanoparticles (BiOCl NPs). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Recent Developments and Applications of Nanosystems in the Preservation of Meat and Meat Products. Foods 2022; 11:foods11142150. [PMID: 35885393 PMCID: PMC9317627 DOI: 10.3390/foods11142150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their high water, lipid, and protein content, meat and meat products are highly perishable. The principal spoilage mechanisms involved are protein and lipid oxidation and deterioration caused by microbial growth. Therefore, efforts are ongoing to ensure food safety and increase shelf life. The development of low-cost, innovative, eco-friendly approaches, such as nanotechnology, using non-toxic, inexpensive, FDA-approved ingredients is reducing the incorporation of chemical additives while enhancing effectiveness and functionality. This review focuses on advances in the incorporation of natural additives that increase the shelf life of meat and meat products through the application of nanosystems. The main solvent-free preparation methods are reviewed, including those that involve mixing organic–inorganic or organic–organic compounds with such natural substances as essential oils and plant extracts. The performance of these additives is analyzed in terms of their antioxidant effect when applied directly to meat as edible coatings or marinades, and during manufacturing processes. The review concludes that nanotechnology represents an excellent option for the efficient design of new meat products with enhanced characteristics.
Collapse
|
76
|
Abd El-Ghany WA. A perspective review on the effect of different forms of zinc on poultry production of poultry with special reference to the hazardous effects of misuse. CABI REVIEWS 2022; 2022. [DOI: 10.1079/cabireviews202217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractZinc (Zn) is a unique micro-mineral because it is an essential component in many enzymes such as superoxide dismutase, carbonic anhydrase, and alkaline phosphatase, as well as being important for regulation of proteins and lipids metabolism, and sex hormones. This mineral is applied in poultry production in three forms; inorganic, organic, and nanoparticle form. The nano-form of Zn is preferable in application to other conventional forms with regard to absorption, bioavailability, and efficacy. Broilers fed on diets supplemented with Zn showed improvement of growth performance, carcass meat yield, and meat quality. In addition, Zn plays an important role in enhancing of both cellular and humeral immune responses, beside its antimicrobial and antioxidant activities. In laying hens, dietary addition of Zn improves the eggshell quality and the quantity of eggs. Moreover, Zn has a vital role in breeders in terms of improving the egg production, fertility, hatchability, embryonic development, and availability of the hatched chicks. Therefore, this review article is focused on the effects of using Zn on the performance and immunity of poultry, as well as its antimicrobial and antioxidant properties with special reference to the hazardous effects of the misusing of this mineral.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Address: Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
77
|
Majeed S, Norshah NSB, Danish M, Ibrahim MNM, Nanda A. Biosynthesis of Zinc Oxide Nanoparticles from Allium sativum Extract: Characterization and Application. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
78
|
Brito SDC, Malafatti JOD, Arab FE, Bresolin JD, Paris EC, de Souza CWO, Ferreira MD. One-pot synthesis of CuO, ZnO, and Ag nanoparticles: structural, morphological, and bactericidal evaluation. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sabrina da Costa Brito
- Department of Food and Nutrition, São Paulo State University “Julio de Mesquita Filho”, Araraquara, Brazil
- Embrapa Instrumentação, São Carlos, Brazil
| | | | - Fernanda Elisa Arab
- Embrapa Instrumentação, São Carlos, Brazil
- Department of Biotecnology, PPGBiotec Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Clovis Wesley Oliveira de Souza
- Department of Biotecnology, PPGBiotec Federal University of São Carlos, São Carlos, Brazil
- Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, Brazil
| | - Marcos David Ferreira
- Embrapa Instrumentação, São Carlos, Brazil
- Department of Biotecnology, PPGBiotec Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
79
|
