51
|
Dortet L, Glaser P, Kassis-Chikhani N, Girlich D, Ichai P, Boudon M, Samuel D, Creton E, Imanci D, Bonnin R, Fortineau N, Naas T. Long-lasting successful dissemination of resistance to oxazolidinones in MDR Staphylococcus epidermidis clinical isolates in a tertiary care hospital in France. J Antimicrob Chemother 2018; 73:41-51. [PMID: 29092052 PMCID: PMC5890688 DOI: 10.1093/jac/dkx370] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/10/2017] [Indexed: 01/16/2023] Open
Abstract
Objectives Patient- and procedure-related changes in modern medicine have turned CoNS into one of the major nosocomial pathogens. Treatments of CoNS infections are challenging owing to the large proportion of MDR strains and oxazolidinones often remain the last active antimicrobial molecules. Here, we have investigated a long-lasting outbreak (2010-13) due to methicillin- and linezolid-resistant (LR) CoNS (n = 168), involving 72 carriers and 49 infected patients. Methods Antimicrobial susceptibilities were tested by the disc diffusion method and MICs were determined by broth microdilution or Etest. The clonal relationship of LR Staphylococcus epidermidis (LRSE) was first determined using a semi-automated repetitive element palindromic PCR (rep-PCR) method. Then, WGS was performed on all cfr-positive LRSE (n = 30) and LRSE isolates representative of each rep-PCR-defined clone (n = 17). Self-transferability of cfr-carrying plasmids was analysed by filter-mating experiments. Results This outbreak was caused by the dissemination of three clones (ST2, ST5 and ST22) of LRSE. In these clones, linezolid resistance was caused by (i) mutations in the chromosome-located genes encoding the 23S RNA and L3 and L4 ribosomal proteins, but also by (ii) the dissemination of two different self-conjugative plasmids carrying the cfr gene encoding a 23S RNA methylase. By monitoring linezolid prescriptions in two neighbouring hospitals, we highlighted that the spread of LR-CoNS was strongly associated with linezolid use. Conclusions Physicians should be aware that plasmid-encoded linezolid resistance has started to disseminate among CoNS and that rational use of oxazolidinones is critical to preserve these molecules as efficient treatment options for MDR Gram-positive pathogens.
Collapse
Affiliation(s)
- Laurent Dortet
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Glaser
- Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France.,UMR 3525, CNRS, 75015 Paris, France
| | - Najiby Kassis-Chikhani
- Department of Hygiene, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Delphine Girlich
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Ichai
- Intensive Care Unit, Hepatobiliary Center, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Marc Boudon
- Intensive Care Unit, Hepatobiliary Center, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Didier Samuel
- Intensive Care Unit, Hepatobiliary Center, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Elodie Creton
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Dilek Imanci
- Department of Molecular Genetics and Hormonology, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Rémy Bonnin
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Nicolas Fortineau
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Thierry Naas
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| |
Collapse
|
52
|
Mazhar S, Hill C, McAuliffe O. The Genus Macrococcus: An Insight Into Its Biology, Evolution, and Relationship With Staphylococcus. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:1-50. [PMID: 30342720 DOI: 10.1016/bs.aambs.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Gram-positive genus Macrococcus is composed of eight species that are evolutionarily closely related to species of the Staphylococcus genus. In contrast to Staphylococcus species, species of Macrococcus are generally regarded to be avirulent in their animal hosts. Recent reports on Macrococcus have focused on the presence of novel methicillin resistance genes in Macrococcus caseolyticus and Macrococcus canis, with the discovery of the first plasmid-encoded methicillin resistance gene in clinical Staphylococcus aureus of probable macrococcal origin generating further interest in these organisms. Furthermore, M. caseolyticus has been associated with flavor development in certain fermented foods and its potential as a food bio-preservative has been documented. The potential application of these organisms in food seems at odds with the emerging information regarding antibiotic resistance and is prompting further examination of the potential safety issues associated with such strains, given the European Food Safety Authority framework for the safety evaluation of microorganisms in the food chain. A comprehensive understanding of the genus would also contribute to understanding the evolution of staphylococci in terms of its acquisition of antibiotic resistance and pathogenic potential. In this review, we discuss the current knowledge on Macrococcus with regard to their phenotypic capabilities, genetic diversity, and evolutionary history with Staphylococcus. Comparative genomics of the sequenced Macrococcus species will be discussed, providing insight into their unique metabolic features and the genetic structures carrying methicillin resistance. An in-depth understanding of these antibiotic resistance determinants can open the possibilities for devising better preventative strategies for an unpredictable future.
Collapse
Affiliation(s)
- Shahneela Mazhar
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
53
|
In Vitro and In Vivo Activities of DS-2969b, a Novel GyrB Inhibitor, and Its Water-Soluble Prodrug, DS11960558, against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:AAC.02556-17. [PMID: 29610202 DOI: 10.1128/aac.02556-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 01/04/2023] Open
Abstract
DS-2969b is a novel GyrB inhibitor under clinical development. In this study, the in vitro activity of DS-2969b and the in vivo activities of DS-2969b and its water-soluble prodrug, DS11960558, against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. DS-2969b inhibited the supercoiling activity of S. aureus DNA gyrase and the decatenation activity of its topoisomerase IV. DS-2969b showed antibacterial activity against Gram-positive aerobes but not against Gram-negative aerobes, except for Moraxella catarrhalis and Haemophilus influenzae DS-2969b was active against MRSA with an MIC90 of 0.25 μg/ml, which was 8-fold lower than that of linezolid. The presence of a pulmonary surfactant did not affect the MIC of DS-2969b. DS-2969b showed time-dependent slow killing against MRSA. The frequency of spontaneous resistance development was less than 6.2 × 10-10 in all four S. aureus isolates at 4× MIC of DS-2969b. In a neutropenic MRSA-induced murine muscle infection model, DS-2969b was more efficacious than linezolid by both the subcutaneous and oral routes. DS-2969b and DS11960558 showed efficacy in a neutropenic murine MRSA lung infection model. The pharmacokinetics and pharmacodynamics of DS-2969b and DS11960558 against MRSA were characterized in a neutropenic murine thigh infection model; the percentage of time during the dosing period in which the free drug concentration exceeded the MIC (fTMIC) correlated best with in vivo efficacy, and the static percent fTMIC was 43 to 49%. A sufficient fTMIC was observed in a phase 1 multiple-ascending-dose study of DS-2969b given orally at 400 mg once a day. These results suggest that DS11960558 and DS-2969b have potential for use as intravenous-to-oral step-down therapy for treating MRSA infections with a higher efficacy than linezolid.
Collapse
|
54
|
Wu D, Wang Z, Wang H, Sun L, Chen Y, Ji S, Shi K, Yu Y. Predominance of ST5-II-t311 clone among healthcare-associated methicillin-resistant Staphylococcus aureus isolates recovered from Zhejiang, China. Int J Infect Dis 2018; 71:107-112. [PMID: 29698703 DOI: 10.1016/j.ijid.2018.04.798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To determine the molecular characteristics and antimicrobial susceptibility of healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) in Zhejiang Province. METHODS A total of 391 HA-MRSA isolates were collected from 12 hospitals in five cities of Zhejiang Province, between January 2012 and May 2013. Susceptibility to vancomycin, teicoplanin, linezolid, tigecycline, and daptomycin was determined. Resistant isolates were screened for resistance mutations. Ten isolates from each hospital were then chosen at random for molecular typing. RESULTS The isolates showed good susceptibility to all five anti-MRSA agents; only five sporadic non-susceptible isolates were detected. CC5/ST5-MRSA-II-t311 (39/120, 32.5%) was found to be the predominant HA-MRSA clone and was spread between the different hospitals in Hangzhou. CC5/ST5-MRSA-II-t002 was the most prevalent clone in Ningbo, while CC239/ST239-MRSA was epidemic only in certain hospitals in Wenzhou and Shaoxing. Fifteen ST59 isolates (15/120, 12.5%) were identified among the HA-MRSA isolates. CONCLUSIONS CC5/ST5-MRSA-II-t311 has become the predominant HA-MRSA clone in Hangzhou, Zhejiang Province. ST59 MRSA has spread into hospitals. The isolates showed good susceptibility to all five anti-MRSA agents.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Hospital Epidemiology and Infection Control, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
55
|
Khan A, Miller WR, Arias CA. Mechanisms of antimicrobial resistance among hospital-associated pathogens. Expert Rev Anti Infect Ther 2018; 16:269-287. [PMID: 29617188 DOI: 10.1080/14787210.2018.1456919] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.
