51
|
Zheng J, Wu H, Zhao M, Yang Z, Zhou Z, Guo Y, Lin Y, Chen H. OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:51. [PMID: 37309545 PMCID: PMC10236093 DOI: 10.1007/s11032-021-01244-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 06/14/2023]
Abstract
Black rice is a rare type of rice germplasm with various health benefits that are largely attributed to anthocyanin pigment accumulation in the pericarps. The anthocyanin biosynthesis in plant tissues is activated mainly by the MBW complexes, consisting of three types of transcription factors R2R3-MYB, bHLH, and WDR. In black rice, the bHLH and WDR components regulating anthocyanin biosynthesis in pericarps have been characterized, while the R2R3-MYB factor remains unknown. By examining the expression correlation between all putative rice MYB genes and anthocyanin biosynthesis-related genes based on transcriptome data of pericarps in combination with further molecular and genetic analysis, we proved that OsMYB3 (LOC_Os03g29614) was the determinant R2R3-MYB gene for anthocyanin biosynthesis in rice pericarps. The expression level of OsMYB3 in pericarps of black rice was significantly higher than that of white rice. The knockout of OsMYB3 in a black rice variety caused significant downregulation of 19 anthocyanin metabolites and many other flavonoids in grains. Our research deepens the understanding of regulatory system for anthocyanin biosynthesis in rice pericarps and provides implications for breeding black rice varieties with high anthocyanin level. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01244-x.
Collapse
Affiliation(s)
- Jie Zheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512000 China
| | - Hao Wu
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512000 China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Zenan Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongmei Guo
- Food Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
52
|
Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:198-214. [PMID: 33884679 DOI: 10.1111/tpj.15285] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Junrui Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jie He
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yu Zeng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhijian Xu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
53
|
Alseekh S, Scossa F, Wen W, Luo J, Yan J, Beleggia R, Klee HJ, Huang S, Papa R, Fernie AR. Domestication of Crop Metabolomes: Desired and Unintended Consequences. TRENDS IN PLANT SCIENCE 2021; 26:650-661. [PMID: 33653662 DOI: 10.1016/j.tplants.2021.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 05/02/2023]
Abstract
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the contents of a handful of metabolites have been altered during human selection, but we are only beginning to unravel the true extent of the metabolic consequences of breeding. We highlight how crop metabolomes have been wittingly or unwittingly shaped by the processes of domestication, and highlight how we can identify new targets for metabolite engineering for the purpose of de novo domestication of crop wild relatives.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178 Rome, Italy
| | - Weiwei Wen
- Key laboratory of Horticultural Plant Biology (MOE),College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Hubei, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-, CI), 71122 Foggia, Italy
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture - Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| |
Collapse
|
54
|
Wu D, Lao S, Fan L. De-Domestication: An Extension of Crop Evolution. TRENDS IN PLANT SCIENCE 2021; 26:560-574. [PMID: 33648850 DOI: 10.1016/j.tplants.2021.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
De-domestication or feralization is an interesting phenomenon in crops and livestock. Previously, evidence for crop de-domestication was based mainly on studies using phenotypic and genotypic data from limited molecular markers or gene segments. Recent genomic studies in rice, barley, and wheat provide comprehensive landscapes of de-domestication on a whole-genome scale. Here, we summarize crop de-domestication processes, ecological roles of de-domesticates, mechanisms underlying crop de-domestication syndromes, and conditions potentially favoring de-domestication events. We further explain how recent de-domestication studies have expanded our understanding of the complexity of crop evolution, and highlight the genetic novelties of de-domesticates beneficial for modern crop breeding.
Collapse
Affiliation(s)
- Dongya Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sangting Lao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China.
| |
Collapse
|
55
|
Idris M, Seo N, Jiang L, Kiyota S, Hidema J, Iino M. UV-B signalling in rice: Response identification, gene expression profiling and mutant isolation. PLANT, CELL & ENVIRONMENT 2021; 44:1468-1485. [PMID: 33377203 DOI: 10.1111/pce.13988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Responses of rice seedlings to UV-B radiation (UV-B) were investigated, aiming to establish rice as a model plant for UV-B signalling studies. The growth of japonica rice coleoptiles, grown under red light, was inhibited by brief irradiation with UV-B, but not with blue light. The effective UV-B fluences (10-1 -103 μmol m-2 ) were much lower than those reported in Arabidopsis. The response was much less in indica rice cultivars and its extent varied among Oryza species. We next identified UV-B-specific anthocyanin accumulation in the first leaf of purple rice and used this visible phenotype to isolate mutants. Some isolated mutants were further characterized, and one was found to have a defect in the growth response. Using microarrays, we identified a number of genes that are regulated by low-fluence-rate UV-B in japonica coleoptiles. Some up-regulated genes were analysed by real-time PCR for UV-B specificity and the difference between japonica and indica. More than 70% of UV-B-regulated rice genes had no homologs in UV-B-regulated Arabidopsis genes. Many UV-B-regulated rice genes are related to plant hormones and especially to jasmonate biosynthetic and responsive genes in apparent agreement with the growth response. Possible involvement of two rice homologs of UVR8, a UV-B photoreceptor, is discussed.
Collapse
Affiliation(s)
- Muhammad Idris
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Nobu Seo
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Lei Jiang
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Seiichiro Kiyota
- Office of General Administration, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moritoshi Iino
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
56
|
Qiao W, Wang Y, Xu R, Yang Z, Sun Y, Su L, Zhang L, Wang J, Huang J, Zheng X, Liu S, Tian Y, Chen L, Liu X, Lan J, Yang Q. A functional chromogen gene C from wild rice is involved in a different anthocyanin biosynthesis pathway in indica and japonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1531-1543. [PMID: 33688983 DOI: 10.1007/s00122-021-03787-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE: we identified a functional chromogen gene C from wild rice, providing a new insight of anthocyanin biosynthesis pathway in indica and japonica. Accumulation of anthocyanin is a desirable trait to be selected in rice domestication, but the molecular mechanism of anthocyanin biosynthesis in rice remains largely unknown. In this study, a novel allele of chromogen gene C, OrC1, from Oryza rufipongon was cloned and identified as a determinant regulator of anthocyanin biosynthesis. Although OrC1 functions in purple apiculus, leaf sheath and stigma in indica background, it only promotes purple apiculus in japonica. Transcriptome analysis revealed that OrC1 regulates flavonoid biosynthesis pathway and activates a few bHLH and WD40 genes of ternary MYB-bHLH-WD40 complex in indica. Differentially expressed genes and metabolites were found in the indica and japonica backgrounds, indicating that OrC1 activated the anthocyanin biosynthetic genes OsCHI, OsF3H and OsANS and produced six metabolites independently. Artificial selection and domestication of C1 gene in rice occurred on the coding region in the two subspecies independently. Our results reveal the regulatory system and domestication of C1, provide new insights into MYB transcript factor involved in anthocyanin biosynthesis, and show the potential of engineering anthocyanin biosynthesis in rice.
Collapse
Affiliation(s)
- Weihua Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yanyan Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyi Yang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Sun
- Qingdao Agricultural University, Qingdao, China
| | - Long Su
- Qingdao Agricultural University, Qingdao, China
| | | | - Junrui Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijia Liu
- Nanjing Agricultural University, Nanjing, China
| | - Yunlu Tian
- Nanjing Agricultural University, Nanjing, China
| | | | - Xi Liu
- Nanjing Agricultural University, Nanjing, China
| | - Jinhao Lan
- Qingdao Agricultural University, Qingdao, China.
| | - Qingwen Yang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
57
|
Meng L, Qi C, Wang C, Wang S, Zhou C, Ren Y, Cheng Z, Zhang X, Guo X, Zhao Z, Wang J, Lin Q, Zhu S, Wang H, Wang Z, Lei C, Wan J. Determinant Factors and Regulatory Systems for Anthocyanin Biosynthesis in Rice Apiculi and Stigmas. RICE (NEW YORK, N.Y.) 2021; 14:37. [PMID: 33881644 PMCID: PMC8060382 DOI: 10.1186/s12284-021-00480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Anthocyanins cause purple, brown or red colors in various tissues of rice plants, but the specific determinant factors and regulatory systems for anthocyanin biosynthesis in almost all tissues remain largely unknown. In the present study, we mapped and isolated two complementary genes, OsC1 encoding a R2R3-MYB transcriptional factor and OsDFR encoding a dihydroflavonol 4-reductase, which are responsible for the purple coloration of apiculi and stigmas in indica cultivar Xieqingzao by the map-based cloning strategy. We also identified two tissue-specific pigmentation genes, OsPa for apiculi and OsPs for stigmas, by phylogenetic analysis of all anthocyanin biosynthesis-associated bHLH transcriptional factors in maize and rice, CRISPR/Cas9 knockout and transcriptional expression analysis. The OsC1, OsPa and OsPs proteins are all localized in the nucleus while the OsDFR protein is localized in the nucleus and cytoplasm, and the OsC1 and OsDFR genes are preferentially strongly expressed in both purple-colored tissues while the OsPa and OsPs genes are preferentially strongly expressed in apiculi and stigmas, respectively. OsC1 specifically interacts with OsPa or OsPs to activate OsDFR and other anthocyanin biosynthesis genes, resulting in purple-colored apiculi or stigmas. OsC1 itself does not produce color but can produce brown apiculi when functioning together with OsPa. Loss of function of OsDFR alone leads to brown apiculi and straw-white stigmas. Genotyping and phenotyping of a panel of 176 rice accessions revealed diverse genotypic combinations of OsC1, OsDFR, OsPa and OsPs that enable accurate prediction of their apiculus and stigma pigmentation phenotypes, thus validating the general applicability of the OsC1-OsDFR-OsPa and OsC1-OsDFR-OsPs models to natural populations. Our findings disclosed the biological functions of OsC1, OsPa and OsPs, and shed light on the specific regulatory systems of anthocyanin biosynthesis in apiculi and stigmas, a further step in understanding the regulatory network of anthocyanin biosynthesis in rice.