Giannakas AE, Salmas CE, Moschovas D, Baikousi M, Kollia E, Tsigkou V, Karakassides A, Leontiou A, Kehayias G, Avgeropoulos A, Proestos C. Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. NANOMATERIALS 2022; 12:nano12111843. [PMID: 35683702 PMCID: PMC9182113 DOI: 10.3390/nano12111843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
The global turn from the linear to the circular economy imposes changes in common activities such as food packaging. The use of biodegradable materials such as polyvinyl alcohol, natural raw materials such as clays, and food byproducts such as chitosan to develop novel food packaging films attracts the interest of industrial and institutional research centers. In this study, novel hybrid nanostructures were synthesized via the growth of zinc oxide nanorods on the surface of two nanoclays. The obtained nanostructures were incorporated with chitosan/polyvinyl alcohol composite either as nanoreinforcement or as an active agent to develop packaging films. The developed films were characterized via XRD, FTIR, mechanical, water-vapor diffusion, water sorption, and oxygen permeability measurements. Antimicrobial activity measurements were carried out against four different pathogen microorganisms. XRD indicated the formation of an intercalated nanocomposite structure for both types of nanoclays. Furthermore, improved tensile, water/oxygen barrier, and antimicrobial properties were recorded for all films compared to the pure chitosan/polyvinyl alcohol film. Overall, the results indicated that the use of the bio-based developed films led to an extension of food shelf life and could be used as novel active food packaging materials. Among them, the most promising film was the 6% wt. ZnO@halloysite.
Collapse
Affiliation(s)
- Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece;
- Correspondence: (A.E.G.); (C.E.S.); (C.P.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (M.B.); (A.K.); (A.A.)
- Correspondence: (A.E.G.); (C.E.S.); (C.P.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (M.B.); (A.K.); (A.A.)
| | - Maria Baikousi
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (M.B.); (A.K.); (A.A.)
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (V.T.)
| | - Vasiliki Tsigkou
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (V.T.)
| | - Anastasios Karakassides
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (M.B.); (A.K.); (A.A.)
| | - Areti Leontiou
- Laboratory of Food Technology, Department of Business Administration of Agricultural and Food Enterprises, University of Patras, 30100 Agrinio, Greece;
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece;
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (M.B.); (A.K.); (A.A.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (V.T.)
- Correspondence: (A.E.G.); (C.E.S.); (C.P.)
| |
Collapse
|
80
|
Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water. NANOMATERIALS 2022; 12:nano12101764. [PMID: 35630986 PMCID: PMC9145672 DOI: 10.3390/nano12101764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
In this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial disinfection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis, and disinfection efficiency.
Collapse
|
81
|
Pushpalatha C, Suresh J, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Mohammad Albar NH, Patil S. Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front Bioeng Biotechnol 2022; 10:917990. [PMID: 35662838 PMCID: PMC9160914 DOI: 10.3389/fbioe.2022.917990] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology in modern material science is a research hot spot due to its ability to provide novel applications in the field of dentistry. Zinc Oxide Nanoparticles (ZnO NPs) are metal oxide nanoparticles that open new opportunities for biomedical applications that range from diagnosis to treatment. The domains of these nanoparticles are wide and diverse and include the effects brought about due to the anti-microbial, regenerative, and mechanical properties. The applications include enhancing the anti-bacterial properties of existing restorative materials, as an anti-sensitivity agent in toothpastes, as an anti-microbial and anti-fungal agent against pathogenic oral microflora, as a dental implant coating, to improve the anti-fungal effect of denture bases in rehabilitative dentistry, remineralizing cervical dentinal lesions, increasing the stability of local drug delivery agents and other applications.
