51
|
In Situ Structure of the Vibrio Polar Flagellum Reveals a Distinct Outer Membrane Complex and Its Specific Interaction with the Stator. J Bacteriol 2020; 202:JB.00592-19. [PMID: 31767780 DOI: 10.1128/jb.00592-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
The bacterial flagellum is a biological nanomachine that rotates to allow bacteria to swim. For flagellar rotation, torque is generated by interactions between a rotor and a stator. The stator, which is composed of MotA and MotB subunit proteins in the membrane, is thought to bind to the peptidoglycan (PG) layer, which anchors the stator around the rotor. Detailed information on the stator and its interactions with the rotor remains unclear. Here, we deployed cryo-electron tomography and genetic analysis to characterize in situ structure of the bacterial flagellar motor in Vibrio alginolyticus, which is best known for its polar sheathed flagellum and high-speed rotation. We determined in situ structure of the motor at unprecedented resolution and revealed the unique protein-protein interactions among Vibrio-specific features, namely the H ring and T ring. Specifically, the H ring is composed of 26 copies of FlgT and FlgO, and the T ring consists of 26 copies of a MotX-MotY heterodimer. We revealed for the first time a specific interaction between the T ring and the stator PomB subunit, providing direct evidence that the stator unit undergoes a large conformational change from a compact form to an extended form. The T ring facilitates the recruitment of the extended stator units for the high-speed motility in Vibrio species.IMPORTANCE The torque of flagellar rotation is generated by interactions between a rotor and a stator; however, detailed structural information is lacking. Here, we utilized cryo-electron tomography and advanced imaging analysis to obtain a high-resolution in situ flagellar basal body structure in Vibrio alginolyticus, which is a Gram-negative marine bacterium. Our high-resolution motor structure not only revealed detailed protein-protein interactions among unique Vibrio-specific features, the T ring and H ring, but also provided the first structural evidence that the T ring interacts directly with the periplasmic domain of the stator. Docking atomic structures of key components into the in situ motor map allowed us to visualize the pseudoatomic architecture of the polar sheathed flagellum in Vibrio spp. and provides novel insight into its assembly and function.
Collapse
|
52
|
Abstract
The bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
Collapse
|
53
|
Celia H, Noinaj N, Buchanan SK. Structure and Stoichiometry of the Ton Molecular Motor. Int J Mol Sci 2020; 21:E375. [PMID: 31936081 PMCID: PMC7014051 DOI: 10.3390/ijms21020375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to generate force and movement, which are transmitted to transporters at the outer membrane, allowing the entry of nutrients into the periplasmic space. Despite decades of investigation and the recent flurry of structures being reported by X-ray crystallography and cryoEM, the mode of action of the Ton molecular motor has remained elusive, and the precise stoichiometry of its subunits is still a matter of debate. This review summarizes the latest findings on the Ton system by presenting the recently reported structures and related reports on the stoichiometry of the fully assembled complex.
Collapse
Affiliation(s)
- Herve Celia
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
54
|
Nord AL, Pedaci F. Mechanisms and Dynamics of the Bacterial Flagellar Motor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:81-100. [PMID: 32894478 DOI: 10.1007/978-3-030-46886-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many bacteria are able to actively propel themselves through their complex environment, in search of resources and suitable niches. The source of this propulsion is the Bacterial Flagellar Motor (BFM), a molecular complex embedded in the bacterial membrane which rotates a flagellum. In this chapter we review the known physical mechanisms at work in the motor. The BFM shows a highly dynamic behavior in its power output, its structure, and in the stoichiometry of its components. Changes in speed, rotation direction, constituent protein conformations, and the number of constituent subunits are dynamically controlled in accordance to external chemical and mechanical cues. The mechano-sensitivity of the motor is likely related to the surface-sensing ability of bacteria, relevant in the initial stage of biofilm formation.
Collapse
Affiliation(s)
- A L Nord
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - F Pedaci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
55
|
Ng HM, Slakeski N, Butler CA, Veith PD, Chen YY, Liu SW, Hoffmann B, Dashper SG, Reynolds EC. The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis. Front Cell Infect Microbiol 2019; 9:432. [PMID: 31921707 PMCID: PMC6930189 DOI: 10.3389/fcimb.2019.00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis.
Collapse
Affiliation(s)
- Hong Min Ng
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine A Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yu-Yen Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Sze Wei Liu
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Brigitte Hoffmann
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
56
|
Xu H, He J, Liu J, Motaleb MA. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi. Mol Microbiol 2019; 113:418-429. [PMID: 31743518 DOI: 10.1111/mmi.14428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar-stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.
Collapse
Affiliation(s)
- Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jun He
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
57
|
Nishikino T, Iwatsuki H, Mino T, Kojima S, Homma M. Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor. J Biochem 2019; 167:389-398. [DOI: 10.1093/jb/mvz102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
The bacterial flagellar motor is a rotary nanomachine driven by ion flow. The flagellar stator complex, which is composed of two proteins, PomA and PomB, performs energy transduction in marine Vibrio. PomA is a four transmembrane (TM) protein and the cytoplasmic region between TM2 and TM3 (loop2–3) interacts with the rotor protein FliG to generate torque. The periplasmic regions between TM1 and TM2 (loop1–2) and TM3 and TM4 (loop3–4) are candidates to be at the entrance to the transmembrane ion channel of the stator. In this study, we purified the stator complex with cysteine replacements in the periplasmic loops and assessed the reactivity of the protein with biotin maleimide (BM). BM easily modified Cys residues in loop3–4 but hardly labelled Cys residues in loop1–2. We could not purify the plug deletion stator (ΔL stator) composed of PomBΔ41–120 and WT-PomA but could do the ΔL stator with PomA-D31C of loop1–2 or with PomB-D24N of TM. When the ion channel is closed, PomA and PomB interact strongly. When the ion channel opens, PomA interacts less tightly with PomB. The plug and loop1–2 region regulate this activation of the stator, which depends on the binding of sodium ion to the D24 residue of PomB.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Taira Mino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
58
|
Mino T, Nishikino T, Iwatsuki H, Kojima S, Homma M. Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus. J Biochem 2019; 166:331-341. [PMID: 31147681 DOI: 10.1093/jb/mvz040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
The sodium driven flagellar stator of Vibrio alginolyticus is a hetero-hexamer membrane complex composed of PomA and PomB, and acts as a sodium ion channel. The conformational change in the cytoplasmic region of PomA for the flagellar torque generation, which interacts directly with a rotor protein, FliG, remains a mystery. In this study, we introduced cysteine mutations into cytoplasmic charged residues of PomA, which are highly conserved and interact with FliG, to detect the conformational change by the reactivity of biotin maleimide. In vivo labelling experiments of the PomA mutants revealed that the accessibility of biotin maleimide at position of E96 was reduced with sodium ions. Such a reduction was also seen in the D24N and the plug deletion mutants of PomB, and the phenomenon was independent in the presence of FliG. This sodium ions specific reduction was also detected in Escherichia coli that produced PomA and PomB from a plasmid, but not in the purified stator complex. These results demonstrated that sodium ions cause a conformational change around the E96 residue of loop2-3 in the biological membrane.