Collapse
Affiliation(s)
- Lingzhi Meng
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changyan Qi
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Cuihong Wang
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Shuai Wang
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Chunlei Zhou
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yulong Ren
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Zhijun Cheng
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xin Zhang
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xiuping Guo
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Zhichao Zhao
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Jie Wang
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Qibing Lin
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Shanshan Zhu
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Haiyang Wang
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Cailin Lei
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| | - Jianmin Wan
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
58
|
Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 2021; 22:253-284. [PMID: 33835761 PMCID: PMC8042526 DOI: 10.1631/jzus.b2100009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.
Collapse
Affiliation(s)
- Chao Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Eleanor Brant
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
59
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
60
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
61
|
Brotman Y, Llorente-Wiegand C, Oyong G, Badoni S, Misra G, Anacleto R, Parween S, Pasion E, Tiozon RN, Anonuevo JJ, deGuzman MK, Alseekh S, Mbanjo EGN, Boyd LA, Fernie AR, Sreenivasulu N. The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:507-525. [PMID: 33529453 DOI: 10.1111/tpj.15182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Brown rice (Oryza sativa) possesses various nutritionally dense bioactive phytochemicals exhibiting a wide range of antioxidant, anti-cancer, and anti-diabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity has not been systematically explored. Non-targeted metabolite profiling of developing and mature seeds of a diverse genetic panel of 320 rice cultivars allowed quantification of 117 metabolites. The metabolite genome-wide association study (mGWAS) detected genetic variants influencing diverse metabolic targets in developing and mature seeds. We further interlinked genetic variants on chromosome 7 (6.06-6.43 Mb region) with complex epistatic genetic interactions impacting multi-dimensional nutritional targets, including complex carbohydrate starch quality, the glycemic index, antioxidant catechin, and rice grain color. Through this nutrigenomics approach rare gene bank accessions possessing genetic variants in bHLH and IPT5 genes were identified through haplotype enrichment. These variants were associated with a low glycemic index, higher catechin levels, elevated total flavonoid contents, and heightened antioxidant activity in the whole grain with elevated anti-cancer properties being confirmed in cancer cell lines. This multi-disciplinary nutrigenomics approach thus allowed us to discover the genetic basis of human health-conferring diversity in the metabolome of brown rice.
Collapse
Affiliation(s)
- Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Glenn Oyong
- Molecular Science Unit Laboratory - Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila, 1004, Philippines
| | - Saurabh Badoni
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Gopal Misra
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Roslen Anacleto
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sabiha Parween
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Erstelle Pasion
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Rhowell N Tiozon
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Joanne J Anonuevo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maria K deGuzman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Edwige G N Mbanjo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Lesley A Boyd
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Nese Sreenivasulu
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
62
|
Lin YL, Wu DH, Wu CC, Huang YF. Explore the genetics of weedy traits using rice 3K database. BOTANICAL STUDIES 2021; 62:2. [PMID: 33432466 PMCID: PMC7801593 DOI: 10.1186/s40529-020-00309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Weedy rice, a conspecific weedy counterpart of the cultivated rice (Oryza sativa L.), has been problematic in rice-production area worldwide. Although we started to know about the origin of some weedy traits for some rice-growing regions, an overall assessment of weedy trait-related loci was not yet available. On the other hand, the advances in sequencing technologies, together with community efforts, have made publicly available a large amount of genomic data. Given the availability of public data and the need of "weedy" allele mining for a better management of weedy rice, the objective of the present study was to explore the genetic architecture of weedy traits based on publicly available data, mainly from the 3000 Rice Genome Project (3K-RGP). RESULTS Based on the results of population structure analysis, we have selected 1378 individuals from four sub-populations (aus, indica, temperate japonica, tropical japonica) without admixed genomic composition for genome-wide association analysis (GWAS). Five traits were investigated: awn color, seed shattering, seed threshability, seed coat color, and seedling height. GWAS was conducted for each sub-population × trait combination and we have identified 66 population-specific trait-associated SNPs. Eleven significant SNPs fell into an annotated gene and four other SNPs were close to a putative candidate gene (± 25 kb). SNPs located in or close to Rc were particularly predictive of the occurrence of seed coat color and our results showed that different sub-populations required different SNPs for a better seed coat color prediction. We compared the data of 3K-RGP to a publicly available weedy rice dataset. The profile of allele frequency, phenotype-genotype segregation of target SNP, as well as GWAS results for the presence and absence of awns diverged between the two sets of data. CONCLUSIONS The genotype of trait-associated SNPs identified in this study, especially those located in or close to Rc, can be developed to diagnostic SNPs to trace the origin of weedy trait occurred in the field. The difference of results from the two publicly available datasets used in this study emphasized the importance of laboratory experiments to confirm the allele mining results based on publicly available data.
Collapse
Affiliation(s)
- Yu-Lan Lin
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da'an Dist., Taipei, 10617, Taiwan
| | - Dong-Hong Wu
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, No. 189, Zhongzheng Rd, Wufeng Dist, Taichung City, 41362, Taiwan
| | - Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da'an Dist., Taipei, 10617, Taiwan
| | - Yung-Fen Huang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da'an Dist., Taipei, 10617, Taiwan.
| |
Collapse
|
63
|
Zhong H, Liu S, Zhao G, Zhang C, Peng Z, Wang Z, Yang J, Li Y. Genetic Diversity Relationship Between Grain Quality and Appearance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:708996. [PMID: 34408762 PMCID: PMC8365354 DOI: 10.3389/fpls.2021.708996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 05/08/2023]
Abstract
Grain quality is an important breeding objective in rice, and the appearance of the grain also affects its commercial value in the market. The aim of this study was to decode the rice grain qualities and appearances, such as gelatinization temperature (GT), amylose content (AC), grain protein content (GPC), pericarp color (PC), length/width ratio (LWR), and grain volume (GV) at phenotypic and genetic levels, as well as the relationships among them. A genome-wide association study (GWAS) was used to identify the quantitative trait locus (QTLs) associated with the target traits using mixed linear model (MLM) and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) methods. In general, AC was negatively correlated with GPC and GV, while it was positively correlated with LWR and PC. GPC was positively correlated with LWR. Using the rice diversity panel 1 (RDP1) population, we identified 11, 6, 2, 7, 11, and 6 QTLs associated with GT, AC, GPC, PC, LWR, and GV, respectively. Five germplasm lines, superior in grain qualities and appearances for basic breeding materials or improvement, were identified. Notably, an F-box gene OsFbox394 was located in the linkage disequilibrium (LD) block of qLWR7-2, which specifically expresses in endosperm and seed tissues, suggesting that this gene may regulate the seed development in rice grain. Besides, different haplotypes of OsHyPRP45 showed significant differences in AC, indicating that this gene may be related to AC in rice grain.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Gangqing Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jing Yang
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yangsheng Li
| |
Collapse
|
64
|
Wang J, Deng Q, Li Y, Yu Y, Liu X, Han Y, Luo X, Wu X, Ju L, Sun J, Liu A, Fang J. Transcription Factors Rc and OsVP1 Coordinately Regulate Preharvest Sprouting Tolerance in Red Pericarp Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14748-14757. [PMID: 33264008 DOI: 10.1021/acs.jafc.0c04748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Red pericarp associates with seed dormancy or preharvest sprouting (PHS) tolerance in crops. To identify this association's molecular mechanism, a PHS mutant Osviviparous1 (Osvp1) was characterized in rice and crossed with Kasalath, a red pericarp cultivar with Rc (red coleoptiles) genotype. Among the dehulled seeds of F2 progenies, RcRcvp1vp1 seeds performed a lower PHS rate than rcrcvp1vp1 seeds and showed shallower pigmentation than RcRcVP1VP1 seeds. Kasalath and SL9 (an RcRcVP1VP1 substitution line with Nipponbare background) showed more ABA sensitivity than the Nipponbare (rcrcVP1VP1) by the germination assay, and the transcriptional abundance of ABA signal genes OsABI2, OsSnRK2, OsVP1, ABI5, and especially OsVP1 increased in the red pericarp line SL9. Moreover, OsVP1 can directly bind Rc (bHLH) promoter by yeast one-hybrid, which activates Rc and OsLAR expression in red pericarp rice. Furthermore, a luciferase complementation imaging assay showed that OsVP1 interacts with transcriptions factors Rc and OsC1. These results indicate that OsVP1 promotes proanthocyanidin accumulation through the interaction among OsVP1, Rc, and OsC1 and then increases the plant's ABA sensitivity and PHS resistance.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Beverage Engineering Technology Research Center of Fruit-vegetables and Coarse Cereals of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Qianwen Deng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Yuhua Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xujiang Wu
- Institute of Agricultural Science of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China
| | - Lan Ju
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aihua Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
65
|
Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK, Yadav R. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding. Front Nutr 2020; 7:533453. [PMID: 33324668 PMCID: PMC7725794 DOI: 10.3389/fnut.2020.533453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Nutritional stress is making over two billion world population malnourished. Either our commercially cultivated varieties of cereals, pulses, and oilseed crops are deficient in essential nutrients or the soils in which these crops grow are becoming devoid of minerals. Unfortunately, our major food crops are poor sources of micronutrients required for normal human growth. To overcome the problem of nutritional deficiency, greater emphasis should be laid on the identification of genes/quantitative trait loci (QTLs) pertaining to essential nutrients and their successful deployment in elite breeding lines through marker-assisted breeding. The manuscript deals with information on identified QTLs for protein content, vitamins, macronutrients, micro-nutrients, minerals, oil content, and essential amino acids in major food crops. These QTLs can be utilized in the development of nutrient-rich crop varieties. Genome editing technologies that can rapidly modify genomes in a precise way and will directly enrich the nutritional status of elite varieties could hold a bright future to address the challenge of malnutrition.