Collapse
Affiliation(s)
- C Pushpalatha
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Jithya Suresh
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - VS Gayathri
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - SV Sowmya
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ahmed Alamoudi
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Zidane
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Shwajra Campus, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
82
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
83
|
Chang Y, Mei J, Yang T, Zhang Z, Liu G, Zhao H, Chen X, Tian G, Cai J, Wu B, Wu F, Jia G. Effect of Dietary Zinc Methionine Supplementation on Growth Performance, Immune Function and Intestinal Health of Cherry Valley Ducks Challenged With Avian Pathogenic Escherichia coli. Front Microbiol 2022; 13:849067. [PMID: 35602082 PMCID: PMC9115567 DOI: 10.3389/fmicb.2022.849067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate the effects of supplemental zinc methionine (Zn-Met) on growth performance, immune function, and intestinal health of meat ducks challenged with avian pathogenic Escherichia coli (APEC). A total of 480 1-day-old Cherry Valley male ducks were randomly assigned to 8 treatments with 10 replicates, each replicate containing 10 ducks. A 4 × 2 factor design was used with four dietary zinc levels (0, 30, 60, 120 mg Zn/kg in the form Zn-Met was added to the corn-soybean basal diet) and challenged with or without APEC at 8-days-old ducks. The trial lasted for 14 days. The results showed that a dietary Zn-Met supplementation significantly increased body weight (BW) of 14 days and BW gain, and decreased mortality during 7-14-days-old ducks (p < 0.05). Furthermore, dietary 30, 60, 120 mg/kg Zn-Met supplementation noticeably increased the thymus index at 2 days post-infection (2 DPI) and 8 DPI (p < 0.05), and 120 mg/kg Zn-Met enhanced the serum IgA at 2 DPI and IgA, IgG, IgM, C3 at 8 DPI (p < 0.05). In addition, dietary 120 mg/kg Zn-Met supplementation dramatically increased villus height and villus height/crypt depth (V/C) of jejunum at 2 DPI and 8 DPI (p < 0.05). The TNF-α and IFN-γ mRNA expression were downregulated after supplemented with 120 mg/kg Zn-Met in jejunum at 8 DPI (p < 0.05). Moreover, dietary 120 mg/kg Zn-Met supplementation stimulated ZO-3, OCLN mRNA expression at 2 DPI and ZO-2 mRNA expression in jejunum at 8 DPI (p < 0.05), and improved the MUC2 concentration in jejunum at 2 DPI and 8 DPI (p < 0.05). At the same time, the cecal Bifidobacterium and Lactobacillus counts were increased (p < 0.05), and Escherichia coli counts were decreased (p < 0.05) after supplemented with Zn-Met. In conclusion, inclusion of 120 mg/kg Zn-Met minimizes the adverse effects of APEC challenge on meat ducks by improving growth performance and enhancing immune function and intestinal health.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jia Mei
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ting Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenyu Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
84
|
Inactivation of Salmonella in steamed fish cake using an in-package combined treatment of cold plasma and ultraviolet-activated zinc oxide. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Pokhrel LR, Jacobs ZL, Dikin D, Akula SM. Five nanometer size highly positive silver nanoparticles are bactericidal targeting cell wall and adherent fimbriae expression. Sci Rep 2022; 12:6729. [PMID: 35468937 PMCID: PMC9039075 DOI: 10.1038/s41598-022-10778-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
To tackle growing antibiotic resistance (AR) and hospital-acquired infections (HAIs), novel antimicrobials are warranted that are effective against HAIs and safer for human use. We hypothesize that small 5 nm size positively charged nanoparticles could specifically target bacterial cell wall and adherent fimbriae expression, serving as the next generation antibacterial agent. Herein we show highly positively charged, 5 nm amino-functionalized silver nanoparticles (NH2–AgNPs) were bactericidal; highly negatively charged, 45 nm citrate-functionalized AgNPs (Citrate–AgNPs) were nontoxic; and Ag+ ions were bacteriostatic forming honeycomb-like potentially resistant phenotype, at 10 µg Ag/mL in E. coli. Further, adherent fimbriae were expressed with Citrate–AgNPs (0.5–10 µg/mL), whereas NH2–AgNPs (0.5–10 µg/mL) or Ag+ ions (only at 10 µg/mL) inhibited fimbriae expression. Our results also showed no lipid peroxidation in human lung epithelial and dermal fibroblast cells upon NH2–AgNPs treatments, suggesting NH2–AgNPs as a biocompatible antibacterial candidate. Potent bactericidal effects demonstrated by biocompatible NH2–AgNPs and the lack of toxicity of Citrate–AgNPs lend credence to the hypothesis that small size, positively charged AgNPs may serve as a next-generation antibacterial agent, potentially addressing the rising HAIs and patient health and safety.