Collapse
Affiliation(s)
- Taira Mino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| |
Collapse
|
59
|
Kirchweger P, Weiler S, Egerer‐Sieber C, Blasl A, Hoffmann S, Schmidt C, Sander N, Merker D, Gerlach RG, Hensel M, Muller YA. Structural and functional characterization of SiiA, an auxiliary protein from the SPI4‐encoded type 1 secretion system from
Salmonella enterica. Mol Microbiol 2019; 112:1403-1422. [DOI: 10.1111/mmi.14368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peter Kirchweger
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Claudia Egerer‐Sieber
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Anna‐Theresa Blasl
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | | | | | - Nathalie Sander
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | - Dorothee Merker
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | | | - Michael Hensel
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| |
Collapse
|
60
|
Flagella-Driven Motility of Bacteria. Biomolecules 2019; 9:biom9070279. [PMID: 31337100 PMCID: PMC6680979 DOI: 10.3390/biom9070279] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
|
61
|
Abstract
Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
62
|
Ishida T, Ito R, Clark J, Matzke NJ, Sowa Y, Baker MAB. Sodium‐powered stators of the bacterial flagellar motor can generate torque in the presence of phenamil with mutations near the peptidoglycan‐binding region. Mol Microbiol 2019; 111:1689-1699. [DOI: 10.1111/mmi.14246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Tsubasa Ishida
- Department of Frontier Bioscience Hosei University Tokyo Japan
| | - Rie Ito
- Department of Frontier Bioscience Hosei University Tokyo Japan
| | - Jessica Clark
- School of Biotechnology and Biomolecular Science University of New South Wales Kensington NSW Australia
| | - Nicholas J. Matzke
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience Hosei University Tokyo Japan
- Research Center for Micro‐Nano Technology Hosei University Tokyo Japan
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science University of New South Wales Kensington NSW Australia
| |
Collapse
|
63
|
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Salmonella H +-Driven Flagellar Motor. J Bacteriol 2019; 201:JB.00727-18. [PMID: 30642987 DOI: 10.1128/jb.00727-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
The bacterial flagellar motor is composed of a rotor and a dozen stators and converts the ion flux through the stator into torque. Each stator unit alternates in its attachment to and detachment from the rotor even during rotation. In some species, stator assembly depends on the input energy, but it remains unclear how an electrochemical potential across the membrane (e.g., proton motive force [PMF]) or ion flux is involved in stator assembly dynamics. Here, we focused on pH dependence of a slow motile MotA(M206I) mutant of Salmonella The MotA(M206I) motor produces torque comparable to that of the wild-type motor near stall, but its rotation rate is considerably decreased as the external load is reduced. Rotation assays of flagella labeled with 1-μm beads showed that the rotation rate of the MotA(M206I) motor is increased by lowering the external pH whereas that of the wild-type motor is not. Measurements of the speed produced by a single stator unit using 1-μm beads showed that the unit speed of the MotA(M206I) is about 60% of that of the wild-type and that a decrease in external pH did not affect the MotA(M206I) unit speed. Analysis of the subcellular stator localization revealed that the number of functional stators is restored by lowering the external pH. The pH-dependent improvement of stator assembly was observed even when the PMF was collapsed and proton transfer was inhibited. These results suggest that MotA-Met206 is responsible for not only load-dependent energy coupling between the proton influx and rotation but also pH-dependent stator assembly.IMPORTANCE The bacterial flagellar motor is a rotary nanomachine driven by the electrochemical transmembrane potential (ion motive force). About 10 stators (MotA/MotB complexes) are docked around a rotor, and the stator recruitment depends on the load, ion motive force, and coupling ion flux. The MotA(M206I) mutation slows motor rotation and decreases the number of docked stators in Salmonella We show that lowering the external pH improves the assembly of the mutant stators. Neither the collapse of the ion motive force nor a mutation mimicking the proton-binding state inhibited stator localization to the motor. These results suggest that MotA-Met206 is involved in torque generation and proton translocation and that stator assembly is stabilized by protonation of the stator.
Collapse
|
64
|
Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio. Sci Rep 2018; 8:17793. [PMID: 30542147 PMCID: PMC6290876 DOI: 10.1038/s41598-018-35902-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
FliG, which is composed of three distinctive domains, N-terminal (N), middle (M), and C-terminal (C), is an essential rotor component that generates torque and determines rotational direction. To determine the role of FliG in determining flagellar rotational direction, we prepared rotational biased mutants of fliG in Vibrio alginolyticus. The E144D mutant, whose residue is belonging to the EHPQR-motif in FliGM, exhibited an increased number of switching events. This phenotype generated a response similar to the phenol-repellent response in chemotaxis. To clarify the effect of E144D mutation on the rotational switching, we combined the mutation with other che mutations (G214S, G215A and A282T) in FliG. Two of the double mutants suppressed the rotational biased phenotype. To gain structural insight into the mutations, we performed molecular dynamic simulations of the FliGMC domain, based on the crystal structure of Thermotoga maritima FliG and nuclear magnetic resonance analysis. Furthermore, we examined the swimming behavior of the fliG mutants lacking CheY. The results suggested that the conformation of FliG in E144D mutant was similar to that in the wild type. However, that of G214S and G215A caused a steric hindrance in FliG. The conformational change in FliGM triggered by binding CheY may lead to a rapid change of direction and may occur in both directional states.