Collapse
Affiliation(s)
- Kiran B. Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sushma Rani
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vikas Gupta
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prashanth H. Babu
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
66
|
Strygina KV. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
67
|
Sahoo S, Sanghamitra P, Nanda N, Pawar S, Pandit E, Bastia R, Muduli KC, Pradhan SK. Association of molecular markers with physio-biochemical traits related to seed vigour in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1989-2003. [PMID: 33088044 PMCID: PMC7548267 DOI: 10.1007/s12298-020-00879-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Eighteen physio-biochemical traits influencing seed vigour were studied for their association with molecular markers using a mini core set constituted from 120 germplasm lines. High genetic variation was detected in the parameters namely chlrophyll a, Chlrophyll b, total chlorophyll, carotenoids, total anthocyanin content, gamma-oryzanols, total phenolics content, superoxide dismutase, catalase, guaicol peroxidase, total soluble sugar, total protein, seed vigour index -I and seed vigour index -II. Strong positive correlation of seed vigour index II was observed with amylose content, total anthocyanin content, catalase, total phenolic content and total flavonoid content while a negative association was observed for gamma-oryzanol content. High gene diversity (0.7169) and informative markers value (0.6789) were estimated from the investigation. Three genetic structure groups were observed in the panel population and genotypes were grouped in the subpopulations based on the seed vigour trait. Differences in the fixation indices of the three sub populations indicated existence of linkage disequilibrium in the studied panel population. Association of the traits namely total flavonoids, superoxide dismutase, catalase, chlorophyll a, Chlorophyll b, total chlorophyll, carotenoids, starch, amylose, total anthocyanin, gamma-oryzanol, total phenolics with the molecular markers were detected by Generalized Linear Model and Mixed Linear Model showing > 0.10 R2 value. Association of the trait, total flavonoids with marker RM7364 located on chromosome 8 reported in earlier study was validated in this investigation. The validated markers and the novel markers detected showing higher R2 value will be useful for improvement of seed vigour in rice.
Collapse
Affiliation(s)
- Swastideepa Sahoo
- Department of Seed Technology, College of Agriculture, OUAT, Bhubaneswar, 751003 Odisha India
| | | | - Nibedita Nanda
- Department of Seed Technology, College of Agriculture, OUAT, Bhubaneswar, 751003 Odisha India
| | - Swapnil Pawar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | - Ramakrushna Bastia
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Kumuda Chandra Muduli
- Department of Seed Technology, College of Agriculture, OUAT, Bhubaneswar, 751003 Odisha India
| | - Sharat Kumar Pradhan
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| |
Collapse
|
68
|
Hoyos V, Plaza G, Li X, Caicedo AL. Something old, something new: Evolution of Colombian weedy rice ( Oryza spp.) through de novo de-domestication, exotic gene flow, and hybridization. Evol Appl 2020; 13:1968-1983. [PMID: 32908598 PMCID: PMC7463356 DOI: 10.1111/eva.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Weedy rice (Oryza spp.) is a worldwide weed of domesticated rice (O. sativa), considered particularly problematic due to its strong competition with the crop, which leads to reduction in yields and harvest quality. Several studies have established multiple independent origins for weedy rice populations in the United States and various parts of Asia; however, the origins of weedy rice in South America have not been examined in a global context. We evaluated the genetic variation of weedy rice populations in Colombia, as well as the contributions of local wild Oryza species, local cultivated varieties, and exotic Oryza groups to the weed, using polymorphism generated by genotyping by sequencing (GBS). We found no evidence for genomic contributions from local wild Oryza species (O. glumaepatula, O. grandiglumis, O. latifolia, and O. alta) to Colombian weedy rice. Instead, Colombian weedy rice has evolved from local indica cultivars and has also likely been inadvertently imported as an exotic pest from the United States. Additionally, weeds comprising de novo admixture between these distinct weedy populations now represent a large proportion of genomic backgrounds in Colombian weedy rice. Our results underscore the impressive ability of weedy rice to evolve through multiple evolutionary pathways, including in situ de-domestication, range expansion, and hybridization.
Collapse
Affiliation(s)
- Verónica Hoyos
- Departamento de AgronomíaUniversidad Nacional de ColombiaBogotáColombia
| | - Guido Plaza
- Departamento de AgronomíaUniversidad Nacional de ColombiaBogotáColombia
| | - Xiang Li
- Plant Biology Graduate ProgramUniversity of MassachusettsAmherstMAUSA
| | - Ana L. Caicedo
- Biology DepartmentUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
69
|
Yuan R, Zhao N, Usman B, Luo L, Liao S, Qin Y, Nawaz G, Li R. Development of Chromosome Segment Substitution Lines (CSSLs) Derived from Guangxi Wild Rice ( Oryza rufipogon Griff.) under Rice ( Oryza sativa L.) Background and the Identification of QTLs for Plant Architecture, Agronomic Traits and Cold Tolerance. Genes (Basel) 2020; 11:E980. [PMID: 32842674 PMCID: PMC7564255 DOI: 10.3390/genes11090980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Common wild rice contains valuable resources of novel alleles for rice improvement. It is well known that genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) ais a powerful tool for fine mapping of quantitative traits, new gene discovery and marker-assisted breeding. In this study, 132 CSSLs were developed from a cultivated rice (Oryza sativa) cultivar (93-11) and common wild rice (Oryza rufipogon Griff. DP30) by selfing-crossing, backcrossing and marker-assisted selection (MAS). Based on the high-throughput sequencing of the 93-11 and DP30, 285 pairs of Insertion-deletions (InDel) markers were selected with an average distance of 1.23 Mb. The length of this DP30-CSSLs library was 536.4 cM. The coverage rate of substitution lines cumulatively overlapping the whole genome of DP30 was about 91.55%. DP30-CSSLs were used to analyze the variation for 17 traits leading to the detection of 36 quantitative trait loci (QTLs) with significant phenotypic effects. A cold-tolerant line (RZ) was selected to construct a secondary mapping F2 population, which revealed that qCT2.1 is in the 1.7 Mb region of chromosome 2. These CSSLs may, therefore, provide powerful tools for genome wide large-scale gene discovery in wild rice. This research will also facilitate fine mapping and cloning of QTLs and genome-wide study of wild rice. Moreover, these CSSLs will provide a foundation for rice variety improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (R.Y.); (N.Z.); (B.U.); (L.L.); (S.L.); (Y.Q.); (G.N.)
| |
Collapse
|
70
|
Grimm A, Sahi VP, Amann M, Vidotto F, Fogliatto S, Devos KM, Ferrero A, Nick P. Italian weedy rice-A case of de-domestication? Ecol Evol 2020; 10:8449-8464. [PMID: 32788993 PMCID: PMC7417233 DOI: 10.1002/ece3.6551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/10/2020] [Indexed: 01/22/2023] Open
Abstract
Weedy rice is a representative of the extensive group of feral weeds that derive from crops, but has returned to the lifestyle of a wild species. These weeds develop either from a hybridization of crops with wild relatives (exoferality), or by mutation of crops to weedy forms (endoferality). Due to the close relation of weed and crop, the methods for weed-targeted containment are limited to date. A deeper understanding of the development of such weeds might help to design more efficient and sustainable approaches for weed management. Weedy rice poses a serious threat to rice yields worldwide. It is widely accepted that weedy rice has originated independently in different regions all over the world. However, details of its evolution have remained elusive. In the current study, we investigated the history of weedy rice in northern Italy, the most important rice-growing area in Europe. Our approach was to analyze genes related to weedy traits (SD1, sh4, Rc) in weedy rice accessions compared to cultivars, and to integrate these results with phenotypic and physiological data, as well as historical information about rice farming in Italy. We arrive at a working model for the timeline of evolution of weedy rice in Italy indicating that both exoferality and endoferality acted as forces driving the development of the diverse weedy rice populations found in the region today. Models of weed evolution can help to predict the direction which weed development might take and to develop new, sustainable methods to control feral weeds.
Collapse
Affiliation(s)
- Annabelle Grimm
- Molecular Cell BiologyBotanical InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Vaidurya P. Sahi
- Molecular Cell BiologyBotanical InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Manuel Amann
- Molecular Cell BiologyBotanical InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Francesco Vidotto
- Dipartimento di Scienze AgrarieForestali e AlimentariUniversita degli Studi di TorinoTorinoItaly
| | - Silvia Fogliatto
- Dipartimento di Scienze AgrarieForestali e AlimentariUniversita degli Studi di TorinoTorinoItaly
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant BiologyThe University of GeorgiaAthensGAUSA
| | - Aldo Ferrero
- Dipartimento di Scienze AgrarieForestali e AlimentariUniversita degli Studi di TorinoTorinoItaly
| | - Peter Nick
- Molecular Cell BiologyBotanical InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
71
|
Nayeem S, Venkidasamy B, Sundararajan S, Kuppuraj SP, Ramalingam S. Differential expression of flavonoid biosynthesis genes and biochemical composition in different tissues of pigmented and non-pigmented rice. Journal of Food Science and Technology 2020; 58:884-893. [PMID: 33678871 DOI: 10.1007/s13197-020-04602-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022]
Abstract
Ever since the flavonoids and other antioxidants in rice were demonstrated with immense health benefits, much interest has been diverted to study the native indigenous rice landraces. In the present investigation, three pigmented rare Indian rice landraces and two non-pigmented rice varieties were analyzed for their phytoconstituents like total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content and antioxidant potential using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The phytochemical profile was compared between seed, seedling, stem, leaf and root tissues of the different varieties. Pigmented rice cultivars demonstrated higher levels of bioactive compounds as compared to the non-pigmented cultivars exhibiting a strong correlation between the antioxidant activity of the grain and their phenolic and flavonoid content. Among the five different rice studied, black navara was found to be superior in terms of its phytochemical composition. Further, the expression levels of flavonoid genes among pigmented and non-pigmented rice was studied. Higher gene expression profiles were observed in the 8 flavonoid genes studied in pigmented rice varieties as compared to non-pigmented varieties. The colorlessness of non-pigmented rice and its lower levels of phytoconstituents correlated with the low transcript levels of flavonoid genes recorded in them. This study provides a basis for understanding the health-promoting properties of pigmented rice over non-pigmented rice at the biochemical and molecular levels.