Collapse
Affiliation(s)
- Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Zachary L Jacobs
- School of Law, University of California, Berkeley, Berkeley, CA, USA
| | - Dmitriy Dikin
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
86
|
Latiyan S, Kumar TSS, Doble M. Fabrication and evaluation of multifunctional agarose based electrospun scaffolds for cutaneous wound repairs. J Tissue Eng Regen Med 2022; 16:653-664. [PMID: 35460335 DOI: 10.1002/term.3308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
Despite several advances in chronic wound management, natural product based scaffolds with high exude absorption and mechanical strength are still a hotspot in the medical field. Thus, present study illustrates the fabrication of agarose (AG; 10% w/v)/polyvinyl alcohol 12% w/v) based multifunctional nanofibrous electrospun scaffolds. Zinc citrate (1%, 3% and 5% w/w of the polymer) was used as a potential antibacterial agent. The fabricated scaffolds exhibit a swelling of ∼550% in phosphate buffer saline and mechanical strength of 10.11 ± 0.31 MPa which is suitable for most of the wound healing applications that require high strength. In vitro study revealed an increased migration and proliferation of L929 fibroblasts with AG blends when compared to the control. The fabricated scaffolds exhibited antibacterial properties against both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacterial strains. Hence, a multifunctional (ability to protect wounds from bacterial infections along with effective swelling and mechanical support), natural product based, eco-friendly scaffold to serve as a potential wound dressing material has been successfully fabricated.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
87
|
Preparing and Characterizing Novel Biodegradable Starch/PVA-Based Films with Nano-Sized Zinc-Oxide Particles for Wound-Dressing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given recent worldwide environmental concerns, biodegradability, antibacterial activity, and healing properties around the wound area are vital features that should be taken into consideration while preparing biomedical materials such as wound dressings. Some of the available wound dressings present some major disadvantages. For example, low water vapor transmission rate (WVTR), inadequate exudates absorption, and the complex and high environmental cost of the disposal/recycling processes represent such drawbacks. In this paper, starch/polyvinyl alcohol (PVA) material with inserted nano-sized zinc-oxide particles (nZnO) (average size ≤ 100 nm) was made and altered using citric acid (CA). Both ensure an efficient antibacterial environment for wound-dressing materials. The film properties were assessed by UV–Vis spectrometry and were validated against the UV light transmission percentage of the starch/ polyvinyl alcohol (PVA)/ zinc-oxide nanoparticles (nZnO) composites. Analyses were conducted using X-ray Spectroscopy (EDX) and scanning electron microscopy (SEM) to investigate the structure and surface morphology of the materials. Moreover, to validate an ideal moisture content around the wound area, which is necessary for an optimum wound-healing process, the water vapor transmission rate of the film was measured. The new starch-based materials exhibited suitable physical and chemical properties, including solubility, gel fraction, fluid absorption, biodegradability, surface morphology (scanning electron microscopy imaging), and mechanical properties. Additionally, the pH level of the starch-based/nZnO film was measured to study the prospect of bacterial growth on this wound-dressing material. Furthermore, the in vitro antibacterial activity demonstrated that the dressings material effectively inhibited the growth and penetration of bacteria (Escherichia coli, Staphylococcus aureus).