Collapse
Affiliation(s)
- Ayesha Khan
- a Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School , Houston , Texas , USA.,b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA
| | - William R Miller
- b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA.,c Department of Internal Medicine, Division of Infectious Diseases , McGovern Medical School
| | - Cesar A Arias
- a Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School , Houston , Texas , USA.,b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA.,c Department of Internal Medicine, Division of Infectious Diseases , McGovern Medical School.,d Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics , Universidad El Bosque , Bogota , Colombia.,e School of Public Health , UTHealth Center for Infectious Diseases , Houston , TX , USA
| |
Collapse
|
56
|
Ruppé E, Cherkaoui A, Lazarevic V, Emonet S, Schrenzel J. Establishing Genotype-to-Phenotype Relationships in Bacteria Causing Hospital-Acquired Pneumonia: A Prelude to the Application of Clinical Metagenomics. Antibiotics (Basel) 2017; 6:antibiotics6040030. [PMID: 29186015 PMCID: PMC5745473 DOI: 10.3390/antibiotics6040030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Clinical metagenomics (CMg), referred to as the application of next-generation sequencing (NGS) to clinical samples, is a promising tool for the diagnosis of hospital-acquired pneumonia (HAP). Indeed, CMg allows identifying pathogens and antibiotic resistance genes (ARGs), thereby providing the information required for the optimization of the antibiotic regimen. Hence, provided that CMg would be faster than conventional culture, the probabilistic regimen used in HAP could be tailored faster, which should lead to an expected decrease of mortality and morbidity. While the inference of the antibiotic susceptibility testing from metagenomic or even genomic data is challenging, a limited number of antibiotics are used in the probabilistic regimen of HAP (namely beta-lactams, aminoglycosides, fluoroquinolones, glycopeptides and oxazolidinones). Accordingly, based on the perspective of applying CMg to the early diagnostic of HAP, we aimed at reviewing the performances of whole genomic sequencing (WGS) of the main HAP-causing bacteria (Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia and Staphylococcus aureus) for the prediction of susceptibility to the antibiotic families advocated in the probabilistic regimen of HAP.
Collapse
Affiliation(s)
- Etienne Ruppé
- Genomic Research Laboratory, Geneva University Hospitals, CMU-9F, Rue Michel Servet 1, CH-1211 Geneva 14, Switzerland.
| | - Abdessalam Cherkaoui
- Laboratory of Bacteriology, University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Geneva University Hospitals, CMU-9F, Rue Michel Servet 1, CH-1211 Geneva 14, Switzerland.
| | - Stéphane Emonet
- Service of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Geneva University Hospitals, CMU-9F, Rue Michel Servet 1, CH-1211 Geneva 14, Switzerland.
- Laboratory of Bacteriology, University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
- Service of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| |
Collapse
|
57
|
Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist 2017; 13:11-19. [PMID: 29101082 DOI: 10.1016/j.jgar.2017.10.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Enterococcus is a significant pathogen in numerous infections, particularly in nosocomial infections, and is thus a great challenge to clinicians. Linezolid (LNZ), an oxazolidinone antibiotic, is an important therapeutic option for infections caused by Gram-positive bacterial pathogens, especially vancomycin-resistant enterococci. A systematic review was performed of the available literature on LNZ-resistant enterococci (LRE) to characterise these infections with respect to epidemiological, microbiological and clinical features. The results validated the potency of LNZ against enterococcal infections, with a sustained susceptibility rate of 99.8% in ZAAPS and 99.2% in LEADER surveillance programmes. Patients with LRE had been predominantly exposed to LNZ prior to isolation of LRE, with a mean treatment duration of 29.8±48.8days for Enterococcus faecalis and 23.1±21.4days for Enterococcus faecium. Paradoxically, LRE could also develop in patients without prior LNZ exposure. LNZ resistance was attributed to 23S rRNA (G2576T) mutations (51.2% of E. faecalis and 80.5% of E. faecium) as well as presence of the cfr gene (4.7% and 4.8%, respectively), which could transfer horizontally among the strains. In addition to the cfr gene, 32 cases of optrA-positive LRE were identified. Further study is required to determine the prevalence of novel resistance genes. The emergence of LRE thus hampers the treatment of such infections, which warrants worldwide surveillance.
Collapse
Affiliation(s)
- Ruru Bi
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Qin
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenting Fan
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
58
|
Deshmukh MS, Jain N. Design, Synthesis, and Antibacterial Evaluation of Oxazolidinones with Fused Heterocyclic C-Ring Substructure. ACS Med Chem Lett 2017; 8:1153-1158. [PMID: 29152047 DOI: 10.1021/acsmedchemlett.7b00263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 01/30/2023] Open
Abstract
A series of novel oxazolidinone antibacterials with diverse fused heteroaryl C-rings bearing hydrogen bond donor and hydrogen bond acceptor functionalities were designed and synthesized. The compound with benzoxazinone C-ring substructure (8c) exhibited superior activity compared to linezolid against a panel of Gram-positive and Gram-negative bacteria. Structural modifications at C5-side chain of 8c resulted in identification of several potent compounds (12a, 12b, 12g, and 12h). Selected compounds 8c and 12a showed very good microsomal stability and no CYP450 liability, thus clearing preliminary safety hurdles. A docking model of 12a binding to 23S rRNA suggested that the increased potency of 12a is due to additional ligand-receptor interaction.
Collapse
Affiliation(s)
- Mahesh S. Deshmukh
- Daiichi Sankyo India Pharma Pvt. Ltd., Sector-18, Gurgaon, Haryana 122015, India
- Department
of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Jain
- Department
of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
59
|
Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect Dis Clin North Am 2017; 30:415-439. [PMID: 27208766 DOI: 10.1016/j.idc.2016.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vancomycin-resistant enterococci are serious health threats due in part to their ability to persist in rugged environments and their propensity to acquire antibiotic resistance determinants. Enterococci have now established a home in our hospitals and possess mechanisms to defeat most currently available antimicrobials. This article reviews the history of the struggle with this pathogen, what is known about the traits associated with its rise in the modern medical environment, and the current understanding of therapeutic approaches in severe infections caused by these microorganisms. As the 21st century progresses, vancomycin-resistant enterococci continue to pose a daunting clinical challenge.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louis B Rice
- Departments of Medicine, Microbiology and Immunology, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Avenue Cra 9 No. 131 A - 02, Bogotá, Colombia.
| |
Collapse
|
60
|
Ng SMS, Teo SW, Yong YE, Ng FM, Lau QY, Jureen R, Hill J, Chia CSB. Preliminary investigations into developing all-D Omiganan for treating Mupirocin-resistant MRSA skin infections. Chem Biol Drug Des 2017; 90:1155-1160. [PMID: 28581672 DOI: 10.1111/cbdd.13035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/22/2023]
Abstract
Staphylococcus aureus is the primary pathogen responsible for the majority of human skin infections, and meticillin-resistant S. aureus (MRSA) currently presents a major clinical concern. The overuse of Mupirocin, the first-line topical antibacterial drug over 30 years, has led to the emergence of Mupirocin-resistant MRSA, creating a clinical concern. The antimicrobial peptide Omiganan was touted to be a promising antibacterial drug candidate due to its rapid membrane-disrupting bactericidal mode of action, entering clinical trials in 2005 as a topical gel to prevent catheter site infections. However, drug development ceased in 2009 due to a lack of efficacy. We postulate this to be due to proteolytic degradation caused by endogenous human skin proteases. Herein, we tested our hypothesis using Omiganan and its all-D enantiomer in a human skin protease stability assay, followed by anti-MRSA activity assay against of a panel of clinical MRSA isolates, a bactericidal/static determination and a time-kill assay to gauge all-D Omiganan's potential for further topical antibacterial drug development.