Collapse
Affiliation(s)
- Safia Nayeem
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Baskar Venkidasamy
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Sathish Sundararajan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Sree Preethy Kuppuraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046 India
| |
Collapse
|
72
|
Wang W, Zhao M, Zhang G, Liu Z, Hua Y, Jia X, Song J, Ma D, Sun J. Weedy Rice as a Novel Gene Resource: A Genome-Wide Association Study of Anthocyanin Biosynthesis and an Evaluation of Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:878. [PMID: 32595693 PMCID: PMC7300295 DOI: 10.3389/fpls.2020.00878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 05/24/2023]
Abstract
The pericarp color of rice grains is an important agronomic trait affected by domestication, and the color pigment, anthocyanin, is one of the key determinants of rice nutritional quality. Weedy rice, also called red rice because its pericarp is often red, may be a novel gene resource for the development of new rice. However, the genetic basis and nutritional quality of anthocyanin are poorly known. In this study, we used a genome-wide association study (GWAS) to find novel and specific QTLs of red pericarp in weedy rice. The known key gene site of red pericarp Rc was detected as the common genetic basis of both weedy and cultivated rice, and another 13 associated signals of pericarp color that were identified may contribute specifically to weedy rice pericarp color. We then nominated three pericarp color genes that may contribute to weedy rice divergence from cultivated rice based on selection sweep analysis. After clarifying the distribution and growth dynamics of pigment in weedy rice caryopsis, we compared its nutritional quality with cultivated rice. We found that sampled weedy rice pericarps had much greater quantities of anthocyanin, beneficial trace elements, free amino acids, and unsaturated fatty acids than the cultivated rice. In conclusion, the gene resources and novel genetic systems of rice anthocyanin biosynthesis explored in this study are of great value for the development of nutritious, high anthocyanin content rice.
Collapse
|
73
|
Wang Q, Wang Y, Sun H, Sun L, Zhang L. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2537-2550. [PMID: 31961436 PMCID: PMC7210773 DOI: 10.1093/jxb/eraa010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/17/2020] [Indexed: 05/20/2023]
Abstract
Red-fleshed radish (Raphanus sativus L.) is a unique cultivar whose taproot is rich in anthocyanins beneficial to human health. However, the frequent occurrence of white-fleshed mutants affects the purity of commercially produced radish and the underlying mechanism has puzzled breeders for many years. In this study, we combined quantitative trait location by genome resequencing and transcriptome analyses to identify a candidate gene (RsMYB1) responsible for anthocyanin accumulation in red-fleshed radish. However, no sequence variation was found in the coding and regulatory regions of the RsMYB1 genes of red-fleshed (MTH01) and white-fleshed (JC01) lines, and a 7372 bp CACTA transposon in the RsMYB1 promoter region occurred in both lines. A subsequent analysis suggested that the white-fleshed mutant was the result of altered DNA methylation in the RsMYB1 promoter. This heritable epigenetic change was due to the hypermethylated CACTA transposon, which induced the spreading of DNA methylation to the promoter region of RsMYB1. Thus, RsMYB1 expression was considerably down-regulated, which inhibited anthocyanin biosynthesis in the white-fleshed mutant. An examination of transgenic radish calli and the results of a virus-induced gene silencing experiment confirmed that RsMYB1 is responsible for anthocyanin accumulation. Moreover, the mutant phenotype was partially eliminated by treatment with a demethylating agent. This study explains the molecular mechanism regulating the appearance of white-fleshed mutants of red-fleshed radish.
Collapse
Affiliation(s)
- Qingbiao Wang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yanping Wang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Honghe Sun
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Liang Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Li Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Correspondence:
| |
Collapse
|
74
|
Tanaka N, Shenton M, Kawahara Y, Kumagai M, Sakai H, Kanamori H, Yonemaru J, Fukuoka S, Sugimoto K, Ishimoto M, Wu J, Ebana K. Whole-Genome Sequencing of the NARO World Rice Core Collection (WRC) as the Basis for Diversity and Association Studies. PLANT & CELL PHYSIOLOGY 2020; 61:922-932. [PMID: 32101292 PMCID: PMC7426033 DOI: 10.1093/pcp/pcaa019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/16/2020] [Indexed: 05/12/2023]
Abstract
Genebanks provide access to diverse materials for crop improvement. To utilize and evaluate them effectively, core collections, such as the World Rice Core Collection (WRC) in the Genebank at the National Agriculture and Food Research Organization, have been developed. Because the WRC consists of 69 accessions with a high degree of genetic diversity, it has been used for >300 projects. To allow deeper investigation of existing WRC data and to further promote research using Genebank rice accessions, we performed whole-genome resequencing of these 69 accessions, examining their sequence variation by mapping against the Oryza sativa ssp. japonica Nipponbare genome. We obtained a total of 2,805,329 single nucleotide polymorphisms (SNPs) and 357,639 insertion-deletions. Based on the principal component analysis and population structure analysis of these data, the WRC can be classified into three major groups. We applied TASUKE, a multiple genome browser to visualize the different WRC genome sequences, and classified haplotype groups of genes affecting seed characteristics and heading date. TASUKE thus provides access to WRC genotypes as a tool for reverse genetics. We examined the suitability of the compact WRC population for genome-wide association studies (GWASs). Heading date, affected by a large number of quantitative trait loci (QTLs), was not associated with known genes, but several seed-related phenotypes were associated with known genes. Thus, for QTLs of strong effect, the compact WRC performed well in GWAS. This information enables us to understand genetic diversity in 37,000 rice accessions maintained in the Genebank and to find genes associated with different phenotypes. The sequence data have been deposited in DNA Data Bank of Japan Sequence Read Archive (DRA) (Supplementary Table S1).
Collapse
Affiliation(s)
- N Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - M Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - Y Kawahara
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba Ibaraki, 305-8517, Japan
| | - M Kumagai
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba Ibaraki, 305-8517, Japan
| | - H Sakai
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba Ibaraki, 305-8517, Japan
| | - H Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - J Yonemaru
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - S Fukuoka
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - K Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - M Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - J Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518 Japan
| | - K Ebana
- Genetic Resources Center, National Agriculture and Food Research Organization, Plant Genetic Diversity Laboratory, Tsukuba, Ibaraki 305-8502, Japan
- Corresponding author: E-mail, ; Fax, +81-29-838-7408
| |
Collapse
|
75
|
Wu DH, Gealy DR, Jia MH, Edwards JD, Lai MH, McClung AM. Phylogenetic origin and dispersal pattern of Taiwan weedy rice. PEST MANAGEMENT SCIENCE 2020; 76:1639-1651. [PMID: 31714668 DOI: 10.1002/ps.5683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/11/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Knowledge of the genetic diversity and spatial structure of Taiwan weedy red rice (WRR) populations, which adapted in a transplanting system, will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. RESULTS Taiwan WRR is genetically most similar to Taiwan indica cultivars and landraces according to genetic distance. The inbreeding coefficient of the Taiwan WRR population is greater than 0.8, which is similar to the inbred cultivars. The ancestry coefficients map suggests a dispersal pattern of long-distance and seed-mediated contamination across Taiwan, often from warmer, earlier-planted regions to cooler, later-planted regions. Parentage analysis of Taiwan WRR revealed that mostly early indica landraces and indica cultivars were present in the genetic pool; in rare cases temperate japonica was present. Based on the above results, the phylogenetic origin of most Taiwan weedy rice appears to be from hybrid progenies of old cultivated red rice accessions crossed with 'DGWG'. The inbreeding coefficient trend of the six TWR clusters suggests a temporal shift from 'old' indica landraces with red bran (high inbreeding coefficient) to modern indica varieties (low inbreeding coefficient). CONCLUSION Although there were sustained efforts to remove these old red rice accessions from paddy fields before 1945, some farmers continued to use low purity seed. This practice, along with volunteer cultivation of these old varieties in the second cropping season, apparently has facilitated the long-distance, seed-mediated contamination of rice seed, and the increase in weedy rice seed in paddy soil. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dong-Hong Wu
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung City, Taiwan
| | - David R Gealy
- Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Service, Stuttgart, AR, USA
| | - Melissa H Jia
- Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Service, Stuttgart, AR, USA
| | - Jeremy D Edwards
- Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Service, Stuttgart, AR, USA
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung City, Taiwan
| | - Anna M McClung
- Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Service, Stuttgart, AR, USA
| |
Collapse
|
76
|
Mbanjo EGN, Kretzschmar T, Jones H, Ereful N, Blanchard C, Boyd LA, Sreenivasulu N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front Genet 2020; 11:229. [PMID: 32231689 PMCID: PMC7083195 DOI: 10.3389/fgene.2020.00229] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Improving the nutritional quality of rice grains through modulation of bioactive compounds and micronutrients represents an efficient means of addressing nutritional security in societies which depend heavily on rice as a staple food. White rice makes a major contribution to the calorific intake of Asian and African populations, but its nutritional quality is poor compared to that of pigmented (black, purple, red orange, or brown) variants. The compounds responsible for these color variations are the flavonoids anthocyanin and proanthocyanidin, which are known to have nutritional value. The rapid progress made in the technologies underlying genome sequencing, the analysis of gene expression and the acquisition of global 'omics data, genetics of grain pigmentation has created novel opportunities for applying molecular breeding to improve the nutritional value and productivity of pigmented rice. This review provides an update on the nutritional value and health benefits of pigmented rice grain, taking advantage of both indigenous and modern knowledge, while also describing the current approaches taken to deciphering the genetic basis of pigmentation.