Collapse
|
65
|
Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018; 109:723-734. [DOI: 10.1111/mmi.14092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| | - Naoya Terahara
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science Nagoya University Chikusa‐kuNagoya 464‐8602Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
- RIKEN Center for Biosystems Dynamics Research & SPring‐8 Center 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| |
Collapse
|
66
|
Brenzinger S, Pecina A, Mrusek D, Mann P, Völse K, Wimmi S, Ruppert U, Becker A, Ringgaard S, Bange G, Thormann KM. ZomB is essential for flagellar motor reversals in Shewanella putrefaciens and Vibrio parahaemolyticus. Mol Microbiol 2018; 109:694-709. [PMID: 29995998 DOI: 10.1111/mmi.14070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The ability of most bacterial flagellar motors to reverse the direction of rotation is crucial for efficient chemotaxis. In Escherichia coli, motor reversals are mediated by binding of phosphorylated chemotaxis protein CheY to components of the flagellar rotor, FliM and FliN, which induces a conformational switch of the flagellar C-ring. Here, we show that for Shewanella putrefaciens, Vibrio parahaemolyticus and likely a number of other species an additional transmembrane protein, ZomB, is critically required for motor reversals as mutants lacking ZomB exclusively exhibit straightforward swimming also upon full phosphorylation or overproduction of CheY. ZomB is recruited to the cell poles by and is destabilized in the absence of the polar landmark protein HubP. ZomB also co-localizes to and may thus interact with the flagellar motor. The ΔzomB phenotype was suppressed by mutations in the very C-terminal region of FliM. We propose that the flagellar motors of Shewanella, Vibrio and numerous other species harboring orthologs to ZomB are locked in counterclockwise rotation and may require interaction with ZomB to enable the conformational switch required for motor reversals. Regulation of ZomB activity or abundance may provide these species with an additional means to modulate chemotaxis efficiency.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Anna Pecina
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Devid Mrusek
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Petra Mann
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Kerstin Völse
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Ulrike Ruppert
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Biology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| |
Collapse
|
67
|
Lin TS, Zhu S, Kojima S, Homma M, Lo CJ. FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy. Sci Rep 2018; 8:11172. [PMID: 30042401 PMCID: PMC6057877 DOI: 10.1038/s41598-018-29447-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022] Open
Abstract
Bacterial flagellar motor (BFM) is a protein complex used for bacterial motility and chemotaxis that involves in energy transformation, torque generation and switching. FliL is a single-transmembrane protein associated with flagellar motor function. We performed biochemical and biophysical approaches to investigate the functional roles of FliL associated with stator-units. Firstly, we found the periplasmic region of FliL is crucial for its polar localization. Also, the plug mutation in stator-unit affected the polar localization of FliL implying the activation of stator-unit is important for FliL recruitment. Secondly, we applied single-molecule fluorescent microscopy to study the role of FliL in stator-unit assembly. Using molecular counting by photobleaching, we found the stoichiometry of stator-unit and FliL protein would be 1:1 in a functional motor. Moreover, the turnover time of stator-units are slightly increased in the absence of FliL. By further investigation of protein dynamics on membrane, we found the diffusions of stator-units and FliL are independent. Surprisingly, the FliL diffusion rate without stator-units is unexpectedly slow indicating a protein-complex forming event. Our results suggest that FliL plays a supporting role to the stator in the BFM.
Collapse
Affiliation(s)
- Tsai-Shun Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Shiwei Zhu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, 06536, USA
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China.
| |
Collapse
|
68
|
The Helix Rearrangement in the Periplasmic Domain of the Flagellar Stator B Subunit Activates Peptidoglycan Binding and Ion Influx. Structure 2018; 26:590-598.e5. [DOI: 10.1016/j.str.2018.02.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 02/21/2018] [Indexed: 11/19/2022]
|
69
|
Terashima H, Kawamoto A, Morimoto YV, Imada K, Minamino T. Structural differences in the bacterial flagellar motor among bacterial species. Biophys Physicobiol 2017; 14:191-198. [PMID: 29362704 PMCID: PMC5774414 DOI: 10.2142/biophysico.14.0_191] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke V Morimoto
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
70
|
Liew CW, Hynson RM, Ganuelas LA, Shah-Mohammadi N, Duff AP, Kojima S, Homma M, Lee LK. Solution structure analysis of the periplasmic region of bacterial flagellar motor stators by small angle X-ray scattering. Biochem Biophys Res Commun 2017; 495:1614-1619. [PMID: 29197577 DOI: 10.1016/j.bbrc.2017.11.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The bacterial flagellar motor drives the rotation of helical flagellar filaments to propel bacteria through viscous media. It consists of a dynamic population of mechanosensitive stators that are embedded in the inner membrane and activate in response to external load. This entails assembly around the rotor, anchoring to the peptidoglycan layer to counteract torque from the rotor and opening of a cation channel to facilitate an influx of cations, which is converted into mechanical rotation. Stator complexes are comprised of four copies of an integral membrane A subunit and two copies of a B subunit. Each B subunit includes a C-terminal OmpA-like peptidoglycan-binding (PGB) domain. This is thought to be linked to a single N-terminal transmembrane helix by a long unstructured peptide, which allows the PGB domain to bind to the peptidoglycan layer during stator anchoring. The high-resolution crystal structures of flagellar motor PGB domains from Salmonella enterica (MotBC2) and Vibrio alginolyticus (PomBC5) have previously been elucidated. Here, we use small-angle X-ray scattering (SAXS). We show that unlike MotBC2, the dimeric conformation of the PomBC5 in solution differs to its crystal structure, and explore the functional relevance by characterising gain-of-function mutants as well as wild-type constructs of various lengths. These provide new insight into the conformational diversity of flagellar motor PGB domains and experimental verification of their overall topology.
Collapse
Affiliation(s)
- C W Liew
- School of Medical Sciences, The University of New South Wales, Australia
| | - R M Hynson
- Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - L A Ganuelas
- School of Medical Sciences, The University of New South Wales, Australia
| | - N Shah-Mohammadi
- Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - A P Duff
- Australian Nuclear and Science Technology Organisation, Lucas Heights, New South Wales, Australia
| | - S Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | - M Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | - L K Lee
- School of Medical Sciences, The University of New South Wales, Australia; Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
71
|
Abstract
The bacterial flagellar motor (BFM) is the rotary motor powering swimming of many motile bacteria. Many of the components of this molecular machine are dynamic, a property which allows the cell to optimize its behavior in accordance with the surrounding environment. A prime example is the stator unit, a membrane-bound ion channel that is responsible for applying torque to the rotor. The stator units are mechanosensitive, with the number of engaged units dependent on the viscous load on the motor. We measure the kinetics of the stators as a function of the viscous load and find that the mechanosensitivity of the BFM is governed by a catch bond: a counterintuitive type of bond that becomes stronger under force. The bacterial flagellar motor (BFM) is the rotary motor that rotates each bacterial flagellum, powering the swimming and swarming of many motile bacteria. The torque is provided by stator units, ion motive force-powered ion channels known to assemble and disassemble dynamically in the BFM. This turnover is mechanosensitive, with the number of engaged units dependent on the viscous load experienced by the motor through the flagellum. However, the molecular mechanism driving BFM mechanosensitivity is unknown. Here, we directly measure the kinetics of arrival and departure of the stator units in individual motors via analysis of high-resolution recordings of motor speed, while dynamically varying the load on the motor via external magnetic torque. The kinetic rates obtained, robust with respect to the details of the applied adsorption model, indicate that the lifetime of an assembled stator unit increases when a higher force is applied to its anchoring point in the cell wall. This provides strong evidence that a catch bond (a bond strengthened instead of weakened by force) drives mechanosensitivity of the flagellar motor complex. These results add the BFM to a short, but growing, list of systems demonstrating catch bonds, suggesting that this “molecular strategy” is a widespread mechanism to sense and respond to mechanical stress. We propose that force-enhanced stator adhesion allows the cell to adapt to a heterogeneous environmental viscosity and may ultimately play a role in surface-sensing during swarming and biofilm formation.