Collapse
|
88
|
Huang C, Mou W, Li J, Liu Y. Extremely Well-Dispersed Zinc Oxide Nanofluids with Excellent Antibacterial, Antifungal, and Formaldehyde and Toluene Removal Properties. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chaojie Huang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong Province 510641, China
| | - Wenjie Mou
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong Province 510641, China
| | - Jinglin Li
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong Province 510641, China
| | - Ye Liu
- Department of Health Management, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
89
|
Iqbal M, Ibrar A, Ali A, Memon FH, Rehman F, Bhatti Z, Soomro F, Ali A, Thebo KH. Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Imade EE, Ajiboye TO, Fadiji AE, Onwudiwe DC, Babalola OO. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
91
|
El-Sherbeny EME, Khoris EA, Kassem S. Assessment the efficacy of some various treatment methods, in vitro and in vivo, against Aeromonas hydrophila infection in fish with regard to side effects and residues. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109246. [PMID: 34801729 DOI: 10.1016/j.cbpc.2021.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Aeromonas hydrophila is an opportunistic bacteria with an overwhelming impact on fish farming industry especially with upraising of drug resistant mutants. This study aimed to evaluate and compare the therapeutic and side effects of levofloxacin (LEV), chitosan-nanoparticles (CNPs), and fructooligosaccharides (FOS) in control of this infection in tilapia. A total of 160 Nile-tilapia divided into 8-groups; G1: negative-control, G2: infected-control, G3: non-infected-(levofloxacin (LEV) 10 mg/kg bwt), G4: non-infected-(chitosan-nanoparticles (CNPs) 1 g/kg ration), G5: non-infected-(fructooligosaccharides (FOS) 20 g/kg ration), G6: infected-LEV, G7: infected-CNPs and G8: infected-FOS for 7 days. MICs were (0.125 μg/ml and 1.25 mg/ml) for LEV and CNPs respectively. No mortalities or significant adverse effects were recorded in non-infected treated-groups while infected were (20%) LEV, (30%) CNPs, (40%) FOS and (70%) G2. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) decreased by LEV and CNPs than FOS while all increased total protein (TP) and albumin than G2. Malondialdehyde (MDA) significantly decreased and superoxide dismutase (SOD) and reduced glutathione (GSH) increased in all infected-treated groups than G2 in various degrees. Urea and creatinine descending order were FOS, LEV then CNPs decreased significantly than G2. LEV musculature residues, using HPLC, decreased gradually till the 5th day; 621.00 ± 0.66, 270.00 ± 0.48 then 64.00 ± 0.40, and 471.00 ± 0.79, 175.00 ± 0.52 ppb then not detected at 1st, 3rd, and 5th days of withdrawal in non-infected and infected groups respectively. Finally, LEV and CNPs were superior as bactericidal, decreasing mortalities and enzyme activities while CNPs and FOS increased performance, non-specific immunity, and antioxidant biomarkers.
Collapse
Affiliation(s)
- Eman M El El-Sherbeny
- Pharmacology unit, Tanta lab, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Enas A Khoris
- Fish disease unit, Tanta lab, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Samr Kassem
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt.
| |
Collapse
|
92
|
Bhatt K, Jain VK, Khan F. Antibacterial study of Eucalyptus grandis fabricated zinc oxide and magnesium doped zinc oxide nanoparticles and its characterization. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
93
|
Sun X, Yin L, Zhu H, Zhu J, Hu J, Luo X, Huang H, Fu Y. Enhanced Antimicrobial Cellulose/Chitosan/ZnO Biodegradable Composite Membrane. MEMBRANES 2022; 12:membranes12020239. [PMID: 35207160 PMCID: PMC8877955 DOI: 10.3390/membranes12020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, chitosan and sugarcane cellulose were used as film-forming materials, while the inorganic agent zinc oxide (ZnO) and natural compound phenyllactic acid (PA) were used as the main bacteriostatic components to fabricate biodegradable antimicrobial composite membranes. The water absorption and antimicrobial properties were investigated by adjusting the concentration of PA. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results demonstrated that the components of the composite membrane were successfully integrated. The addition of ZnO improved the mechanical and antimicrobial properties of the composite membrane, while the addition of PA with high crystallinity significantly reduced the water absorption and swelling. Moreover, the addition of 0.5% PA greatly improved the water absorption of the composite membrane. The results of antimicrobial experiments showed that PA improved the antimicrobial activity of the composite membrane against Staphylococcus aureus, Escherichia coli, Aspergillus niger and Penicillium rubens. Among them, 0.3% PA had the best antimicrobial effect against S. aureus, E. coli and A. niger, while 0.7% PA had the best antimicrobial effect against P. rubens.