Collapse
Affiliation(s)
- Siew Mei Samantha Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shu Wei Teo
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yaqing Elena Yong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Fui Mee Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiu Ying Lau
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Roland Jureen
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - C S Brian Chia
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
61
|
Abstract
Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have not only emerged in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic "attack" is the prime example of bacterial adaptation and the pinnacle of evolution. "Survival of the fittest" is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material, or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and to devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice, providing specific examples in relevant bacterial pathogens.
Collapse
|
62
|
Inkster T, Coia J, Meunier D, Doumith M, Martin K, Pike R, Imrie L, Kane H, Hay M, Wiuff C, Wilson J, Deighan C, Hopkins KL, Woodford N, Hill R. First outbreak of colonization by linezolid- and glycopeptide-resistant Enterococcus faecium harbouring the cfr gene in a UK nephrology unit. J Hosp Infect 2017; 97:397-402. [PMID: 28698020 DOI: 10.1016/j.jhin.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
AIM To describe an outbreak of colonization by linezolid- and glycopeptide-resistant Enterococcus faecium harbouring the cfr gene in a UK nephrology unit. METHODS Isolates of linezolid-resistant E. faecium were typed by pulsed-field gel electrophoresis (PFGE), and examined by polymerase chain reaction (PCR) and sequencing for the transmissible cfr gene that confers resistance to linezolid. Enhanced environmental cleaning, initial and weekly screening of all patients, and monitoring of adherence to standard infection control precautions were implemented. FINDINGS Five patients with pre-existing renal disease were found to have rectal colonization with linezolid-resistant E. faecium over a two-week period. The index case was a 57-year-old male from India who had travelled to the UK. One patient also had a linezolid-resistant E. faecium of a different PFGE profile isolated from a heel wound. All isolates were confirmed to harbour the cfr gene by PCR and Sanger sequencing, and all were resistant to glycopeptides (VanA phenotype). CONCLUSIONS This article describes the first UK outbreak with a single strain of linezolid- and glycopeptide-resistant E. faecium harbouring the cfr gene, affecting five patients in a nephrology unit. Following the implementation of aggressive infection control measures, no further cases were detected beyond a two-week period.
Collapse
Affiliation(s)
- T Inkster
- Queen Elizabeth University Hospital, Glasgow, UK.
| | - J Coia
- Glasgow Royal Infirmary, Glasgow, UK
| | - D Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - M Doumith
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - K Martin
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - R Pike
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - L Imrie
- Health Protection Scotland, Glasgow, UK
| | - H Kane
- Health Protection Scotland, Glasgow, UK
| | - M Hay
- Glasgow Royal Infirmary, Glasgow, UK
| | - C Wiuff
- Health Protection Scotland, Glasgow, UK
| | - J Wilson
- Health Protection Scotland, Glasgow, UK
| | - C Deighan
- Glasgow Royal Infirmary, Glasgow, UK
| | - K L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - R Hill
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| |
Collapse
|
63
|
Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. Five-Year Summary of In Vitro Activity and Resistance Mechanisms of Linezolid against Clinically Important Gram-Positive Cocci in the United States from the LEADER Surveillance Program (2011 to 2015). Antimicrob Agents Chemother 2017; 61:e00609-17. [PMID: 28483950 PMCID: PMC5487612 DOI: 10.1128/aac.00609-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/27/2017] [Indexed: 11/20/2022] Open
Abstract
This report describes linezolid susceptibility testing results for 6,741 Gram-positive pathogens from 60 U.S. sites collected during 2015 for the LEADER Program. In addition, the report summarizes linezolid in vitro activity, resistance mechanisms, and molecular typing obtained for 2011 to 2015. During 2015, linezolid showed potent activity in testing against Staphylococcus aureus, inhibiting >99.9% of 3,031 isolates at ≤2 µg/ml. Similarly, linezolid showed coverage against 99.2% of coagulase-negative staphylococci, 99.7% of enterococci, and 100.0% of Streptococcus pneumoniae, virdans group, and beta-hemolytic streptococcus isolates tested. The overall linezolid resistance rate remained a modest <1% from 2011 to 2015. Staphylococci, especially Staphylococcus epidermidis, showed a range of linezolid resistance mechanisms. Increased annual trends for the presence of cfr among Staphylococcus aureus isolates were not observed, but 64.3% (9/14) of the isolates with decreased susceptibility (MIC, ≥4 µg/ml) to linezolid carried this transferrable gene (2011 to 2015). The cfr gene was detected in 21.9% (7/32) of linezolid-resistant staphylococci other than S. aureus from 2011 to 2015. The optrA gene was noted in half (2/4) of the population of linezolid-nonsusceptible Enterococcus faecalis isolates from 2011 to 2015, while linezolid-nonsusceptible Enterococcus faecium isolates showed alterations predominantly (16/16) in the 23S rRNA gene (G2576T). This report confirms a long record of linezolid activity against Gram-positive isolates in the United States since regulatory approval in 2000 and reports the oxazolidinones evolving resistance mechanisms.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, Iowa, USA
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
64
|
Liu XQ, Wang J, Li W, Zhao LQ, Lu Y, Liu JH, Zeng ZL. Distribution of cfr in Staphylococcus spp. and Escherichia coli Strains from Pig Farms in China and Characterization of a Novel cfr-Carrying F43:A-:B- Plasmid. Front Microbiol 2017; 8:329. [PMID: 28293235 PMCID: PMC5329041 DOI: 10.3389/fmicb.2017.00329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/17/2017] [Indexed: 11/18/2022] Open
Abstract
The multi-resistance gene cfr is widely distributed among various gram-positive and gram-negative species in livestock in China. To better understand the epidemiology of cfr among Staphylococcus spp. and E. coli isolates, 254 Staphylococcus spp. and 398 E. coli strains collected from six swine farms in China were subjected to prevalence and genetic analysis. Forty (15.7%) Staphylococcus spp. isolates, including 38 Staphylococcus sciuri strains, one Staphylococcus chromogenes strain, and one Staphylococcus lentus strain, and two (0.5%) E. coli isolates were found to contain the cfr gene. Most of the 38 S. sciuri strains were clonally unrelated; however, clonal dissemination of cfr-positive S. sciuri was detected at the same farm. In eight randomly selected cfr-positive staphylococci, a cfr-harboring module (IS21-558-cfr-ΔtnpB) was detected in six S. sciuri isolates; cfr was bracketed by two copies of ISEnfa4 or IS256 in the remaining two S. sciuri isolates. In the two E. coli isolates, EP25 and EP28, cfr was flanked by two IS26 elements in the same or opposite orientation, respectively. Complete sequence analysis of the novel F43:A-:B- plasmid pHNEP28 revealed that it contains two multi-resistance regions: cfr together with floR, qnrS1 interspersed with IS26, ΔISCR2 and ISKpn19, and blaTEM-1 together with tet(M) interspersed with IS26, ISApl1, ΔTn2, and ΔIS1B. The coexistence of cfr with other resistance genes on a conjugative plasmid may contribute to the dissemination of these genes by co-selection. Thus, rational drug use and continued surveillance of cfr in swine farms are warranted.