Collapse
|
72
|
Kitao A, Hata H. Molecular dynamics simulation of bacterial flagella. Biophys Rev 2017; 10:617-629. [PMID: 29181743 DOI: 10.1007/s12551-017-0338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
The bacterial flagellum is a biological nanomachine for the locomotion of bacteria, and is seen in organisms like Salmonella and Escherichia coli. The flagellum consists of tens of thousands of protein molecules and more than 30 different kinds of proteins. The basal body of the flagellum contains a protein export apparatus and a rotary motor that is powered by ion motive force across the cytoplasmic membrane. The filament functions as a propeller whose helicity is controlled by the direction of the torque. The hook that connects the motor and filament acts as a universal joint, transmitting torque generated by the motor to different directions. This report describes the use of molecular dynamics to study the bacterial flagellum. Molecular dynamics simulation is a powerful method that permits the investigation, at atomic resolution, of the molecular mechanisms of biomolecular systems containing many proteins and solvent. When applied to the flagellum, these studies successfully unveiled the polymorphic supercoiling and transportation mechanism of the filament, the universal joint mechanism of the hook, the ion transfer mechanism of the motor stator, the flexible nature of the transport apparatus proteins, and activation of proteins involved in chemotaxis.
Collapse
Affiliation(s)
- Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, M6-13, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Hiroaki Hata
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
73
|
Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T. Na +-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. SCIENCE ADVANCES 2017; 3:eaao4119. [PMID: 29109979 PMCID: PMC5665596 DOI: 10.1126/sciadv.aao4119] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/06/2017] [Indexed: 05/03/2023]
Abstract
The bacterial flagellar motor consists of a rotor and a dozen stator units and regulates the number of active stator units around the rotor in response to changes in the environment. The MotPS complex is a Na+-type stator unit in the Bacillus subtilis flagellar motor and binds to the peptidoglycan layer through the peptidoglycan-binding (PGB) domain of MotS to act as the stator. The MotPS complex is activated in response to an increase in the Na+ concentration in the environment, but the mechanism of this activation has remained unknown. We report that activation occurs by a Na+-induced folding and dimer formation of the PGB domain of MotS, as revealed in real-time imaging by high-speed atomic force microscopy. The MotPS complex showed two distinct ellipsoid domains connected by a flexible linker. A smaller domain, corresponding to the PGB domain, became structured and unstructured in the presence and absence of 150 mM NaCl, respectively. When the amino-terminal portion of the PGB domain adopted a partially stretched conformation in the presence of NaCl, the center-to-center distance between these two domains increased by up to 5 nm, allowing the PGB domain to reach and bind to the peptidoglycan layer. We propose that assembly of the MotPS complex into a motor proceeds by means of Na+-induced structural transitions of its PGB domain.
Collapse
Affiliation(s)
- Naoya Terahara
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takayuki Uchihashi
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. (T.M.); (K.N.)
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. (T.M.); (K.N.)
| |
Collapse
|
74
|
Andrews DA, Nesmelov YE, Wilce MC, Roujeinikova A. Structural analysis of variant of Helicobacter pylori MotB in its activated form, engineered as chimera of MotB and leucine zipper. Sci Rep 2017; 7:13435. [PMID: 29044185 PMCID: PMC5647336 DOI: 10.1038/s41598-017-13421-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Rotation of the bacterial flagellum is powered by a proton influx through the peptidoglycan (PG)-tethered stator ring MotA/B. MotA and MotB form an inner-membrane complex that does not conduct protons and does not bind to PG until it is inserted into the flagellar motor. The opening of the proton channel involves association of the plug helices in the periplasmic region of the MotB dimer into a parallel coiled coil. Here, we have characterised the structure of a soluble variant of full-length Helicobacter pylori MotB in which the plug helix was engineered to be locked in a parallel coiled coil state, mimicking the open state of the stator. Fluorescence resonance energy transfer measurements, combined with PG-binding assays and fitting of the crystal structures of MotB fragments to the small angle X-ray scattering (SAXS) data revealed that the protein's C-terminal domain has a PG-binding-competent conformation. Molecular modelling against the SAXS data suggested that the linker in H. pylori MotB forms a subdomain between the plug and the C-terminal domain, that 'clamps' the coiled coil of the plug, thus stabilising the activated form of the protein. Based on these results, we present a pseudo-atomic model structure of full-length MotB in its activated form.
Collapse
Affiliation(s)
- Daniel A Andrews
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Matthew C Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
75
|
Pourjaberi SNS, Terahara N, Namba K, Minamino T. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Mol Microbiol 2017; 106:646-658. [DOI: 10.1111/mmi.13843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Affiliation(s)
| | - Naoya Terahara
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
- RIKEN; Quantitative Biology Center, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| |
Collapse
|
76
|
Tan K, Deatherage Kaiser BL, Wu R, Cuff M, Fan Y, Bigelow L, Jedrzejczak RP, Adkins JN, Cort JR, Babnigg G, Joachimiak A. Insights into PG-binding, conformational change, and dimerization of the OmpA C-terminal domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi. Protein Sci 2017; 26:1738-1748. [PMID: 28580643 DOI: 10.1002/pro.3209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022]
Abstract
Salmonella enterica serovar Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded β-barrel transmembrane domain and a C-terminal domain (OmpACTD ). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD ) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD ), in closed form. In the open form of STOmpACTD , an aspartate residue from a long β2-α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD , a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD , suggest a large conformational change that includes an extension of α3 helix by ordering a part of β2-α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG-anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD , or possibly that of full length STOmpA.