Collapse
Affiliation(s)
- Edwige Gaby Nkouaya Mbanjo
- International Rice Research Institute, Los Baños, Philippines
- International Institute for Tropical Agriculture, Ibadan, Oyo, Nigeria
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Huw Jones
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Nelzo Ereful
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Lesley Ann Boyd
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | | |
Collapse
|
77
|
Liu D, Yang H, Yuan Y, Zhu H, Zhang M, Wei X, Sun D, Wang X, Yang S, Yang L. Comparative Transcriptome Analysis Provides Insights Into Yellow Rind Formation and Preliminary Mapping of the Clyr ( Yellow Rind) Gene in Watermelon. FRONTIERS IN PLANT SCIENCE 2020; 11:192. [PMID: 32218790 PMCID: PMC7078170 DOI: 10.3389/fpls.2020.00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
As an important appearance trait, the rind color of watermelon fruit affects the commodity value and further determines consumption choices. In this study, a comparative transcriptome analysis was conducted to elucidate the genes and pathways involved in the formation of yellow rind fruit in watermelon using a yellow rind inbred line WT4 and a green rind inbred line WM102. A total of 2,362 differentially expressed genes (DEGs) between WT4 and WM102 at three different stages (0, 7, and 14 DAP) were identified and 9,770 DEGs were obtained by comparing the expression level at 7 DAP and 14 DAP with the former stages of WT4. The function enrichment of DEGs revealed a number of pathways and terms in biological processes, cellular components, and molecular functions that were related to plant pigment metabolism, suggesting that there may be a group of common core genes regulating rind color formation. In addition, next-generation sequencing aided bulked-segregant analysis (BSA-seq) of the yellow rind pool and green rind pool selected from an F2 population revealed that the yellow rind gene (Clyr) was mapped on the top end of chromosome 4. Based on the BSA-seq analysis result, Clyr was further confined to a region of 91.42 kb by linkage analysis using 1,106 F2 plants. These results will aid in identifying the key genes and pathways associated with yellow rind formation and elucidating the molecular mechanism of rind color formation in watermelon.
Collapse
Affiliation(s)
- Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaojuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shichao Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
78
|
Amer Hamzah M, Mohd Kasim NA, Shamsuddin A, Mustafa N, Mohamad Rusli NI, Teh CY, Ho CL. Nucleotide variations of 9- cis- epoxycarotenoid dioxygenase 2 ( NCED2) and pericarp coloration genes ( Rc and Rd) from upland rice varieties. 3 Biotech 2020; 10:105. [PMID: 32099746 PMCID: PMC7007461 DOI: 10.1007/s13205-020-2092-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
In this study, we analyzed the Rc and Rd genes that are responsible for the coloration of rice pericarps from six upland rice varieties. We also examined the association of pericarp coloration to the single nucleotide polymorphism in 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), a key gene involved in abscisic acid (ABA) biosynthesis. Our findings demonstrated that all the upland rice varieties analyzed have a Rd gene which encodes a complete dihydroflavonol-4-reductase without early translational termination codon irrespective of their pericarp colors. However, the upland rice varieties with white pericarps were found to have a defective Rc gene with a 14-base deletion at exon 7 which could disrupt the function of a positive regulator of proanthocyanidin biosynthesis. In addition, the NCED2 genes from the upland rice varieties with white pericarps in this study have a C-allele while the NCED2 genes from Pandasan Red, Tomou and Taragang varieties that bear red pericarps were found to have a T-allele which was reported to be associated with a higher ABA level in upland rice. A better understanding of the gene sequences of upland rice varieties with red pericarp may provide important information for rice breeding programs.
Collapse
Affiliation(s)
- Muazr Amer Hamzah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Nur Aini Mohd Kasim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Athirah Shamsuddin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Nadia Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Norliana Izzati Mohamad Rusli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Chui-Yao Teh
- School of Biological Sciences, Faculty of Science and Technology, Quest International University Perak, 30250 Ipoh, Perak Malaysia
| | - Chai-Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| |
Collapse
|
79
|
Zhang Y, Ye J, Liu C, Xu Q, Long L, Deng X. Citrus PH4-Noemi regulatory complex is involved in proanthocyanidin biosynthesis via a positive feedback loop. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1306-1321. [PMID: 31728522 PMCID: PMC7031078 DOI: 10.1093/jxb/erz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/06/2019] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs; or condensed tannins) are a major class of flavonoids that contribute to citrus fruit quality. However, the molecular mechanism responsible for PA biosynthesis and accumulation in citrus remains unclear. Here, we identify a PH4-Noemi regulatory complex that regulates proanthocyanidin biosynthesis in citrus. Overexpression of PH4 or Noemi in citrus calli activated the expression of PA biosynthetic genes and significantly increased the PA content. Interestingly, Noemi was also shown to be up-regulated in CsPH4-overexpressing lines compared with wild-type calli. Simultaneously, CsPH4 partially complemented the PA-deficient phenotype of the Arabidopsis tt2 mutant and promoted PA accumulation in the wild-type. Further analysis revealed that CsPH4 interacted with Noemi, and together these proteins synergistically activated the expression of PA biosynthetic genes by directly binding to the MYB-recognizing elements (MRE) of the promoters of these genes. Moreover, CsPH4 could directly bind to the promoter of Noemi and up-regulate the expression of this gene. These findings explain how the CsPH4-Noemi regulatory complex contributes to the activation of PA biosynthetic genes via a positive feedback loop and provide new insights into the molecular mechanisms underlying PA biosynthesis, which can be effectively employed for metabolic engineering to improve citrus fruit quality.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lichang Long
- Agriculture Bureau of Hongjiang City, Hongjiang, Hunan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
80
|
Bollinedi H, Singh AK, Singh N, S GK, Bhowmick PK, K K V, M N, R K E. Genetic and genomic approaches to address rapid rancidity of rice bran. Crit Rev Food Sci Nutr 2020; 61:75-84. [PMID: 31997650 DOI: 10.1080/10408398.2020.1718598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rice bran is an invaluable by-product of paddy processing industry. It is rich in minerals, protein, lipids, and crude fiber. In addition, it also possesses compounds with anti-oxidant, anti-allergic, anti-diabetic, and anti-cancer properties. It forms a basis for the extraction of rice bran oil and preparation of various functional foods with health benefits and potential to prevent chronic health issues. Nevertheless, the rapid deterioration of bran upon storage acts as a major limitation in exploiting the full potential of rice bran. In this review, we have discussed three strategies to address rapid rancidity of rice bran and enhance its shelf life and storability vis-a-vis emphasizing the importance of rice bran in terms of its nutritional composition. One strategy is through exploitation of the null mutations in the genes governing lipases and lipoxygenases leading to nonfunctional enzymes (enzyme deficient approach), another strategy is through reducing the PUFA content that is more prone to oxidation (substrate deficient approach) and a third strategy is through enhancing the antioxidant content that effectively terminate the lipid peroxidation by donating the hydrogen atom.
Collapse
Affiliation(s)
- Haritha Bollinedi
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - A K Singh
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Neha Singh
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Gopala Krishnan S
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Prolay K Bhowmick
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Vinod K K
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Nagarajan M
- ICAR - IARI and Genetics Research Centre, Aduthurai, Tamil Nadu, India
| | - Ellur R K
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| |
Collapse
|
81
|
He Y, Shim YY, Mustafa R, Meda V, Reaney MJ. Chickpea Cultivar Selection to Produce Aquafaba with Superior Emulsion Properties. Foods 2019; 8:foods8120685. [PMID: 31847449 PMCID: PMC6963802 DOI: 10.3390/foods8120685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
Aquafaba (AQ), a viscous by-product solution produced during cooking chickpea or other legumes in water, is increasingly being used as an egg replacement due to its ability to form foams and emulsions. The objectives of our work were to select a chickpea cultivar that produces AQ with superior emulsion properties, and to investigate the impact of chickpea seed physicochemical properties and hydration kinetics on the properties of AQ-based emulsions. AQ from a Kabuli type chickpea cultivar (CDC Leader) had the greatest emulsion capacity (1.10 ± 0.04 m2/g) and stability (71.9 ± 0.8%). There were no correlations observed between AQ emulsion properties and chickpea seed proximate compositions. Meanwhile, AQ emulsion properties were negatively correlated with AQ yield and moisture content, indicating that AQ with higher dry-matter content displayed better emulsion properties. In conclusion, the emulsification properties of aquafaba are greatly influenced by the chickpea genotype, and AQ from the CDC Leader chickpea produced the most stable food oil emulsions.