Collapse
Affiliation(s)
- Xiao-Qin Liu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jing Wang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Wei Li
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Li-Qing Zhao
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Yan Lu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jian-Hua Liu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Zhen-Ling Zeng
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
65
|
Rossolini GM, Arena F, Giani T. Mechanisms of Antibacterial Resistance. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
66
|
|
67
|
Ferrández O, Urbina O, Grau S. Critical role of tedizolid in the treatment of acute bacterial skin and skin structure infections. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 11:65-82. [PMID: 28053508 PMCID: PMC5191846 DOI: 10.2147/dddt.s84667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tedizolid phosphate has high activity against the Gram-positive microorganisms mainly involved in acute bacterial skin and skin structure infections, such as strains of Staphylococcus aureus (including methicillin-resistant S. aureus strains and methicillin-sensitive S. aureus strains), Streptococcus pyogenes, Streptococcus agalactiae, the Streptococcus anginosus group, and Enterococcus faecalis, including those with some mechanism of resistance limiting the use of linezolid. The area under the curve for time 0-24 hours/minimum inhibitory concentration (MIC) pharmacodynamic ratio has shown the best correlation with the efficacy of tedizolid, versus the time above MIC ratio and the maximum drug concentration/minimum inhibitory concentration ratio. Administration of this antibiotic for 6 days has shown its noninferiority versus administration of linezolid for 10 days in patients with skin and skin structure infections enrolled in two Phase III studies (ESTABLISH-1 and ESTABLISH-2). Tedizolid's more favorable safety profile and dosage regimen, which allow once-daily administration, versus linezolid, position it as a good therapeutic alternative. However, whether or not the greater economic cost associated with this antibiotic is offset by its shorter treatment duration and possibility of oral administration in routine clinical practice has yet to be clarified.
Collapse
Affiliation(s)
- Olivia Ferrández
- Hospital Pharmacy, Hospital Universitari del Mar, Barcelona, Spain; Nursing Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olatz Urbina
- Hospital Pharmacy, Hospital Universitari del Mar, Barcelona, Spain
| | - Santiago Grau
- Hospital Pharmacy, Hospital Universitari del Mar, Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
68
|
Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother 2016; 72:354-364. [PMID: 27999068 DOI: 10.1093/jac/dkw450] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Linezolid, an oxazolidinone antimicrobial agent that acts by inhibiting protein synthesis in a unique fashion, is used in the treatment of community-acquired pneumonia, skin and soft-tissue infections and other infections caused by Gram-positive bacteria including VRE and methicillin-resistant staphylococci. Currently, linezolid resistance among these pathogens remains low, commonly <1.0%, although the prevalence of antibiotic resistance is increasing in many countries. Therefore, the development of resistance by clinical isolates should prompt increased attention of clinical laboratories to routinely perform linezolid susceptibility testing for this important agent and should be taken into account when considering its therapeutic use. Considering the importance of linezolid in the treatment of infections caused by Gram-positive bacteria, this review was undertaken to optimize the clinical use of this antibiotic.
Collapse
Affiliation(s)
| | - Mohammad Rahbar
- Department of Microbiology, Iranian Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
69
|
cfr-mediated linezolid-resistant clinical isolates of methicillin-resistant coagulase-negative staphylococci from China. J Glob Antimicrob Resist 2016; 8:1-5. [PMID: 27865985 DOI: 10.1016/j.jgar.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/03/2016] [Accepted: 09/10/2016] [Indexed: 11/20/2022] Open
Abstract
Three linezolid-resistant coagulase-negative staphylococci (LR-CoNS), including two Staphylococcus cohnii and one Staphylococcus capitis, were isolated from 1104 clinical staphylococcal isolates across China in 2013-2014. Antibiotic susceptibilities of the bacteria were determined by the agar dilution method. PCR and DNA sequencing were performed to determine the potential molecular mechanism of linezolid resistance. The two linezolid-resistant S. cohnii isolates were subjected to pulsed-field gel electrophoresis (PFGE) to investigate their genetic relatedness. Primer walking, S1 nuclease PFGE and Southern blot hybridisation were conducted to ascertain the location and environment of the cfr gene. All three isolates were positive for the cfr gene. Amino acid mutations S158F and S158Y in the ribosomal protein L3 were identified in S. cohnii 13B289 and 13L105, respectively, both of which also had an additional substitution (D159Y) in L3. PFGE indicated that the two S. cohnii isolates belonged to diverse clonal strains. S1 nuclease PFGE and Southern blotting experiments indicated that the cfr gene of the three isolates resided on plasmids of similar size (ca. 35.4kb). The cfr-harbouring segments of S. capitis 13G350 and S. cohnii 13L105 were identical to plasmid pSS-01 reported previously. The cfr-carrying fragment of S. cohnii 13B289 was indistinguishable from the formerly described plasmid pSS-02. In conclusion, the presence of the cfr gene located on a plasmid was the main mechanism contributing to resistance to linezolid in the three staphylococcal isolates. Hence, timely detection and judicious use of antibiotics are essential to prevent further transmission of this resistance mechanism.
Collapse
|
70
|
Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G, Feßler AT, Vester B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb Perspect Med 2016; 6:a027037. [PMID: 27549310 PMCID: PMC5088508 DOI: 10.1101/cshperspect.a027037] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lincosamides, streptogramins, phenicols, and pleuromutilins (LSPPs) represent four structurally different classes of antimicrobial agents that inhibit bacterial protein synthesis by binding to particular sites on the 50S ribosomal subunit of the ribosomes. Members of all four classes are used for different purposes in human and veterinary medicine in various countries worldwide. Bacteria have developed ways and means to escape the inhibitory effects of LSPP antimicrobial agents by enzymatic inactivation, active export, or modification of the target sites of the agents. This review provides a comprehensive overview of the mode of action of LSPP antimicrobial agents as well as of the mutations and resistance genes known to confer resistance to these agents in various bacteria of human and animal origin.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
71
|
A randomized, double-blind, comparative study to assess the safety and efficacy of topical retapamulin ointment 1% versus oral linezolid in the treatment of secondarily infected traumatic lesions and impetigo due to methicillin-resistant Staphylococcus aureus. Adv Skin Wound Care 2016; 27:548-59. [PMID: 25396674 DOI: 10.1097/01.asw.0000456631.20389.ae] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the clinical and bacteriological efficacy of topical retapamulin ointment 1% versus oral linezolid in the treatment of patients with secondarily infected traumatic lesions (SITLs; excluding abscesses) or impetigo due to methicillin-resistant Staphylococcus aureus (MRSA). DESIGN A randomized, double-blind, double-dummy, multicenter, comparative study (NCT00852540). SETTING Patients recruited from 36 study centers in the United States. PATIENTS Patients 2 months or older with SITL (including secondarily infected lacerations or sutured wounds) or impetigo (bullous and nonbullous) suitable for treatment with a topical antibiotic, with a total Skin Infection Rating Scale score of 8 or greater, including a pus/exudate score of 3 or greater. INTERVENTIONS Patients received retapamulin ointment 1% (plus oral placebo), twice daily for 5 days or oral linezolid (plus placebo ointment) 2 or 3 times daily for 10 days. MAIN OUTCOME MEASURE Primary end point: clinical response (success/failure) at follow-up in patients with MRSA at baseline (per-protocol population). Secondary efficacy end points: clinical and microbiologic response and outcome at follow-up and end of therapy; therapeutic response at follow-up. MAIN RESULTS The majority of patients had SITL (70.4% [188/267] and 66.4% [91/137] in the retapamulin and linezolid groups, respectively; intent-to-treat clinical population). Clinical success rate at follow-up was significantly lower in the retapamulin versus the linezolid group (63.9% [39/61] vs 90.6% [29/32], respectively; difference in success rate -26.7%; 95% CI, -45.7 to -7.7). CONCLUSIONS Clinical success rate at follow-up in the per-protocol MRSA population was significantly lower in the retapamulin versus the linezolid group. It could not be determined whether this was related to study design, bacterial virulence, or retapamulin activity.