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, 60439
| | | | - Ruiying Wu
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Marianne Cuff
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Yao Fan
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Robert P Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - John R Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, 60439
| |
Collapse
|
77
|
Mechanism of Stator Assembly and Incorporation into the Flagellar Motor. Methods Mol Biol 2017. [PMID: 28389951 DOI: 10.1007/978-1-4939-6927-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In many cases, conformational changes in proteins are related to their functions, and thereby inhibiting those changes causes functional defects. One way to perturb such conformational changes is to covalently link the regions where the changes are induced. Here, I introduce an example in which an intramolecular disulfide crosslink in the stator protein of PomB, introduced based on its crystal structure, reversibly inhibits the rotation of the flagellar motor, and I detail how we analyzed that phenotype. In this Chapter, first I describe how we monitor the motility inhibition and restoration by controlling disulfide bridge formation, and secondly how we detect intramolecular disulfide crosslinks, which are sometimes difficult to monitor by mobility shifts on SDS-PAGE gels.
Collapse
|
78
|
Structure of the MotA/B Proton Channel. Methods Mol Biol 2017. [PMID: 28389950 DOI: 10.1007/978-1-4939-6927-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Flagellar motors utilize the motive force of protons and other ions as an energy source. To elucidate the mechanisms of ion permeation and torque generation, it is essential to investigate the structure of the motor stator complex; however, the atomic structure of the transmembrane region of the stator has not been determined experimentally. We recently constructed an atomic model structure of the transmembrane region of the Escherichia coli MotA/B stator complex based on previously published disulfide cross-linking and tryptophan scanning mutations. Dynamic permeation by hydronium ions, sodium ions, and water molecules was then observed using steered molecular dynamics simulations, and free energy profiles for ion/water permeation were calculated using umbrella sampling. We also examined the possible ratchet motion of the cytoplasmic domain induced by the protonation/deprotonation cycle of the MotB proton binding site, Asp32. In this chapter, we describe the methods used to conduct these analyses, including atomic structure modeling of the transmembrane region of the MotA/B complex; molecular dynamics simulations in equilibrium and in ion permeation processes; and ion permeation-free energy profile calculations.
Collapse
|
79
|
Terahara N, Noguchi Y, Nakamura S, Kami-Ike N, Ito M, Namba K, Minamino T. Load- and polysaccharide-dependent activation of the Na +-type MotPS stator in the Bacillus subtilis flagellar motor. Sci Rep 2017; 7:46081. [PMID: 28378843 PMCID: PMC5380961 DOI: 10.1038/srep46081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
The flagellar motor of Bacillus subtilis possesses two distinct H+-type MotAB and Na+-type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner.
Collapse
Affiliation(s)
- Naoya Terahara
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukina Noguchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
80
|
Yeo KJ, Lee WC, Lee S, Hwang E, Park JS, Choi IG, Kim SI, Lee JC, Jeon YH, Cheong C, Kim HY. d-Stereoisomer preference of the OmpA-like domain of Pal in peptidoglycan of Acinetobacter baumannii. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
The Structure of Treponema pallidum Tp0624 Reveals a Modular Assembly of Divergently Functionalized and Previously Uncharacterized Domains. PLoS One 2016; 11:e0166274. [PMID: 27832149 PMCID: PMC5104382 DOI: 10.1371/journal.pone.0166274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023] Open
Abstract
Treponema pallidum subspecies pallidum is the causative agent of syphilis, a chronic, multistage, systemic infection that remains a major global health concern. The molecular mechanisms underlying T. pallidum pathogenesis are incompletely understood, partially due to the phylogenetic divergence of T. pallidum. One aspect of T. pallidum that differentiates it from conventional Gram-negative bacteria, and is believed to play an important role in pathogenesis, is its unusual cell envelope ultrastructure; in particular, the T. pallidum peptidoglycan layer is chemically distinct, thinner and more distal to the outer membrane. Established functional roles for peptidoglycan include contributing to the structural integrity of the cell envelope and stabilization of the flagellar motor complex, which are typically mediated by the OmpA domain-containing family of proteins. To gain insight into the molecular mechanisms that govern peptidoglycan binding and cell envelope biogenesis in T. pallidum we report here the structural characterization of the putative OmpA-like domain-containing protein, Tp0624. Analysis of the 1.70 Å resolution Tp0624 crystal structure reveals a multi-modular architecture comprised of three distinct domains including a C-terminal divergent OmpA-like domain, which we show is unable to bind the conventional peptidoglycan component diaminopimelic acid, and a previously uncharacterized tandem domain unit. Intriguingly, bioinformatic analysis indicates that the three domains together are found in all orthologs from pathogenic treponemes, but are not observed together in genera outside Treponema. These findings provide the first structural insight into a multi-modular treponemal protein containing an OmpA-like domain and its potential role in peptidoglycan coordination and stabilization of the T. pallidum cell envelope.
Collapse
|
82
|
Brenzinger S, Dewenter L, Delalez NJ, Leicht O, Berndt V, Paulick A, Berry RM, Thanbichler M, Armitage JP, Maier B, Thormann KM. Mutations targeting the plug-domain of the Shewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions. Mol Microbiol 2016; 102:925-938. [PMID: 27611183 DOI: 10.1111/mmi.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shewanella oneidensis MR-1 possesses two different stator units to drive flagellar rotation, the Na+ -dependent PomAB stator and the H+ -driven MotAB stator, the latter possibly acquired by lateral gene transfer. Although either stator can independently drive swimming through liquid, MotAB-driven motors cannot support efficient motility in structured environments or swimming under anaerobic conditions. Using ΔpomAB cells we isolated spontaneous mutants able to move through soft agar. We show that a mutation that alters the structure of the plug domain in MotB affects motor functions and allows cells to swim through media of increased viscosity and under anaerobic conditions. The number and exchange rates of the mutant stator around the rotor were not significantly different from wild-type stators, suggesting that the number of stators engaged is not the cause of increased swimming efficiency. The swimming speeds of planktonic mutant MotAB-driven cells was reduced, and overexpression of some of these stators caused reduced growth rates, implying that mutant stators not engaged with the rotor allow some proton leakage. The results suggest that the mutations in the MotB plug domain alter the proton interactions with the stator ion channel in a way that both increases torque output and allows swimming at decreased pmf values.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbiology and Molecular Biology at the IFZ, Justus-Liebig-Universität Gießen, Gießen, 35392, Germany.,Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany
| | - Lena Dewenter
- Department of Physics, Universität Köln, Cologne, 50674, Germany
| | | | - Oliver Leicht
- Philipps-Universität, Marburg, Germany LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Volker Berndt
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany
| | - Anja Paulick
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany
| | - Richard M Berry
- Physics Department, University of Oxford, Oxford, OX1 3QU, UK
| | - Martin Thanbichler
- Philipps-Universität, Marburg, Germany LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany.,Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE Center für Synthetische Mikrobiologie, Marburg, 35043, Germany
| | | | - Berenike Maier
- Department of Physics, Universität Köln, Cologne, 50674, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology at the IFZ, Justus-Liebig-Universität Gießen, Gießen, 35392, Germany
| |
Collapse
|
83
|
Onoue Y, Abe-Yoshizumi R, Gohara M, Nishino Y, Kobayashi S, Asami Y, Homma M. Domain-based biophysical characterization of the structural and thermal stability of FliG, an essential rotor component of the Na +-driven flagellar motor. Biophys Physicobiol 2016; 13:227-233. [PMID: 27924278 PMCID: PMC5113609 DOI: 10.2142/biophysico.13.0_227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023] Open
Abstract
Many bacteria move using their flagellar motor, which generates torque through the interaction between the stator and rotor. The most important component of the rotor for torque generation is FliG. FliG consists of three domains: FliGN, FliGM, and FliGC. FliGC contains a site(s) that interacts with the stator. In this study, we examined the physical properties of three FliG constructs, FliGFull, FliGMC, and FliGC, derived from sodium-driven polar flagella of marine Vibrio. Size exclusion chromatography revealed that FliG changes conformational states under two different pH conditions. Circular dichroism spectroscopy also revealed that the contents of α-helices in FliG slightly changed under these pH conditions. Furthermore, we examined the thermal stability of the FliG constructs using differential scanning calorimetry. Based on the results, we speculate that each domain of FliG denatures independently. This study provides basic information on the biophysical characteristics of FliG, a component of the flagellar motor.