Collapse
Affiliation(s)
- Yue He
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Youn Young Shim
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Rana Mustafa
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Martin J.T. Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
- Correspondence: ; Tel.: +1-306-9665027
| |
Collapse
|
82
|
Discovery of Functional SNPs via Genome-Wide Exploration of Malaysian Pigmented Rice Varieties. Int J Genomics 2019; 2019:4168045. [PMID: 31687375 PMCID: PMC6811786 DOI: 10.1155/2019/4168045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023] Open
Abstract
Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
Collapse
|
83
|
Zhu Y, Lin Y, Chen S, Liu H, Chen Z, Fan M, Hu T, Mei F, Chen J, Chen L, Wang F. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2096-2105. [PMID: 31002444 PMCID: PMC6790373 DOI: 10.1111/pbi.13125] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 05/03/2023]
Abstract
Red rice contains high levels of proanthocyanidins and anthocyanins, which have been recognized as health-promoting nutrients. The red coloration of rice grains is controlled by two complementary genes, Rc and Rd. The RcRd genotype produces red pericarp in wild species Oryza rufipogon, whereas most cultivated rice varieties produce white grains resulted from a 14-bp frame-shift deletion in the seventh exon of the Rc gene. In the present study, we developed a CRISPR/Cas9-mediated method to functionally restore the recessive rc allele through reverting the 14-bp frame-shift deletion to in-frame mutations in which the deletions were in multiples of three bases, and successfully converted three elite white pericarp rice varieties into red ones. Rice seeds from T1 in-frame Rc lines were measured for proanthocyanidins and anthocyanidins, and high accumulation levels of proanthocyanidins and anthocyanidins were observed in red grains from the mutants. Moreover, there was no significant difference between wild-type and in-frame Rc mutants in major agronomic traits, indicating that restoration of Rc function had no negative effect on important agronomic traits in rice. Given that most white pericarp rice varieties are resulted from the 14-bp deletion in Rc, it is conceivable that our method could be applied to most white pericarp rice varieties and would greatly accelerate the breeding of new red rice varieties with elite agronomic traits. In addition, our study demonstrates an effective approach to restore recessive frame-shift alleles for crop improvement.
Collapse
Affiliation(s)
- Yiwang Zhu
- Xiamen Key Laboratory for Plant GeneticsSchool of Life SciencesXiamen UniversityXiamenChina
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Yarong Lin
- Xiamen Key Laboratory for Plant GeneticsSchool of Life SciencesXiamen UniversityXiamenChina
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Songbiao Chen
- Institute of Oceanography, Marine Biotechnology CenterMinjiang UniversityFuzhouChina
| | - Huaqing Liu
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Zaijie Chen
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Meiying Fan
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Taijiao Hu
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Fating Mei
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Jianmin Chen
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Liang Chen
- Xiamen Key Laboratory for Plant GeneticsSchool of Life SciencesXiamen UniversityXiamenChina
| | - Feng Wang
- Biotechnology Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| |
Collapse
|
84
|
LEE JS, SREENIVASULU N, HAMILTON RS, KOHLI A. Brown Rice, a Diet Rich in Health Promoting Properties. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S26-S28. [DOI: 10.3177/jnsv.65.s26] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jae-Sung LEE
- Strategic Innovations Platform, International Rice Research Institute
| | - Nese SREENIVASULU
- Strategic Innovations Platform, International Rice Research Institute
| | | | - Ajay KOHLI
- Strategic Innovations Platform, International Rice Research Institute
| |
Collapse
|
85
|
Li B, Zhao S, Dou J, Ali A, Gebremeskel H, Gao L, He N, Lu X, Liu W. Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2741-2753. [PMID: 31286160 DOI: 10.1007/s00122-019-03384-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
ClCG08G017810 (ClCGMenG) encoding a 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein is associated with formation of dark green versus light green rind color in watermelon. Rind color is an important agronomic trait in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai], but the underlying molecular mechanism for this trait is not fully known. In the present study, we identified a single locus on chromosome 8 accounting for watermelon rind color (dark green vs. light green). Genetic analysis of F1, F2, and BC1 populations derived from two parental lines (9904 with dark green rind and Handel with light green rind) revealed that the watermelon rind color (dark green vs. light green) is controlled by a single locus, and dark green is dominant to light green rind. Initial mapping revealed a region of interest spanning 2.07 Mb on chromosome 8. Genetic mapping with CAPS and SNP markers narrowed down the candidate region to 31.4 kb. Gene annotation of the corresponding region in the reference genome revealed the ClCG08G017810 gene sequence encoding the 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein. The sequence alignment of the candidate gene with the two parental lines suggested a nonsynonymous SNP mutation in the coding region of ClCG08G017810, converting an arginine (R) to glycine (G). The SNP might be associated with rind color of 103 watermelon germplasm lines investigated in this study. The qRT-PCR analysis revealed higher expression of ClCG08G017810 in dark green rind than in light green rind. Therefore, ClCG08G017810 is a candidate gene associated with watermelon rind color. The present study facilitates marker-assisted selection useful for the development of cultivars with desirable rind color.
Collapse
Affiliation(s)
- Bingbing Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Junling Dou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Aslam Ali
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Haileslassie Gebremeskel
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lei Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
86
|
Gao J, Dai G, Zhou W, Liang H, Huang J, Qing D, Chen W, Wu H, Yang X, Li D, Gao L, Deng G. Mapping and Identifying a Candidate Gene Plr4, a Recessive Gene Regulating Purple Leaf in Rice, by Using Bulked Segregant and Transcriptome Analysis with Next-Generation Sequencing. Int J Mol Sci 2019; 20:ijms20184335. [PMID: 31487931 PMCID: PMC6769577 DOI: 10.3390/ijms20184335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023] Open
Abstract
The anthocyanin biosynthesis of rice is a major concern due to the potential nutritional value. Purple appears in various organs and tissues of rice such as pericarp, flower organs, leaves, leaf sheaths, internodes, ligules, apex, and stigma. At present, there are many studies on the color of rice pericarp, but the gene and mechanism of other organs such as leaves are still unclear, and the gene regulatory network of specific organ coloring has not been systematically understood. In this study, genetic analysis demonstrated that the purple leaf traits of rice were regulated by a recessive gene. The green leaf cultivar Y58S and purple leaf cultivar XianHongB were used to construct the mapping population. A set of near isogenicline (NIL) (BC3F1) was bred via crossing and back-crossing. The generations of BC3F2 appeared to separate four phenotypes, pl1, pl2, pl3, and pl4, due to the occurrence of a purple color in different organs. We constructed three bulked segregant analysis (BSA) pools (pl1-pl2, pl1-pl3, and pl1-pl4) by using the separated generations of BC3F5 and mapped the purple leaf gene plr4 to the vicinity of 27.9-31.1 Mb on chromosome 4. Subsequently, transcriptome sequencing (RNA-Seq) for pl3 and pl2 was used to analyze the differentially expressed genes in the localization interval, where 12 unigenes exhibited differential expression in which two genes (Os04g0577800, Os04g0616400) were downregulated. The two downregulated genes (Os04g0577800 and Os04g0616400) are possible candidate genes because of the recessive genetic characteristics of the purple leaf genes. These results will facilitate the cloning of plr4 and illustrate the molecular mechanisms of the anthocyanin synthesis pathway.
Collapse
Affiliation(s)
- Ju Gao
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Juan Huang
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dongjin Qing
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hao Wu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Guofu Deng
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
87
|
Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Wu Y, Xiong F, Zhang Y, Liang H, Pan Y, Dai G, Deng G, Li D. Identification of anthocyanin biosynthesis genes in rice pericarp using PCAMP. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1700-1702. [PMID: 31004548 PMCID: PMC6686123 DOI: 10.1111/pbi.13133] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/12/2019] [Indexed: 05/21/2023]
Affiliation(s)
- Xinghai Yang
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xiuzhong Xia
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zongqiong Zhang
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Baoxuan Nong
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yu Zeng
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yanyan Wu
- Biotechnology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Faqian Xiong
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yuexiong Zhang
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Haifu Liang
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yinghua Pan
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Gaoxing Dai
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Guofu Deng
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Danting Li
- Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
88
|
Zheng J, Wu H, Zhu H, Huang C, Liu C, Chang Y, Kong Z, Zhou Z, Wang G, Lin Y, Chen H. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. THE NEW PHYTOLOGIST 2019; 223:705-721. [PMID: 30891753 DOI: 10.1111/nph.15807] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/10/2019] [Indexed: 05/11/2023]
Abstract
Wild and cultivated rice show a significant difference in anthocyanin biosynthesis in the leaf. The regulation system of anthocyanin biosynthesis in rice leaf and the causal mechanism of the difference in this biosynthesis between wild and cultivated rice remain largely unknown. In this study, a genome-wide association study and transcriptome analysis were performed to identify the determinant factors and dissect the regulatory system for anthocyanin biosynthesis in rice leaves. OsC1, OsRb and OsDFR were identified as the determinants of anthocyanin biosynthesis in rice leaves. Artificial selection of certain null mutations of OsC1 and OsRb was the main causal mechanism underlying the loss of anthocyanin pigmentation in most cultivated rice. OsP1 and the MYB-bHLH-WD40 complexes regulate anthocyanin biosynthetic genes in rice leaves with partial functional overlap. OsP1 specifically activates upstream biosynthetic genes (OsCHS, OsCHI and OsF3'H) for anthocyanin biosynthesis, whereas the ternary MYB-bHLH-WD40 complex activates all anthocyanin biosynthetic genes including OsCHS, OsCHI, OsF3'H, OsF3H, OsDFR and OsANS. OsC1 and OsRb are tissue-specific regulators that do not influence anthocyanin biosynthesis in the pericarp. Our results reveal the determinant factors, regulatory system and domestication of anthocyanin biosynthesis in rice leaves, and show the potential of engineering anthocyanin biosynthesis in rice.