Collapse
Affiliation(s)
- Xiaolong Sun
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China; (X.S.); (H.H.)
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Longfei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Huayue Zhu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Junhao Zhu
- Zhejiang Kingsun Eco-Pack Co., Ltd., Taizhou 317000, China;
| | - Jiahuan Hu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China; (X.S.); (H.H.)
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
- Correspondence:
| |
Collapse
|
94
|
Šarić A, Vrankić M, Lützenkirchen-Hecht D, Despotović I, Petrović Ž, Dražić G, Eckelt F. Insight into the Growth Mechanism and Photocatalytic Behavior of Tubular Hierarchical ZnO Structures: An Integrated Experimental and Theoretical Approach. Inorg Chem 2022; 61:2962-2979. [PMID: 35104109 DOI: 10.1021/acs.inorgchem.1c03905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrothermal synthesis of zinc oxide (ZnO) particles from zinc acetylacetonate monohydrate in "pure" aqueous solution and in aqueous NaOH solution at 90 °C is reported. The structural and morphological properties of ZnO particles were investigated by powder X-ray diffraction, X-ray absorption spectroscopy (XAS), field emission scanning electron microscopy, and transmission electron microscopy. The effect of NaOH on the growth mechanism and photocatalytic performance of hierarchical ZnO structures was investigated. The experimental findings, supported by results of quantum chemical calculations at the level of density functional theory, were used to propose the mechanism of nucleation and preferential growth of finely tuned hollow and nonhollow ZnO structures and their effects on the photocatalytic activity. The calculations indicate that the process of ZnO nucleation in "pure" aqueous solution mainly proceeds by the reaction of small monomers, while tetramers play a crucial role in aqueous NaOH solution. Both the preferred ZnO nanostructure and microstructure growth processes are driven by O-H···O hydrogen bonds as controlling elements. The calculated values of the EO···H interaction indicate a stronger interaction via O-H···O hydrogen bonds in "pure" aqueous media (EO···H = -11.73 kcal mol-1) compared to those obtained in aqueous NaOH solution (EO···H = -8.41 kcal mol-1). The specific structural motif of the (ZnO-H2O)12 dodecamers with calculated negative ΔG*INT free release energy indicates that the formation of anisotropic nanocrystalline ZnO with the c-axis as the primary growth direction is spontaneous and accelerated exclusively in "pure" aqueous solution, whereas it is an unfavorable endergonic process in aqueous NaOH solution (ΔG*INT > 0). Efforts have been made to determine the photocatalytic efficiency of the ZnO samples based on the XAS measurements. ZnO particles obtained in "pure" aqueous solution show the highest photocatalytic activity due to the presence of a larger amount of oxygen vacancies.