Collapse
|
72
|
Purrello SM, Garau J, Giamarellos E, Mazzei T, Pea F, Soriano A, Stefani S. Methicillin-resistant Staphylococcus aureus infections: A review of the currently available treatment options. J Glob Antimicrob Resist 2016; 7:178-186. [PMID: 27889013 DOI: 10.1016/j.jgar.2016.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/03/2016] [Accepted: 07/16/2016] [Indexed: 12/16/2022] Open
Abstract
This review is the result of discussions that took place at the 5th MRSA Working Group Consensus Meeting and explores the possible treatment options available for different types of infections due to methicillin-resistant Staphylococcus aureus (MRSA), focusing on those antibiotics that could represent a valid alternative to vancomycin. In fact, whilst vancomycin remains a viable option, its therapy is moving towards individualised dosing. Other drugs, such as the new lipoglycopeptides (oritavancin, dalbavancin and telavancin) and fifth-generation cephalosporins (ceftaroline and ceftobiprole), are showing good in vitro potency and in vivo efficacy, especially for patients infected with micro-organisms with higher vancomycin minimum inhibitory concentrations (MICs). Tedizolid is an attractive agent for use both in hospital and community settings, but the post-marketing data will better clarify its potential. Daptomycin and linezolid have shown non-inferiority to vancomycin in the treatment of MRSA bacteraemia and non-inferiority/superiority to vancomycin in the treatment of hospital-acquired pneumonia. Thus, several options are available, but more data from clinical practice, especially for invasive infections, are needed to assign specific roles to each antibiotic and to definitely include them in the new antibacterial armamentarium.
Collapse
Affiliation(s)
- S M Purrello
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMAR Lab), Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - J Garau
- Department of Medicine, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - E Giamarellos
- 4th Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - T Mazzei
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Firenze, Firenze, Italy
| | - F Pea
- Institute of Clinical Pharmacology, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine, Italy; Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - A Soriano
- Department of Infectious Diseases, IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain
| | - S Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMAR Lab), Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
73
|
Akpaka PE, Roberts R, Monecke S. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. J Infect Public Health 2016; 10:316-323. [PMID: 27328777 DOI: 10.1016/j.jiph.2016.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus continues to pose major public health challenges in many areas because of antibiotic resistance problems. In the Caribbean, especially Trinidad and Tobago, the challenge is not different. This study was performed to evaluate the antimicrobial resistance gene prevalence among S. aureus isolates in Trinidad and Tobago. Standard and molecular microbiological methods, including the Microscan automated system, DNA microarray and multi locus sequence typing (MLST) analysis, were performed on 309 clinical S. aureus isolates recovered from patients who were treated at three of the country's main health institutions. S. aureus exhibited susceptibilities ≥80% to eleven of the 19 antimicrobials tested against it, and these belong to the most commonly used and available antibiotics in the country. While the antibiotic to which it was most susceptible of the commonly used antibiotics was trimethoprim/sulfamethoxazole, the antibiotics to which it was least susceptible or most resistant to were ampicillin and penicillin. S. aureus isolates from the pediatric ward produced the greatest rate of susceptibility among the isolates recovered from patients admitted into hospitals, while isolates from Accident and Emergency rooms displayed the greatest susceptibilities among patients from the community. S. aureus isolates from the country did not harbor acquired resistant genes targeting clindamycin/macrolides (ermB), linezolid (cfr) or vancomycin (vanA). The blaZ gene, which is the most common beta lactam (Penicillinase) resistance mechanism for S. aureus, was observed in 88.7% of the methicillin susceptible S. aureus, while methicillin resistance mediated by the mec gene was present in 13.6%. Most of the resistance markers found in MRSA isolates were significantly associated with the ST239-MRSA-III strain in this study, and all isolates that belonged to the USA300 strain, which additionally encoded both the PVL gene and ACME cluster, belonged to CC8. Several resistant genes, such as vanA, cfr and ermB, mediating resistance in S. aureus, are currently non-existent in Trinidad and Tobago. However, the majority of SCCmec genes were observed, suggesting that there is ongoing nosocomial transmission with minimal community transmission. This calls for stringent antibiotic stewardship and policies in the country.
Collapse
Affiliation(s)
- Patrick E Akpaka
- Unit of Pathology/Microbiology, Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Rashida Roberts
- Unit of Pathology/Microbiology, Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Stefan Monecke
- Institut fuer Medizinische Mikrobiologie und Hygiene, Medizinische Fakultaet Carl Gustav Carus, Fiedlerstr. 42, D-01307 Dresden, Germany
| |
Collapse
|
74
|
Munita JM, Bayer AS, Arias CA. Evolving resistance among Gram-positive pathogens. Clin Infect Dis 2016; 61 Suppl 2:S48-57. [PMID: 26316558 DOI: 10.1093/cid/civ523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents.
Collapse
Affiliation(s)
- Jose M Munita
- Division of Infectious Diseases, Department of Internal Medicine International Center for Microbial Genomics Clinica Alemana de Santiago, Universidad del Desarrollo, Chile
| | - Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston International Center for Microbial Genomics Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
75
|
Chellat MF, Raguž L, Riedl R. Targeting Antibiotic Resistance. Angew Chem Int Ed Engl 2016; 55:6600-26. [PMID: 27000559 PMCID: PMC5071768 DOI: 10.1002/anie.201506818] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/10/2015] [Indexed: 12/11/2022]
Abstract
Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last-resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled "Combat drug resistance: no action today means no cure tomorrow" triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens.
Collapse
Affiliation(s)
- Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Luka Raguž
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| |
Collapse
|
76
|
Rapid Acquisition of Linezolid Resistance in Methicillin-Resistant Staphylococcus aureus: Role of Hypermutation and Homologous Recombination. PLoS One 2016; 11:e0155512. [PMID: 27182700 PMCID: PMC4868352 DOI: 10.1371/journal.pone.0155512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/30/2016] [Indexed: 01/01/2023] Open
Abstract
Background We previously reported the case of a 64-year-old man with mediastinitis caused by Staphylococcus aureus in which the infecting bacterium acquired linezolid resistance after only 14 days treatment with linezolid. We therefore investigated relevant clinical isolates for possible mechanisms of this rapid acquisition of linezolid resistance. Methods Using clinical S. aureus isolates, we assessed the in vitro mutation rate and performed stepwise selection for linezolid resistance. To investigate homologous recombination, sequences were determined for each of the 23S ribosomal RNA (23S rRNA) loci; analyzed sequences spanned the entirety of each 23S rRNA gene, including domain V, as well as the 16S-23S intergenic spacer regions. We additionally performed next-generation sequencing on clinical strains to identify single-nucleotide polymorphisms compared to the N315 genome. Results Strains isolated from the patient prior to linezolid exposure (M5-M7) showed higher-level linezolid resistance than N315, and the pre-exposure strain (M2) exhibited more rapid acquisition of linezolid resistance than did N315. However, the mutation rates of these and contemporaneous clinical isolates were similar to those of N315, and the isolates did not exhibit any mutations in hypermutation-related genes. Sequences of the 23S rRNA genes and 16S-23S intergenic spacer regions were identical among the pre- and post-exposure clinical strains. Notably, all of the pre-exposure isolates harbored a recQ missense mutation (Glu69Asp) with respect to N315; such a lesion may have affected short sequence recombination (facilitating, for example, recombination among rrn loci). We hypothesize that this mechanism contributed to rapid acquisition of linezolid resistance. Conclusions Hypermutation and homologous recombination of the ribosomal RNA genes, including 23S rRNA genes, appear not to have been sources of the accelerated acquisition of linezolid resistance observed in our clinical case. Increased frequency of short sequence recombination may have resulted from a recQ variant in the infecting organism.