Collapse
Affiliation(s)
- Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Rei Abe-Yoshizumi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Gohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuuki Nishino
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shiori Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yasuo Asami
- TA Instruments Japan Inc., Gotanda, Shinagawa-ku, Tokyo 141-0031, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
84
|
Kojima S. Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation. Nihon Saikingaku Zasshi 2016; 71:185-97. [PMID: 27581279 DOI: 10.3412/jsb.71.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many motile bacteria have the motility organ, the flagellum. It rotates by the rotary motor driven by the ion-motive force and is embedded in the cell surface at the base of each flagellar filament. Many researchers have been studying its rotary mechanism for years, but most of the energy conversion processes have been remained in mystery. We focused on the flagellar stator, which works at the core process of energy conversion, and found that the periplasmic region of the stator changes its conformation to be activated only when the stator units are incorporated into the motor and anchored at the cell wall. Meanwhile, the physiologically important supramolecular complex is localized in the cell at the right place and the right time with a proper amount. How the cell achieves such a proper localization is the fundamental question for life science, and we undertake this problem by analyzing the mechanism for biogenesis of a single polar flagellum of Vibrio alginolyticus. Here I describe the molecular mechanism of how the flagellum is generated at the specific place with a proper number, and also how the flagellar stator is incorporated into the motor to complete the functional motor assembly, based on our studies.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
85
|
The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium. Sci Rep 2016; 6:31526. [PMID: 27531865 PMCID: PMC4987623 DOI: 10.1038/srep31526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022] Open
Abstract
Rotation of bacterial flagellar motor is driven by the interaction between the stator and rotor, and the driving energy is supplied by ion influx through the stator channel. The stator is composed of the MotA and MotB proteins, which form a hetero-hexameric complex with a stoichiometry of four MotA and two MotB molecules. MotA and MotB are four- and single-transmembrane proteins, respectively. To generate torque, the MotA/MotB stator unit changes its conformation in response to the ion influx, and interacts with the rotor protein FliG. Here, we overproduced and purified MotA of the hyperthermophilic bacterium Aquifex aeolicus. A chemical crosslinking experiment revealed that MotA formed a multimeric complex, most likely a tetramer. The three-dimensional structure of the purified MotA, reconstructed by electron microscopy single particle imaging, consisted of a slightly elongated globular domain and a pair of arch-like domains with spiky projections, likely to correspond to the transmembrane and cytoplasmic domains, respectively. We show that MotA molecules can form a stable tetrameric complex without MotB, and for the first time, demonstrate the cytoplasmic structure of the stator.
Collapse
|
86
|
Nishikino T, Zhu S, Takekawa N, Kojima S, Onoue Y, Homma M. Serine suppresses the motor function of a periplasmic PomB mutation in theVibrioflagella stator. Genes Cells 2016; 21:505-16. [DOI: 10.1111/gtc.12357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Tatsuro Nishikino
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya 464-8602 Japan
| | - Shiwei Zhu
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya 464-8602 Japan
| | - Norihiro Takekawa
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya 464-8602 Japan
| | - Seiji Kojima
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya 464-8602 Japan
| | - Yasuhiro Onoue
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya 464-8602 Japan
| | - Michio Homma
- Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya 464-8602 Japan
| |
Collapse
|
87
|
Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 2016; 113:E1917-26. [PMID: 26976588 DOI: 10.1073/pnas.1518952113] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.
Collapse
|
88
|
Komatsu H, Hayashi F, Sasa M, Shikata K, Yamaguchi S, Namba K, Oosawa K. Genetic analysis of revertants isolated from the rod-fragile fliF mutant of Salmonella. Biophys Physicobiol 2016; 13:13-25. [PMID: 27924254 PMCID: PMC5042159 DOI: 10.2142/biophysico.13.0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/21/2015] [Indexed: 12/28/2022] Open
Abstract
FliF is the protein comprising the MS-ring of the bacterial flagellar basal body, which is the base for the assembly of flagellar axial structures. From a fliF mutant that easily releases the rod-hook-filament in viscous environments, more than 400 revertants that recovered their swarming ability in viscous conditions, were isolated. The second-site mutations were determined for approximately 70% of them. There were three regions where the mutations were localized: two in Region I, 112 in Region II, and 71 in Region III including the true reversion. In Region I, second-site mutations were found in FlgC and FlgF of the proximal rod, suggesting that they affect the interaction between the MS-ring and the rod. In Region II, there were 69 and 42 mutations in MotA and MotB, respectively, suggesting that the second-site mutations in MotA and MotB may decrease the rotational speed of the flagellar motor to reduce the probability of releasing the rod under this condition. One exception is a mutation in FlhC that caused a down regulation of the flagellar proteins production but it may directly affect transcription or translation of motA and motB. In Region III, there were 44, 24, and 3 mutations in FliG, FliM, and FliF, respectively. There were no second-site mutations identified in FliN although it is involved in torque generation as a component of the C-ring. Many of the mutations were involved in the motor rotation, and it is suggested that such reduced speeds result in stabilizing the filament attachment to the motor.