Collapse
Affiliation(s)
- Ankica Šarić
- Ruđer Bošković Institute, Division of Materials Physics, Centre of Excellence for Advanced Materials and Sensing Devices, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Martina Vrankić
- Ruđer Bošković Institute, Division of Materials Physics, Centre of Excellence for Advanced Materials and Sensing Devices, Bijenička 54, HR-10002 Zagreb, Croatia
| | | | - Ines Despotović
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Željka Petrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Franz Eckelt
- Fk. 4, Physik, Bergische Universität Wuppertal, Gauss-Straße 20, D-42097 Wuppertal, Germany
| |
Collapse
|
95
|
Das R, Kotra K, Singh P, Loh B, Leptihn S, Bajpai U. Alternative Treatment Strategies for Secondary Bacterial and Fungal Infections Associated with COVID-19. Infect Dis Ther 2022; 11:53-78. [PMID: 34807451 PMCID: PMC8607056 DOI: 10.1007/s40121-021-00559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Antimicrobials are essential for combating infectious diseases. However, an increase in resistance to them is a major cause of concern. The empirical use of drugs in managing COVID-19 and the associated secondary infections have further exacerbated the problem of antimicrobial resistance. Hence, the situation mandates exploring and developing efficient alternatives for the treatment of bacterial and fungal infections in patients suffering from COVID-19 or other viral infections. In this review, we have described the alternatives to conventional antimicrobials that have shown promising results and are at various stages of development. An acceleration of efforts to investigate their potential as therapeutics can provide more treatment options for clinical management of drug-resistant secondary bacterial and fungal infections in the current pandemic and similar potential outbreaks in the future. The alternatives include bacteriophages and their lytic enzymes, anti-fungal enzymes, antimicrobial peptides, nanoparticles and small molecule inhibitors among others. What is required at this stage is to critically examine the challenges in developing the listed compounds and biomolecules as therapeutics and to establish guidelines for their safe and effective application within a suitable time frame. In this review, we have attempted to highlight the importance of rational use of antimicrobials in patients suffering from COVID-19 and boost the deployment of alternative therapeutics.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Komal Kotra
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Pulkit Singh
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Belinda Loh
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 314400 People’s Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 314400 People’s Republic of China
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019 India
| |
Collapse
|
96
|
Hossain O, Rahman E, Roy H, Azam MS, Ahmed S. Synthesis, characterization, and comparative assessment of antimicrobial properties and cytotoxicity of graphene-, silver-, and zinc-based nanomaterials. ANALYTICAL SCIENCE ADVANCES 2022; 3:54-63. [PMID: 38716059 PMCID: PMC10989569 DOI: 10.1002/ansa.202100041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2024]
Abstract
Zinc oxide (ZnO) and graphene oxide (GO) nanoparticles, silver/zinc zeolite (Ag/Zn-Ze), and graphene oxide-silver (GO-Ag) nanocomposites were synthesized and characterized with X-ray powder Diffraction, Field Emission Scanning Electron Microscope and Fourier Transform-Infrared Spectroscopy. The antibacterial efficacy of these nanoparticles was evaluated against E. coli. by shake flask method and plate culture method for different concentrations. For 105 cells/mL initial bacterial concentration, minimum inhibitory concentration (MIC) were <160, <320, <320, and >1280 μg/mL, and antibacterial concentration at which 50% cells are inhibited (IC50) were 47, 90, 78, and 250 μg/mL for Ag/Zn-Ze, GO, GO-Ag, and ZnO, respectively. Therefore, the shake flask method showed that for all nanoparticle concentrations, Ag/Zn-Ze, and GO-Ag exhibited greater inhibition efficacy, which was also highly dependent on initial bacterial concentration. However, in case of the plate culture method, similar range of inhibition capacity was found for Ag/Zn-Ze, GO-Ag, and ZnO, whereas GO showed lower potency to inhibit E. coli. In addition, GO-Ag nanocomposite exhibited more efficacy than Ag/Zn-Ze when the antibacterial surface was prepared with those. However, Ag/Zn-Ze showed no toxicity on Vero cells, whereas GO-Ag exhibited severe toxicity at higher concentrations. This study establishes GO-Ag and Ag/Zn-Ze as potent antimicrobial agents; however, their application dosage should carefully be chosen based on cytotoxic effects of GO-Ag in case of any possible physiological interaction.