Collapse
|
77
|
First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone. Antimicrob Agents Chemother 2016; 60:3007-15. [PMID: 26953212 PMCID: PMC4862533 DOI: 10.1128/aac.02949-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.
Collapse
|
78
|
Linezolid Surveillance Results for the United States (LEADER Surveillance Program 2014). Antimicrob Agents Chemother 2016; 60:2273-80. [PMID: 26833165 DOI: 10.1128/aac.02803-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
Thelinezolidexperience andaccuratedetermination ofresistance (LEADER) surveillance program has monitored linezolid activity, spectrum, and resistance since 2004. In 2014, a total of 6,865 Gram-positive pathogens from 60 medical centers from 36 states were submitted. The organism groups evaluated wereStaphylococcus aureus(3,106), coagulase-negative staphylococci (CoNS; 797), enterococci (855),Streptococcus pneumoniae(874), viridans group streptococci (359), and beta-hemolytic streptococci (874). Susceptibility testing was performed by reference broth microdilution at the monitoring laboratory. Linezolid-resistant isolates were confirmed by repeat testing. PCR and sequencing were performed to detect mutations in 23S rRNA, L3, L4, and L22 proteins and acquired genes (cfrandoptrA). The MIC50/90forStaphylococcus aureuswas 1/1 μg/ml, with 47.2% of isolates being methicillin-resistantStaphylococcus aureus Linezolid was active against allStreptococcus pneumoniaestrains and beta-hemolytic streptococci with a MIC50/90of 1/1 μg/ml and against viridans group streptococci with a MIC50/90of 0.5/1 μg/ml. Among the linezolid-nonsusceptible MRSA strains, one strain harboredcfronly (MIC, 4 μg/ml), one harbored G2576T (MIC, 8 μg/ml), and one containedcfrand G2576T with L3 changes (MIC, ≥8 μg/ml). Among CoNS, 0.75% (six isolates) of all strains demonstrated linezolid MIC results of ≥4 μg/ml. Five of these were identified asStaphylococcus epidermidis, four of which containedcfrin addition to the presence of mutations in the ribosomal proteins L3 and L4, alone or in combination with 23S rRNA (G2576T) mutations. Six enterococci (0.7%) were linezolid nonsusceptible (≥4 μg/ml; five with G2576T mutations, including one with an additionalcfrgene, and one strain withoptrAonly). Linezolid demonstrated excellent activity and a sustained susceptibility rate of 99.78% overall.
Collapse
|
79
|
Affiliation(s)
- Mathieu F. Chellat
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Luka Raguž
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
80
|
Investigation of Linezolid Resistance in Staphylococci and Enterococci. J Clin Microbiol 2016; 54:1289-94. [PMID: 26935728 DOI: 10.1128/jcm.01929-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/27/2016] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate an apparent increase in linezolid-nonsusceptible staphylococci and enterococci following a laboratory change in antimicrobial susceptibility testing from disk diffusion to an automated susceptibility testing system. Isolates with nonsusceptible results (n = 27) from Vitek2 were subjected to a battery of confirmatory testing which included disk diffusion, Microscan broth microdilution, Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution, gradient diffusion (Etest), 23S rRNA gene sequencing, and cfr PCR. Our results show that there is poor correlation between methods and that only 70 to 75% of isolates were confirmed as linezolid resistant with alternative phenotypic testing methods (disk diffusion, Microscan broth microdilution, CLSI broth microdilution, and Etest). 23S rRNA gene sequencing identified mutations previously associated with linezolid resistance in 16 (59.3%) isolates, and the cfr gene was detected in 3 (11.1%) isolates. Mutations located at positions 2576 and 2534 of the 23S rRNA gene were most common. In addition, two previously undescribed variants (at positions 2083 and 2345 of the 23S rRNA gene) were also identified and may contribute to linezolid resistance.
Collapse
|
81
|
Silva-Del Toro SL, Greenwood-Quaintance KE, Patel R. In vitro activity of tedizolid against linezolid-resistant staphylococci and enterococci. Diagn Microbiol Infect Dis 2016; 85:102-4. [PMID: 26971179 DOI: 10.1016/j.diagmicrobio.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
The tedizolid MIC of 27 clinical isolates of linezolid-resistant staphylococci and enterococci was determined. Tedizolid MICs were ≥1μg/mL and were 4- to 32-fold lower than those of linezolid. Linezolid resistance mechanisms included G2576T 23S rRNA gene and rplC and rplD mutations.
Collapse
Affiliation(s)
- Stephanie L Silva-Del Toro
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
82
|
Discovery of Novel MLSB Resistance Methylase Genes and Their Associated Genetic Elements in Staphylococci. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
83
|
Ntokou E, Hansen LH, Kongsted J, Vester B. Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases. PLoS One 2015; 10:e0145655. [PMID: 26700482 PMCID: PMC4689488 DOI: 10.1371/journal.pone.0145655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Cfr and RlmN methyltransferases both modify adenine 2503 in 23S rRNA (Escherichia coli numbering). RlmN methylates position C2 of adenine while Cfr methylates position C8, and to a lesser extent C2, conferring antibiotic resistance to peptidyl transferase inhibitors. Cfr and RlmN show high sequence homology and may be evolutionarily linked to a common ancestor. To explore their individual specificity and similarity we performed two sets of experiments. We created a homology model of Cfr and explored the C2/C8 specificity using docking and binding energy calculations on the Cfr homology model and an X-ray structure of RlmN. We used a trinucleotide as target sequence and assessed its positioning at the active site for methylation. The calculations are in accordance with different poses of the trinucleotide in the two enzymes indicating major evolutionary changes to shift the C2/C8 specificities. To explore interchangeability between Cfr and RlmN we constructed various combinations of their genes. The function of the mixed genes was investigated by RNA primer extension analysis to reveal methylation at 23S rRNA position A2503 and by MIC analysis to reveal antibiotic resistance. The catalytic site is expected to be responsible for the C2/C8 specificity and most of the combinations involve interchanging segments at this site. Almost all replacements showed no function in the primer extension assay, apart from a few that had a weak effect. Thus Cfr and RlmN appear to be much less similar than expected from their sequence similarity and common target.