Collapse
Affiliation(s)
- Hitomi Komatsu
- Protonic NanoMachine Project, ERATO, JST, Seika, Kyoto 619-0237, Japan
| | - Fumio Hayashi
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masahiro Sasa
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi 320-8551, Japan
| | - Koji Shikata
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi 320-8551, Japan
| | | | - Keiichi Namba
- Protonic NanoMachine Project, ERATO, JST, Seika, Kyoto 619-0237, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenji Oosawa
- Protonic NanoMachine Project, ERATO, JST, Seika, Kyoto 619-0237, Japan; Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; Department of Biosciences, Teikyo University, Utsunomiya, Tochigi 320-8551, Japan
| |
Collapse
|
89
|
Herlihey FA, Clarke AJ. Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:41-56. [PMID: 27722959 DOI: 10.1007/5584_2016_52] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The flagellum is an important macromolecular machine for many pathogenic bacteria. It is a hetero-oligomeric structure comprised of three major sub-structures: basal body, hook and thin helical filament. An important step during flagellum assembly is the localized and controlled degradation of the peptidoglycan sacculus to allow for the insertion of the rod as well as to facilitate anchoring for proper motor function. The peptidoglycan lysis events require specialized lytic enzymes, β-N-acetylglucosaminidases and lytic transglycosylases, which differ in flagellated proteobacteria. Due to their autolytic activity, these enzymes need to be controlled in order to prevent cellular lysis. This review summarizes are current understanding of the peptidoglycan lysis events required for flagellum assembly and motility with a main focus on Gram-negative bacteria.
Collapse
Affiliation(s)
- Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
90
|
Achouri S, Wright JA, Evans L, Macleod C, Fraser G, Cicuta P, Bryant CE. The frequency and duration of Salmonella-macrophage adhesion events determines infection efficiency. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140033. [PMID: 25533091 PMCID: PMC4275903 DOI: 10.1098/rstb.2014.0033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Salmonella enterica causes a range of important diseases in humans and a in a variety of animal species. The ability of bacteria to adhere to, invade and survive within host cells plays an important role in the pathogenesis of Salmonella infections. In systemic salmonellosis, macrophages constitute a niche for the proliferation of bacteria within the host organism. Salmonella enterica serovar Typhimurium is flagellated and the frequency with which this bacterium collides with a cell is important for infection efficiency. We investigated how bacterial motility affects infection efficiency, using a combination of population-level macrophage infection experiments and direct imaging of single-cell infection events, comparing wild-type and motility mutants. Non-motile and aflagellate bacterial strains, in contrast to wild-type bacteria, collide less frequently with macrophages, are in contact with the cell for less time and infect less frequently. Run-biased Salmonella also collide less frequently with macrophages but maintain contact with macrophages for a longer period of time than wild-type strains and infect the cells more readily. Our results suggest that uptake of S. Typhimurium by macrophages is dependent upon the duration of contact time of the bacterium with the cell, in addition to the frequency with which the bacteria collide with the cell.
Collapse
Affiliation(s)
- Sarra Achouri
- Department of Physics, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - John A Wright
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Lewis Evans
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Charlotte Macleod
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gillian Fraser
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Pietro Cicuta
- Department of Physics, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
91
|
Kojima S. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr Opin Microbiol 2015; 28:66-71. [DOI: 10.1016/j.mib.2015.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022]
|
92
|
Altegoer F, Bange G. Undiscovered regions on the molecular landscape of flagellar assembly. Curr Opin Microbiol 2015; 28:98-105. [PMID: 26490009 DOI: 10.1016/j.mib.2015.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/10/2023]
Abstract
The bacterial flagellum is a motility structure and one of the most complicated motors in the biosphere. A flagellum consists of several dozens of building blocks in different stoichiometries and extends from the cytoplasm to the extracellular space. Flagellar biogenesis follows a strict spatio-temporal regime that is guided by a plethora of flagellar assembly factors and chaperones. The goal of this review is to summarize our current structural and mechanistic knowledge of this intricate process and to identify the undiscovered regions on the molecular landscape of flagellar assembly.
Collapse
Affiliation(s)
- Florian Altegoer
- LOEWE Center for Synthetic Microbiology & Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, C7, 35043 Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, C7, 35043 Marburg, Germany.
| |
Collapse
|
93
|
Wojdyla JA, Cutts E, Kaminska R, Papadakos G, Hopper JTS, Stansfeld PJ, Staunton D, Robinson CV, Kleanthous C. Structure and function of the Escherichia coli Tol-Pal stator protein TolR. J Biol Chem 2015; 290:26675-87. [PMID: 26354441 PMCID: PMC4646322 DOI: 10.1074/jbc.m115.671586] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/31/2022] Open
Abstract
TolR is a 15-kDa inner membrane protein subunit of the Tol-Pal complex in Gram-negative bacteria, and its function is poorly understood. Tol-Pal is recruited to cell division sites where it is involved in maintaining the integrity of the outer membrane. TolR is related to MotB, the peptidoglycan (PG)-binding stator protein from the flagellum, suggesting it might serve a similar role in Tol-Pal. The only structure thus far reported for TolR is of the periplasmic domain from Haemophilus influenzae in which N- and C-terminal residues had been deleted (TolR(62–133), Escherichia coli numbering). H. influenzae TolR(62–133) is a symmetrical dimer with a large deep cleft at the dimer interface. Here, we present the 1.7-Å crystal structure of the intact periplasmic domain of E. coli TolR (TolR(36–142)). E. coli TolR(36–142) is also dimeric, but the architecture of the dimer is radically different from that of TolR(62–133) due to the intertwining of its N and C termini. TolR monomers are rotated ∼180° relative to each other as a result of this strand swapping, obliterating the putative PG-binding groove seen in TolR(62–133). We found that removal of the strand-swapped regions (TolR(60–133)) exposes cryptic PG binding activity that is absent in the full-length domain. We conclude that to function as a stator in the Tol-Pal complex dimeric TolR must undergo large scale structural remodeling reminiscent of that proposed for MotB, where the N- and C-terminal sequences unfold in order for the protein to both reach and bind the PG layer ∼90 Å away from the inner membrane.