Collapse
Affiliation(s)
- Oindrila Hossain
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Ehsanur Rahman
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Hridoy Roy
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Md. Shafiul Azam
- Department of ChemistryBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Shoeb Ahmed
- Department of Chemical EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| |
Collapse
|
97
|
Klapiszewska I, Kubiak A, Parus A, Janczarek M, Ślosarczyk A. The In Situ Hydrothermal and Microwave Syntheses of Zinc Oxides for Functional Cement Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1069. [PMID: 35161014 PMCID: PMC8840019 DOI: 10.3390/ma15031069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
This study presents the results of research on cement mortars amended with two zinc oxides obtained by two different methods: hydrothermal ZnO-H and microwave ZnO-M. Our work indicates that, in contrast to spherical ZnO-H, ZnO-M was characterized by a columnar particle habit with a BET surface area of 8 m2/g, which was four times higher than that obtained for hydrothermally obtained zinc oxide. In addition, ZnO-M induced much better antimicrobial resistance, which was also reported in cement mortar with this oxide. Both zinc oxides showed very good photocatalytic properties, as demonstrated by the 4-chlorophenol degradation test. The reaction efficiency was high, reaching the level of 90%. However, zinc oxides significantly delayed the cement binder setting: ZnO-H by 430 min and ZnO-M by 380 min. This in turn affected the increments in compressive strength of the produced mortars. No significant change in compressive strength was observed on the first day of setting, while significant changes in the strengths of mortars with both zinc oxides were observed later after 7 and 28 days of hardening. As of these times, the compressive strengths were about 13-15.5% and 12-13% higher than the corresponding values for the reference mortar, respectively, for ZnO-H and ZnO-M. There were no significant changes in plasticity and flexural strength of mortars amended with both zinc oxides.
Collapse
Affiliation(s)
- Izabela Klapiszewska
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland;
| | - Adam Kubiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland;
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.P.); (M.J.)
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.P.); (M.J.)
| | - Agnieszka Ślosarczyk
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland;
| |
Collapse
|
98
|
Kamaludin R, Abdul Majid L, Othman MHD, Mansur S, Sheikh Abdul Kadir SH, Wong KY, Khongnakorn W, Puteh MH. Polyvinylidene Difluoride (PVDF) Hollow Fiber Membrane Incorporated with Antibacterial and Anti-Fouling by Zinc Oxide for Water and Wastewater Treatment. MEMBRANES 2022; 12:110. [PMID: 35207032 PMCID: PMC8878803 DOI: 10.3390/membranes12020110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
Abstract
The addition of antibacterial material to hollow fiber membranes improves the membrane anti-biofouling characteristics. Antibacterial membranes were fabricated in this study to improve membrane function while also extending membrane lifetime. Neat polyvinylidene difluoride (PVDF) and PVDF hollow fiber membrane with the incorporation of antibacterial agent zinc oxide (ZnO) nanoparticles with various loading (2.5-7.5 wt.%) were fabricated by using dry/wet spinning method. The membrane structure, particle distribution, functional group, hydrophilicity, and pore size of each membrane were all assessed. The result shows that all ZnO/PVDF hollow fiber membranes have the asymmetric structure with even dispersion of ZnO nanoparticles throughout the membranes. The results showed that increased ZnO loadings considerably improved membrane hydrophilicity, and average pore size, in addition to good performance of pure water flux. Antibacterial testing shows that ZnO incorporated in the membrane matrix and membrane surfaces prevents bacteria that cause biofouling from adhering to the membrane. ZnO/PVDF membrane recorded excellent bovine serum albumin (BSA) rejection at 93.4% ± 0.4 with flux recovery rate at 70.9% ± 2.1. These results suggest that antibacterial ZnO/PVDF hollow fiber membranes are promising in relation to reducing biofouling for various water and wastewater treatment.
Collapse
Affiliation(s)
- Roziana Kamaludin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
| | - Lubna Abdul Majid
- School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
- School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Sumarni Mansur
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensics (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
| | - Keng Yinn Wong
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Watsa Khongnakorn
- Faculty of Engineering, Prince of Songkla University, Hatyai 90110, Songkhla, Thailand;
| | - Mohd Hafiz Puteh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
99
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
100
|
Biswas A, Kar U, Jana NR. Cytotoxicity of ZnO Nanoparticle Under Dark via Oxygen Vacancy Dependent Reactive Oxygen Species Generation. Phys Chem Chem Phys 2022; 24:13965-13975. [DOI: 10.1039/d2cp00301e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimicrobial and cytotoxic effect of zinc oxide nanomaterials are popularly thought due to zinc ion leaching, but the exact mechanism of cytotoxicity is controversial and not fully understood. Recent works...
Collapse
|