Collapse
Affiliation(s)
- Eleni Ntokou
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Lykke Haastrup Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
84
|
Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A 2015; 112:E5805-14. [PMID: 26464510 PMCID: PMC4629319 DOI: 10.1073/pnas.1517952112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
85
|
Curbete MM, Salgado HRN. A Critical Review of the Properties of Fusidic Acid and Analytical Methods for Its Determination. Crit Rev Anal Chem 2015; 46:352-60. [DOI: 10.1080/10408347.2015.1084225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
86
|
O'Connor C, Powell J, Finnegan C, O'Gorman A, Barrett S, Hopkins K, Pichon B, Hill R, Power L, Woodford N, Coffey J, Kearns A, O'Connell N, Dunne C. Incidence, management and outcomes of the first cfr-mediated linezolid-resistant Staphylococcus epidermidis outbreak in a tertiary referral centre in the Republic of Ireland. J Hosp Infect 2015; 90:316-21. [DOI: 10.1016/j.jhin.2014.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/06/2014] [Indexed: 02/06/2023]
|
87
|
Detection of a New cfr-Like Gene, cfr(B), in Enterococcus faecium Isolates Recovered from Human Specimens in the United States as Part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2015; 59:6256-61. [PMID: 26248384 DOI: 10.1128/aac.01473-15] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022] Open
Abstract
Two linezolid-resistant Enterococcus faecium isolates (MICs, 8 μg/ml) from unique patients of a medical center in New Orleans were included in this study. Isolates were initially investigated for the presence of mutations in the V domain of 23S rRNA genes and L3, L4, and L22 ribosomal proteins, as well as cfr. Isolates were subjected to pulsed-field gel electrophoresis (just one band difference), and one representative strain was submitted to whole-genome sequencing. Gene location was also determined by hybridization, and cfr genes were cloned and expressed in a Staphylococcus aureus background. The two isolates had one out of six 23S rRNA alleles mutated (G2576T), had wild-type L3, L4, and L22 sequences, and were positive for a cfr-like gene. The sequence of the protein encoded by the cfr-like gene was most similar (99.7%) to that found in Peptoclostridium difficile, which shared only 74.9% amino acid identity with the proteins encoded by genes previously identified in staphylococci and non-faecium enterococci and was, therefore, denominated Cfr(B). When expressed in S. aureus, the protein conferred a resistance profile similar to that of Cfr. Two copies of cfr(B) were chromosomally located and embedded in a Tn6218 similar to the cfr-carrying transposon described in P. difficile. This study reports the first detection of cfr genes in E. faecium clinical isolates in the United States and characterization of a new cfr variant, cfr(B). cfr(B) has been observed in mobile genetic elements in E. faecium and P. difficile, suggesting potential for dissemination. However, further analysis is necessary to access the resistance levels conferred by cfr(B) when expressed in enterococci.
Collapse
|
88
|
RX-P873, a Novel Protein Synthesis Inhibitor, Accumulates in Human THP-1 Monocytes and Is Active against Intracellular Infections by Gram-Positive (Staphylococcus aureus) and Gram-Negative (Pseudomonas aeruginosa) Bacteria. Antimicrob Agents Chemother 2015; 59:4750-8. [PMID: 26014952 DOI: 10.1128/aac.00428-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/24/2015] [Indexed: 11/20/2022] Open
Abstract
The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species.
Collapse
|
89
|
Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 2015; 12:1221-36. [PMID: 25199988 DOI: 10.1586/14787210.2014.956092] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical School, 6431 Fannin St. Rm. MSB 2.112, Houston, TX 77030, USA
| | | | | |
Collapse
|
90
|
Lee JY, Howden BP. Vancomycin in the treatment of methicillin-resistant Staphylococcus aureus - a clinician's guide to the science informing current practice. Expert Rev Anti Infect Ther 2015; 13:855-69. [PMID: 25947636 DOI: 10.1586/14787210.2015.1041924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinicians treating an infection assess a patient in terms of disease manifestation, causative organism and available antibiotic options with the aim of devising a therapeutic strategy under the creed of 'first, do no harm'. It is often only when treatment is failing or options are limited, as in the scenario of multidrug-resistant organisms, that consideration is given to the interplay that occurs between the microbe and the host. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin provides a prime example of these dynamic interactions. This review shall explore these concepts in relation to vancomycin for the treatment of methicillin-resistant S. aureus, with the aim of providing an informed approach to the utilization of this drug.
Collapse
Affiliation(s)
- Jean Yh Lee
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia
| | | |
Collapse
|
91
|
Dissemination of the same cfr-carrying plasmid among methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal isolates in China. Antimicrob Agents Chemother 2015; 59:3669-71. [PMID: 25870066 DOI: 10.1128/aac.04580-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Six cfr-harboring methicillin-resistant Staphylococcus aureus (MRSA) isolates, which belonged to the same clone of sequence type 5 (ST5)-staphylococcal cassette chromosome mec element II (SCCmec II)-spa t311, were investigated in this study. Complete sequencing of a cfr-carrying plasmid, pLRSA417, revealed an 8,487-bp fragment containing a Tn4001-like transposon, cfr, orf1, and ISEnfa4. This segment, first identified in an animal plasmid, pSS-01, was observed in several plasmids from clinical coagulase-negative staphylococci in China, suggesting that the cfr gene, which might originate from livestock, was located in the same mobile element and disseminated among different clinical staphylococcal species.
Collapse
|
92
|
Flamm RK, Mendes RE, Hogan PA, Ross JE, Farrell DJ, Jones RN. In vitro activity of linezolid as assessed through the 2013 LEADER surveillance program. Diagn Microbiol Infect Dis 2015; 81:283-9. [DOI: 10.1016/j.diagmicrobio.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022]
|
93
|
Chen Y, Ruan ZX, Wang F, Huangfu DS, Sun PH, Lin J, Chen WM. Novel Oxazolidinone Antibacterial Analogues with a Substituted Ligustrazine C-ring Unit. Chem Biol Drug Des 2015; 86:682-90. [DOI: 10.1111/cbdd.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Yan Chen
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Zhi-Xiong Ruan
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Fang Wang
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | | | - Ping-Hua Sun
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Jing Lin
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Wei-Min Chen
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| |
Collapse
|
94
|
Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I, Lensing C, Dagwadordsch U, Kekulé AS, Werner G, Layer F. Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids. J Antimicrob Chemother 2015; 70:1630-8. [PMID: 25740949 DOI: 10.1093/jac/dkv025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/21/2015] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES This study was a detailed investigation of Staphylococcus epidermidis clinical isolates exhibiting linezolid resistance. METHODS Thirty-six linezolid-resistant S. epidermidis from eight German hospitals, including isolates from suspected hospital-associated outbreaks between January 2012 and April 2013, were analysed with respect to their antimicrobial susceptibility and the presence of cfr and/or mutations in the 23S rRNA, rplC, rplD and rplV genes. Relatedness of isolates was estimated by MLST and SmaI macrorestriction analysis. Characterization of cfr plasmids was carried out by means of Illumina sequencing. RESULTS The MICs of linezolid varied substantially between the isolates. No apparent correlation was detected between the level of resistance, the presence of cfr and ribosomal target site mutations. S. epidermidis isolates from two hospitals were confirmed as clonally related, indicating the spread of the respective clone over a period of 1 year. Next-generation sequencing revealed two different categories of cfr-expressing plasmids, both of them varying in genetic arrangement and composition from previously published cfr plasmids: p12-00322-like plasmids showed incorporation of cfr into a pGO1-like backbone and displayed capabilities for intra- and inter-species conjugational transfer. CONCLUSIONS To date, linezolid-resistant S. epidermidis have rarely been isolated from human clinical sources in Germany. Here, we describe the emergence and outbreaks of these strains. We detected previously described and novel point mutations in the 23S ribosomal genes. The cfr gene was only present in six isolates. However, this is the first known description of cfr incorporation into conjugative vectors; under selective pressure, these vectors could give reasonable cause for concern.