Collapse
Affiliation(s)
- Jie Zheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Huabing Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Changyuan Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongsheng Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zichun Kong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
89
|
Ghaffari M, Chateigner-Boutin AL, Guillon F, Devaux MF, Abdollahi H, Duponchel L. Multi-excitation hyperspectral autofluorescence imaging for the exploration of biological samples. Anal Chim Acta 2019; 1062:47-59. [DOI: 10.1016/j.aca.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/28/2023]
|
90
|
Woodhouse MR, Hufford MB. Parallelism and convergence in post-domestication adaptation in cereal grasses. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180245. [PMID: 31154975 DOI: 10.1098/rstb.2018.0245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The selection of desirable traits in crops during domestication has been well studied. Many crops share a suite of modified phenotypic characteristics collectively known as the domestication syndrome. In this sense, crops have convergently evolved. Previous work has demonstrated that, at least in some instances, convergence for domestication traits has been achieved through parallel molecular means. However, both demography and selection during domestication may have placed limits on evolutionary potential and reduced opportunities for convergent adaptation during post-domestication migration to new environments. Here we review current knowledge regarding trait convergence in the cereal grasses and consider whether the complexity and dynamism of cereal genomes (e.g., transposable elements, polyploidy, genome size) helped these species overcome potential limitations owing to domestication and achieve broad subsequent adaptation, in many cases through parallel means. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- M R Woodhouse
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| | - M B Hufford
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| |
Collapse
|
91
|
Oshima M, Taniguchi Y, Akasaka M, Abe K, Ichikawa H, Tabei Y, Tanaka J. Development of a visible marker trait based on leaf sheath-specific anthocyanin pigmentation applicable to various genotypes in rice. BREEDING SCIENCE 2019; 69:244-254. [PMID: 31481833 PMCID: PMC6711742 DOI: 10.1270/jsbbs.18151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
To overcome a limitation to the breeding of autogamous crops, recurrent selection using transgenic male sterility (RSUTMS) has been proposed. In this system, negatively or positively selectable marker traits are required along with dominant transgenic male sterility. Anthocyanin pigmentation is an excellent marker trait. Two regulatory genes for MYB and bHLH and a structural gene for DFR are required for anthocyanin pigmentation in rice. Therefore, to apply anthocyanin pigmentation as a marker trait in various rice genotypes, coordinated expression of the three genes is required. In this study, we developed a leaf sheath-specific promoter and introduced three genes-DFR and C1/Myb, driven by the 35S promoter, and OsB2/bHLH, driven by the leaf sheath-specific promoter-into the rice genome. Leaf sheath-specific pigmentation was confirmed in all seven genotypes tested, which included japonica and indica cultivars. Analysis of genome sequence data from 25 cultivars showed that the strategy of conferring leaf sheath-specific anthocyanin pigmentation by introduction of these three genes would be effective for a wide range of genotypes and will be applicable to RSUTMS.
Collapse
Affiliation(s)
- Masao Oshima
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yojiro Taniguchi
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Maiko Akasaka
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Kiyomi Abe
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yutaka Tabei
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Junichi Tanaka
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Graduate School of Life and Environmental Science, University of Tsukuba,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
92
|
Chen X, Tao Y, Ali A, Zhuang Z, Guo D, Guo Q, Riaz A, Zhang H, Xu P, Liao Y, Wang J, Sun C, Xiang Q, Wu X. Transcriptome and Proteome Profiling of Different Colored Rice Reveals Physiological Dynamics Involved in the Flavonoid Pathway. Int J Mol Sci 2019; 20:E2463. [PMID: 31109052 PMCID: PMC6566916 DOI: 10.3390/ijms20102463] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/22/2022] Open
Abstract
Black and red rice are rich in both anthocyanin and proanthocyanin content, which belong to a large class of flavonoids derived from a group of phenolic secondary metabolites. However, the molecular pathways and mechanisms underlying the flavonoid biosynthetic pathway are far from clear. Therefore, this study was undertaken to gain insight into physiological factors that are involved in the flavonoid biosynthetic pathway in rice cultivars with red, black, and white colors. RNA sequencing of caryopsis and isobaric tags for relative and absolute quantification (iTRAQ) analyses have generated a nearly complete catalog of mRNA and expressed proteins in different colored rice cultivars. A total of 31,700 genes were identified, of which 3417, 329, and 227 genes were found specific for red, white, and black rice, respectively. A total of 13,996 unique peptides corresponding to 3916 proteins were detected in the proteomes of black, white, and red rice. Coexpression network analyses of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) among the different rice cultivars showed significant differences in photosynthesis and flavonoid biosynthesis pathways. Based on a differential enrichment analysis, 32 genes involved in the flavonoid biosynthesis pathway were detected, out of which only CHI, F3H, ANS, and FLS were detected by iTRAQ. Taken together, the results point to differences in flavonoid biosynthesis pathways among different colored rice cultivars, which may reflect differences in physiological functions. The differences in contents and types of flavonoids among the different colored rice cultivars are related to changes in base sequences of Os06G0162500, Os09G0455500, Os09G0455500, and Os10G0536400. Current findings expand and deepen our understanding of flavonoid biosynthesis and concurrently provides potential candidate genes for improving the nutritional qualities of rice.
Collapse
Affiliation(s)
- Xiaoqiong Chen
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yu Tao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhenhua Zhuang
- Chengdu Life Baseline Technology, Chengdu 610041, China.
| | - Daiming Guo
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiaoling Guo
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Asad Riaz
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hongyu Zhang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Peizhou Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yongxiang Liao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Wang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Changhui Sun
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xianjun Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
93
|
Lachagari VBR, Gupta R, Lekkala SP, Mahadevan L, Kuriakose B, Chakravartty N, Mohan Katta AVSK, Santhosh S, Reddy AR, Thomas G. Whole Genome Sequencing and Comparative Genomic Analysis Reveal Allelic Variations Unique to a Purple Colored Rice Landrace ( Oryza sativa ssp. indica cv. Purpleputtu). FRONTIERS IN PLANT SCIENCE 2019; 10:513. [PMID: 31134103 PMCID: PMC6516047 DOI: 10.3389/fpls.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 05/27/2023]
Abstract
Purpleputtu (Oryza sativa ssp. indica cv. Purpleputtu) is a unique rice landrace from southern India that exhibits predominantly purple color. This study reports the underlying genetic complexity of the trait, associated domestication and de-domestication processes during its coevolution with present day cultivars. Along-with genome level allelic variations in the entire gene repertoire associated with the purple, red coloration of grain and other plant parts. Comparative genomic analysis using 'a panel of 108 rice lines' revealed a total of 3,200,951 variants including 67,774 unique variations in Purpleputtu (PP) genome. Multiple sequence alignment uncovered a 14 bp deletion in Rc (Red colored, a transcription factor of bHLH class) locus of PP, a key regulatory gene of anthocyanin biosynthetic pathway. Interestingly, this deletion in Rc gene is a characteristic feature of the present-day white pericarped rice cultivars. Phylogenetic analysis of Rc locus revealed a distinct clade showing proximity to the progenitor species Oryza rufipogon and O. nivara. In addition, PP genome exhibits a well conserved 4.5 Mbp region on chromosome 5 that harbors several loci associated with domestication of rice. Further, PP showed 1,387 unique when SNPs compared to 3,023 lines of rice (SNP-Seek database). The results indicate that PP genome is rich in allelic diversity and can serve as an excellent resource for rice breeding for a variety of agronomically important traits such as disease resistance, enhanced nutritional values, stress tolerance, and protection from harmful UV-B rays.
Collapse
Affiliation(s)
- V. B. Reddy Lachagari
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Ravi Gupta
- Medgenome Labs Ltd., Bengaluru, India
- SciGenom Labs Pvt. Ltd., Cochin, India
| | - Sivarama Prasad Lekkala
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Lakshmi Mahadevan
- Medgenome Labs Ltd., Bengaluru, India
- SciGenom Labs Pvt. Ltd., Cochin, India
| | - Boney Kuriakose
- SciGenom Research Foundation, Cheruthuruthy, India
- AgriGenome Labs Pvt. Ltd., Kakkanad, India
| | - Navajeet Chakravartty
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - A. V. S. K. Mohan Katta
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Sam Santhosh
- SciGenom Research Foundation, Cheruthuruthy, India
| | - Arjula R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - George Thomas
- SciGenom Research Foundation, Cheruthuruthy, India
- AgriGenome Labs Pvt. Ltd., Kakkanad, India
| |
Collapse
|
94
|
Mbanjo EGN, Jones H, Caguiat XGI, Carandang S, Ignacio JC, Ferrer MC, Boyd LA, Kretzschmar T. Exploring the genetic diversity within traditional Philippine pigmented Rice. RICE (NEW YORK, N.Y.) 2019; 12:27. [PMID: 31041567 PMCID: PMC6491523 DOI: 10.1186/s12284-019-0281-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The wild ancestors of domesticated rice had red seed, white rice being the result of a mutation in the rice domestication gene Rc. Many pigmented rice landraces are still grown by ethnic communities for their nutritional and cultural value. This study assesses the genetic diversity in a collection of pigmented rice accessions from the Philippines. RESULTS We undertook an analysis of the genetic and colour variation in a collection of 696 pigmented rice accessions held at PhilRice in the Philippines. The collection was reduced to 589 genotypes after removal of accessions with limited passport data or with low SNP marker call rates. Removal of duplicate genotypes resulted in a final, core collection of 307 accessions, representing all administrative districts of the Philippines, and composed predominately of japonica and indica sub-species. No genetic structure was observed in the core collection based on geographic origin. A pairwise comparison of accessions by region indicating that both local and long-distance exchange of rice accessions had occurred. The majority of the genetic variation was within regions (82.38%), rather than between regions (10.23%), with the remaining variation being within rice accession variance (7.39%). The most genetically diverse rice accessions originated from the Cordillera Administrative Region (CAR) in the far north of the Philippines, and in the regions of Davao and Caraga in the southeast. A comparison with pigmented rice accessions from the neighbouring countries Taiwan, Laos, China and India revealed a close relationship between accessions from Taiwan, supporting the hypothesis of southward diffusion of Austronesians from Taiwan to the Philippine. The 14-bp deletion within the gene Rc, known to result in loss of red pigmentation, was found in 30 accessions that still had coloured pericarps. Multi-spectral phenotyping was used to measure seed geometric and colour-appearance traits in 197 accessions from the core collection. The purple and variable purple rice accessions had the lowest values for the seed colour parameters - lightness (L*), intensity, saturation, a* (green - red; redness) and b* (blue - yellow; yellowness). CONCLUSION These pigmented rice accessions represent a diverse genetic resource of value for further study and nutritional improvement of commercial rice varieties.