Collapse
Affiliation(s)
- Justyna A Wojdyla
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Erin Cutts
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Renata Kaminska
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Grigorios Papadakos
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Jonathan T S Hopper
- the Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Phillip J Stansfeld
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - David Staunton
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Carol V Robinson
- the Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Colin Kleanthous
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| |
Collapse
|
94
|
Takekawa N, Nishiyama M, Kaneseki T, Kanai T, Atomi H, Kojima S, Homma M. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium. Sci Rep 2015; 5:12711. [PMID: 26244427 PMCID: PMC4525482 DOI: 10.1038/srep12711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/26/2015] [Indexed: 01/12/2023] Open
Abstract
Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s−1 at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na+. As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na+ for energy coupling of the flagellar motor. The Na+-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masayoshi Nishiyama
- The HAKUBI Center for Advanced Research/Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Kaneseki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
95
|
Zhu S, Kumar A, Kojima S, Homma M. FliL
associates with the stator to support torque generation of the sodium‐driven polar flagellar motor of
V
ibrio. Mol Microbiol 2015; 98:101-10. [DOI: 10.1111/mmi.13103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Shiwei Zhu
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| | - Ananthanarayanan Kumar
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| | - Seiji Kojima
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| | - Michio Homma
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| |
Collapse
|
96
|
Takahashi Y, Koyama K, Ito M. Suppressor mutants from MotB-D24E and MotS-D30E in the flagellar stator complex of Bacillus subtilis. J GEN APPL MICROBIOL 2015; 60:131-9. [PMID: 25273986 DOI: 10.2323/jgam.60.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The bacterial flagellar motor is mainly energized by either a proton (H(+)) or sodium ion (Na(+)) motive force and the motor torque is generated by interaction at the rotor-stator interface. MotA/MotB-type stators use H(+) as the coupling ion, whereas MotP/MotS- and PomA/PomB-type stators use Na(+). Bacillus subtilis employs both H(+)-coupled MotA/MotB and Na(+)-coupled MotP/MotS stators, which contribute to the torque required for flagellar rotation. In Escherichia coli, there is a universally conserved Asp-32 residue of MotB that is critical for motility and is a predicted H(+)-binding site. In B. subtilis, the conserved aspartic acid residue corresponds to Asp-24 of MotB (MotB-D24) and Asp-30 of MotS (MotS-D30). Here we report the isolation of two mutants, MotB-D24E and MotS-D30E, which showed a non-motile and poorly motile phenotype, respectively. Up-motile mutants were spontaneously isolated from each mutant. We identified a suppressor mutation at MotB-T181A and MotP-L172P, respectively. Mutants MotB-T181A and MotP-L172P showed about 50% motility and a poorly motile phenotype compared to each wild type strain. These suppressor sites were suggested to indirectly affect the structure of the ion influx pathway.
Collapse
|
97
|
Halang P, Vorburger T, Steuber J. Serine 26 in the PomB subunit of the flagellar motor is essential for hypermotility of Vibrio cholerae. PLoS One 2015; 10:e0123518. [PMID: 25874792 PMCID: PMC4398553 DOI: 10.1371/journal.pone.0123518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB. By analyzing a large data set of individual tracks of swimming cells, we show that S26 located within the transmembrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB at pH 7.0, but fast swimming was restored by decreasing the H+ concentration of the external medium. Our study identifies S26 as a second important residue besides D23 in the PomB channel. It is proposed that S26, together with D23 located in close proximity, is important to perturb the hydration shell of Na+ before its passage through a constriction within the stator channel.
Collapse
Affiliation(s)
- Petra Halang
- Institute of Microbiology, University of Hohenheim (Stuttgart), Stuttgart, Germany
| | - Thomas Vorburger
- Institute of Microbiology, University of Hohenheim (Stuttgart), Stuttgart, Germany
- * E-mail: (TV); (JS)
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim (Stuttgart), Stuttgart, Germany
- * E-mail: (TV); (JS)
| |
Collapse
|
98
|
FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein. Structure 2015; 23:863-872. [PMID: 25865246 PMCID: PMC4425475 DOI: 10.1016/j.str.2015.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
Abstract
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope. This is the first structural and functional study of an archaellum stator component sFlaF is a β-sandwich, immunoglobulin-like dimeric protein FlaF resembles and binds to the S-layer protein FlaF exerts its function in the pseudoperiplasm
Collapse
|
99
|
Nishino Y, Onoue Y, Kojima S, Homma M. Functional chimeras of flagellar stator proteins between E. coli MotB and Vibrio PomB at the periplasmic region in Vibrio or E. coli. Microbiologyopen 2015; 4:323-331. [PMID: 25630862 PMCID: PMC4398512 DOI: 10.1002/mbo3.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/24/2014] [Accepted: 01/10/2015] [Indexed: 12/27/2022] Open
Abstract
The bacterial flagellar motor has a stator and a rotor. The stator is composed of two membrane proteins, MotA and MotB in Escherichia coli and PomA and PomB in Vibrio alginolyticus. The Vibrio motor has a unique structure, the T ring, which is composed of MotX and MotY. Based on the structural information of PomB and MotB, we constructed three chimeric proteins between PomB and MotB, named PotB91 , PotB129, and PotB138 , with various chimeric junctions. When those chimeric proteins were produced with PomA in a ΔmotAB strain of E. coli or in ΔpomAB and ΔpomAB ΔmotX strains of Vibrio, all chimeras were functional in E. coli or Vibrio, either with or without the T ring, although the motilities were very weak in E. coli. Furthermore, we could isolate some suppressors in E. coli and identified the mutation sites on PomA or the chimeric B subunit. The weak function of chimeric PotBs in E. coli is derived mainly from the defect in the rotational switching of the flagellar motor. In addition, comparing the motilities of chimera strains in ΔpomAB, PotB138 had the highest motility. The difference between the origin of the α1 and α2 helices, E. coli MotB or Vibro PomB, seems to be important for motility in E. coli and especially in Vibrio.
Collapse
Affiliation(s)
- Yuuki Nishino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
100
|
Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 2015; 23:267-74. [PMID: 25613993 DOI: 10.1016/j.tim.2014.12.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 11/28/2022]
Abstract
The bacterial flagellum is a reversible rotary motor powered by an electrochemical-potential difference of specific ions across the cytoplasmic membrane. The H(+)-driven motor of Salmonella spins at ∼300 Hz, whereas the Na(+)-driven motor of marine Vibrio spp. can rotate much faster, up to 1700 Hz. A highly conserved motor structure consists of the MS ring, C ring, rod, and export apparatus. The C ring and the export apparatus show dynamic properties for exerting their functional activities. Various additional structures surrounding the conserved motor structure are observed in different bacterial species. In this review we summarize our current understanding of the structure, function, and assembly of the flagellar motor in Salmonella and marine Vibrio.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|