Collapse
Affiliation(s)
- Jennifer Bender
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Birgit Strommenger
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Matthias Steglich
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Centre Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Ines Fenner
- MVZ Labor Fenner und Kollegen, Bergstraße 14, 20095 Hamburg, Germany
| | - Carmen Lensing
- MVZ Labor Fenner und Kollegen, Bergstraße 14, 20095 Hamburg, Germany
| | - Urantschimeg Dagwadordsch
- Institute of Medical Microbiology, Martin Luther University Halle/Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany
| | - Alexander S Kekulé
- Institute of Medical Microbiology, Martin Luther University Halle/Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Franziska Layer
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany
| |
Collapse
|
95
|
Ribosomal protein L3 mutations are associated with cfr-mediated linezolid resistance in clinical isolates of Staphylococcus cohnii. Curr Microbiol 2015; 70:840-5. [PMID: 25726423 DOI: 10.1007/s00284-015-0793-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/16/2015] [Indexed: 10/23/2022]
Abstract
From June, 2012 to November, 2013 five linezolid-resistant Staphylococcus cohnii isolates were identified in our hospital in Beijing, China. The investigation of the resistance mechanisms confirmed that the cfr-carrying plasmids were the main cause of linezolid resistance in those clinical isolates. Moreover, all the five isolates had ribosomal protein L3 mutations, which had different coordinate effect on cfr-mediated linezolid resistance directly through the substitution of serine 158 by phenylalanine or tyrosine in L3 protein. In this study, two types of plasmids (p432, p438) (Accession No. KM114207) were found, which share high sequence identity with previously reported cfr-carrying pRM01 and pMHZ plasmids originated from northern and southern China, showing wide regional dissemination in China. The stability of linezolid resistance was studied by passaging single colonies serially on antibiotic-free blood medium, which showed that the susceptible derivatives emerged until the passages 39-42 with the elimination of cfr-carrying plasmid. Thus the high stability of this plasmid may pose a risk for the transmission among patients or even cause an outbreak in clinical settings.
Collapse
|
96
|
Abstract
Treatment of multidrug-resistant Gram-positive infections continues to challenge clinicians as the emergence of new resistance mechanisms outpaces introduction of novel antimicrobial agents. Tedizolid phosphate is a next-generation oxazolidinone with activity against both methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus spp. Tedizolid has consistently shown potency advantages over linezolid against Gram-positive microorganisms including those with reduced susceptibility to linezolid. Of particular significance, minimum inhibitory concentrations of tedizolid appear to be largely unaffected by the chloramphenicol-florfenicol resistance (cfr) gene, which has been implicated in a number of published linezolid-resistant organism outbreaks. Tedizolid phosphate also has been found to have a favorable pharmacokinetic profile allowing for once-daily dosing in both oral and intravenous forms. Potency and pharmacokinetic advantages have allowed for lower total daily doses of tedizolid, compared to linezolid, being needed for clinical efficacy in the treatment of acute bacterial skin and skin structure infections (ABSSSI). The decreased total drug exposure produced may in part be responsible for a decrease in the observed adverse effects including thrombocytopenia. Tedizolid phosphate is currently indicated for the treatment of ABSSSI and under investigation for the treatment of nosocomial pneumonia. Although much of the role of tedizolid remains to be defined by expanding clinical experience, tedizolid is likely a welcomed addition to the mere handful of agents available for the treatment of multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA,
| | | |
Collapse
|
97
|
Sahm DF, Deane J, Bien PA, Locke JB, Zuill DE, Shaw KJ, Bartizal KF. Results of the Surveillance of Tedizolid Activity and Resistance Program: in vitro susceptibility of Gram-positive pathogens collected in 2011 and 2012 from the United States and Europe. Diagn Microbiol Infect Dis 2015; 81:112-8. [DOI: 10.1016/j.diagmicrobio.2014.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
98
|
Barros M, Branquinho R, Grosso F, Peixe L, Novais C. Linezolid-Resistant Staphylococcus epidermidis, Portugal, 2012. Emerg Infect Dis 2014; 20:903-5. [PMID: 24751182 PMCID: PMC4012793 DOI: 10.3201/eid2005.130783] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
99
|
Tian Y, Li T, Zhu Y, Wang B, Zou X, Li M. Mechanisms of linezolid resistance in staphylococci and enterococci isolated from two teaching hospitals in Shanghai, China. BMC Microbiol 2014; 14:292. [PMID: 25420718 PMCID: PMC4245736 DOI: 10.1186/s12866-014-0292-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linezolid is one of the most effective treatments against Gram-positive pathogens. However, linezolid-resistant/intermediate strains have recently emerged in worldwide. The purpose of this study was to analyse the prevalence and resistance mechanisms of linezolid-resistant/intermediate staphylococci and enterococci in Shanghai, China. RESULTS Thirty-two linezolid-resistant/intermediate strains, including 14 Staphylococcus capitis, three Staphylococcus aureus, 14 Enterococcus faecalis and one Enterococcus faecium clinical isolates, were collected in this study which displayed linezolid MICs of 8 to 512 μg/ml, 8-32 μg/ml, 4-8 μg/ml and 4 μg/ml, respectively. All linezolid-resistant S. capitis isolates had a novel C2131T mutation and a G2603T mutation in the 23S rRNA region, and some had a C316T (Arg106Cys) substitution in protein L4 and/or harboured cfr. Linezolid-resistant S. aureus isolates carried a C389G (Ala130Gly) substitution in protein L3, and/or harboured cfr. The cfr gene was flanked by two copies of the IS256-like element, with a downstream orf1 gene. Linezolid-resistant/intermediate enterococci lacked major resistance mechanisms. The semi-quantitative biofilm assay showed that 14 linezolid-resistant E. faecalis isolates produced a larger biofilm than linezolid-susceptible E. faecalis strains. Transmission electron microscopy showed the cell walls of linezolid-resistant/intermediate strains were thicker than linezolid-susceptible strains. CONCLUSION Our data indicated that major resistance mechanisms, such as mutations in 23S rRNA and ribosomal proteins L3 and L4, along with cfr acquisition, played an important role in linezolid resistance. Secondary resistance mechanisms, such as biofilm formation and cell wall thickness, should also be taken into account.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Li
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
100
|
Takaya A, Kimura A, Sato Y, Ishiwada N, Watanabe M, Matsui M, Shibayama K, Yamamoto T. Molecular characterization of linezolid-resistant CoNS isolates in Japan. J Antimicrob Chemother 2014; 70:658-63. [PMID: 25381168 DOI: 10.1093/jac/dku443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Linezolid has been reported to remain active against 98% of staphylococci with resistance identified in 0.05% of Staphylococcus aureus and 1.4% of CoNS. The objective of this study was to characterize the linezolid-resistance mechanisms in the linezolid-resistant CoNS strains isolated in Japan. METHODS Staphylococcus capitis strains exhibiting linezolid MICs >8 mg/L isolated from inpatients between 2012 and 2014 were screened for cfr and mutations in 23S rRNA, L3 and L4 by PCR/sequencing. Isolates were also examined for mutations in the rlmN gene. RESULTS S. capitis had six 23S rRNA alleles. Five S. capitis isolates displayed linezolid MICs of 8, 16 and 32 mg/L. G2576U mutations were detected in three, four or five copies of 23S rRNA in all isolates. In two isolates exhibiting the highest linezolid MIC (32 mg/L) there was a large deletion in a single copy of 23S rRNA. Repeated 10 bp sequences were found in both 16S and 23S rRNAs, suggesting deletion by recombination between the repeats. One isolate had the mutation Ala-142→Thr in the ribosomal protein L3. All linezolid-resistant isolates also demonstrated mutations in the gene encoding RlmN methyltransferase, leading to Thr-62→Met and Gly-148→Ser. CONCLUSIONS Multiple mechanisms appeared to be responsible for the elevated linezolid resistance in S. capitis isolates: a G2576U mutation in different numbers of copies of 23S rRNA, loss of a single copy of 23S rRNA and a mutation in the ribosomal protein L3, suggesting the accumulation of independent mutational events.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Asahi Kimura
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naruhiko Ishiwada
- Division of Control and Treatment of Infectious Diseases, Chiba University Hospital, Chiba 260-8677, Japan
| | - Masaharu Watanabe
- Division of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|