Collapse
Affiliation(s)
| | - Huw Jones
- National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE UK
| | | | - Socorro Carandang
- International Rice Research Institute (IRRI), Pili Drive, 4031 Los Baños, Laguna Philippines
| | - John Carlos Ignacio
- International Rice Research Institute (IRRI), Pili Drive, 4031 Los Baños, Laguna Philippines
| | - Marilyn Cruz Ferrer
- Philippine Rice Research Institute (PhilRice), Maligaya, Science City of Muñoz, 3119 Nueva Ecija, Philippines
| | - Lesley Ann Boyd
- National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE UK
| | - Tobias Kretzschmar
- International Rice Research Institute (IRRI), Pili Drive, 4031 Los Baños, Laguna Philippines
- Southern Cross University, 1 Military Road, East Lismore, 2480 NSW Australia
| |
Collapse
|
95
|
Long Z, Jia Y, Tan C, Zhang XQ, Angessa T, Broughton S, Westcott S, Dai F, Zhang G, Sun D, Xu Y, Li C. Genetic Mapping and Evolutionary Analyses of the Black Grain Trait in Barley. FRONTIERS IN PLANT SCIENCE 2019; 9:1921. [PMID: 30671073 PMCID: PMC6331406 DOI: 10.3389/fpls.2018.01921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/11/2018] [Indexed: 05/29/2023]
Abstract
Barley occupies the widest ecological area among the major cereal crops, thereby generating a high potential for adaptive genetic diversity against various environmental factors. Colored barley such as black grain barley has been suggested to result from environmental adaptation to biotic and abiotic stresses. Using one double haploid population (433 lines), plus three F5 recombinant inbred line (RIL) populations (1,009 lines), the black lemma and pericarp (Blp) gene was mapped between two Insertion/deletion (Indel) markers MC_1570156 and MC_162350 with a physical distance of 0.807 Mb, containing 21 annotated genes in the mapped interval. Whole-genome re-sequencing was performed on two Tibetan wild barley lines (X1 and W1) with black grain phenotype. The probable candidate genes for Blp were discussed based on gene functional annotation and gene sequence variation analyses. Thirteen polymorphic Indel markers covering the target genetic region were used to analyze 178 barley accessions including 49 black husk entries. Genotype-based clustering analyses showed that the black landraces of different geographical background may have evolved from a single origin. Our study represents a significant improvement on the genetic mapping of Blp and would facilitate future study on the characterization of the genetic basis underlying this interesting agronomic trait.
Collapse
Affiliation(s)
- Zhoukai Long
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | - Cong Tan
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | - Tefera Angessa
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | - Sue Broughton
- Department of Agriculture and Food, Government of Western Australia, South Perth, WA, Australia
| | - Sharon Westcott
- Department of Agriculture and Food, Government of Western Australia, South Perth, WA, Australia
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongfa Sun
- College of Plant Science, Huazhong Agricultural University, Wuhan, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Chengdao Li
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
- Department of Agriculture and Food, Government of Western Australia, South Perth, WA, Australia
| |
Collapse
|
96
|
Rajendran V, Sivakumar HP, Marichamy I, Sundararajan S, Ramalingam S. Phytonutrients analysis in ten popular traditional Indian rice landraces (Oryza sativa L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9877-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
97
|
Distribution and quantitative analysis of phenolic compounds in fractions of Japonica and Indica rice. Food Chem 2018; 274:384-391. [PMID: 30372955 DOI: 10.1016/j.foodchem.2018.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022]
Abstract
Utilization of phenolic compounds in rice husk and bran is important for improving the functionality of rice by-products. Eight rice varieties planted in different area were selected to analyze the phenolic compounds distribution of fractions in Japonica and Indica rice by using UPLC-MS method. A total of 12 phenolic compounds were identified in all rice varieties. Ferulic acid, gallic acid, protocatechuic acid and syringic acid were the dominant phenolic compounds in rice bran, while p-Hydroxybenzaldehyde was the main phenolic compounds existed in rice husk (14.46-23.72 µg·g-1). Bran and husk fractions provide more than 90% of phenolic compounds and antioxidant activity of whole rice. Regardless of the planting environmental effects, Japonica rice has significant higher phenolic compounds and antioxidant activity than Indica rice (P < 0.05). Therefore, it can be concluded that the distribution of phenolic compounds were strongly correlated with the rice varieties and fractions.
Collapse
|
98
|
Kaur P, Singh N, Pal P, Kaur A. Variation in composition, protein and pasting characteristics of different pigmented and non pigmented rice ( Oryza sativa L.) grown in Indian Himalayan region. Journal of Food Science and Technology 2018; 55:3809-3820. [PMID: 30150841 DOI: 10.1007/s13197-018-3361-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
This present study was aimed to evaluate proximate composition, antioxidant activity, amino and phenolic acids, protein profile and pasting characteristics of pigmented rice (PR) and non pigmented rice (NPR) landraces grown in Himalayan region. Higher antioxidant activity, total phenolic content, fat and protein content were observed for PR as compared to NPR. Histidine, iso-leucine, lysine, methionine, phenyl-alanine, valine and threonine were significantly higher for PR. Paste viscosities were higher for NPR (except IC568266) as compared to PR. IC568266 was observed to be waxy landrace. Higher free (gallic acid, catechin, caffeic acid, vanillic acid, sinapic acid and luteolin) and bound phenolics (ferulic acid, p-coumaric acid and quercetin) were observed in PR as compared to NPR. Majority of PR landraces showed higher accumulation of prolamines with low molecular weight polypeptides of 18, 20 and 29 kDa as compared to NPR. PR showed the higher essential amino acids, phenolic acids (p-coumaric acid, ferulic acid and quercetin) and antioxidant activity with improved nutritional value and showed potential for developing nutraceutical and functional foods.
Collapse
Affiliation(s)
- Parmeet Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005 India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005 India
| | - Priyanka Pal
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005 India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005 India
| |
Collapse
|
99
|
Hao N, Du Y, Li H, Wang C, Wang C, Gong S, Zhou S, Wu T. CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1659-1669. [PMID: 29740668 DOI: 10.1007/s00122-018-3105-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/02/2018] [Indexed: 05/23/2023]
Abstract
A yellow green peel mutant (ygp) in cucumber was caused by a mutation in Csa2G352940 encoding MYB36 transcription factor. Peel color is one of the important agronomic traits of cucumber (Cucumis sativus L.). However, studies on the molecular regulation mechanism of peel color in cucumber are few. In this study, a cucumber yellow green peel mutant (ygp) of cucumber mutagenized with ethylmethylsulfone by using a wild type cucumber with dark green peel was identified. Pigment measurements indicated that the chlorophyll content of the ygp mutant was less than that of the wild type. Genetic analysis revealed that the phenotype of the ygp mutant was monogenic recessive inheritance. MutMap and genotyping results demonstrated that Csa2G352940 (CsMYB36), encoding the transcription factor MYB36, was the causal gene of the ygp mutant in cucumber. CsMYB36 was downregulated in the fruit of the ygp mutant. Transcriptome profile analysis of the fruit peel of the ygp mutant identified 92 candidate genes including genes that encode Casparian strip (CsCASP1) and pigment synthesis protein (CsMYC2) involved in peel color development in cucumber. CsMYB36 may regulate yellow green coloration in cucumber by interacting with these genes. Overall, these results showed that CsMYB36 can regulate the yellow green peel coloration in cucumber.
Collapse
Affiliation(s)
- Ning Hao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yalin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Huiyuan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Chen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Gong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Shengmao Zhou
- Guangxi Academy of Agricultural Science, 174 Daxuedong Road, Nanning, 530007, China
| | - Tao Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
100
|
Zhang J, Kang Y, Valverde BE, Dai W, Song X, Qiang S. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3855-3865. [PMID: 29873749 DOI: 10.1093/jxb/ery210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Pollen-mediated transgenic flow of herbicide resistance occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice has been underestimated and is poorly understood. In this study, two glufosinate-resistant transgenic rice varieties, hybrid rice (F1), and their succeeding generations (F2-F4) were planted for 3 years in field plots free of weedy rice adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants that were both glufosinate-resistant and had red-pericarp seed were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid cultivars. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of the glufosinate-resistant transgenic hybrid (the original female parent of the feral progeny) under monoculture common garden conditions. The hybrid rice progeny segregated into individuals of variable height and extended flowering. The hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96-1.65%) than their progenitors (0.07-0.98%). The results show that herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice, and their segregating pollen-receptive progeny pose a greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.
Collapse
Affiliation(s)
- Jingxu Zhang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Ye Kang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Bernal E Valverde
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
- Investigación y Desarrollo en Agricultura Tropical, S.A., Tambor, Alajuela, Costa Rica
| | - Weimin Dai
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Xiaoling Song
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| |
Collapse
|