51
|
Rosloski SM, Singh A, Jali SS, Balasubramanian S, Weigel D, Grbic V. Functional analysis of splice variant expression of MADS AFFECTING FLOWERING 2 of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:57-69. [PMID: 23111501 PMCID: PMC3527738 DOI: 10.1007/s11103-012-9982-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/19/2012] [Indexed: 05/19/2023]
Abstract
The MADS-AFFECTING FLOWERING 2 (MAF2) gene of Arabidopsis thaliana has been characterized as a repressor of flowering. The molecular basis of MAF2 gene function and role of alternative MAF2 transcripts in flowering time modulation is not understood. MAF2 splice variant expression was quantified in cold-acclimated plants by quantitative RT-PCR. Cold influenced the abundance of splice variants and prompted a functional study of splice forms. Individual variants were overexpressed in the Col background and were assayed for their ability to delay flowering. Overexpression of MAF2 variants 2 and 4 had limited effect on flowering time. Overexpression of MAF2 splice variant 1 resulted in early flowering and affected the expression of the endogenous MAF2 gene and its paralogues, confounding functional assessment. In the Ll-2 Arabidopsis accession, a MAF2, MAF3, MAF4 and FLC null line, MAF2 var1 was consistent in its effect on reproductive delay under ambient and reduced temperatures, indicating that it acts as a repressor of flowering.
Collapse
Affiliation(s)
| | - Anandita Singh
- Department of Molecular Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
- Present Address: Department of Biotechnology, Faculty of Applied Science, TERI University, 10 Institutional Area, Vasant Kunj, New Delhi, 110070 India
| | | | - Sureshkumar Balasubramanian
- Department of Molecular Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
- Present Address: School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - Detlef Weigel
- Department of Molecular Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Vojislava Grbic
- Department of Biology, Western University, London, ON N6A 5B8 Canada
| |
Collapse
|
52
|
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JWS, Staiger D. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic Acids Res 2012; 40:11240-55. [PMID: 23042250 PMCID: PMC3526319 DOI: 10.1093/nar/gks873] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing (AS) of pre-mRNAs is an important regulatory mechanism shaping the transcriptome. In plants, only few RNA-binding proteins are known to affect AS. Here, we show that the glycine-rich RNA-binding protein AtGRP7 influences AS in Arabidopsis thaliana. Using a high-resolution RT–PCR-based AS panel, we found significant changes in the ratios of AS isoforms for 59 of 288 analyzed AS events upon ectopic AtGRP7 expression. In particular, AtGRP7 affected the choice of alternative 5′ splice sites preferentially. About half of the events are also influenced by the paralog AtGRP8, indicating that AtGRP7 and AtGRP8 share a network of downstream targets. For 10 events, the AS patterns were altered in opposite directions in plants with elevated AtGRP7 level or lacking AtGRP7. Importantly, RNA immunoprecipitation from plant extracts showed that several transcripts are bound by AtGRP7 in vivo and indeed represent direct targets. Furthermore, the effect of AtGRP7 on these AS events was abrogated by mutation of a single arginine that is required for its RNA-binding activity. This indicates that AtGRP7 impacts AS of these transcripts via direct interaction. As several of the AS events are also controlled by other splicing regulators, our data begin to provide insights into an AS network in Arabidopsis.
Collapse
|
53
|
Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, Matsuoka K, Lin C, Matsushita T. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:727-38. [PMID: 22324426 DOI: 10.1111/j.1365-313x.2012.04937.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants monitor the light environment through informational photoreceptors that include phytochromes. In seedling de-etiolation, phytochrome B (phyB), which is the most important member of the phytochrome family, interacts with transcription factors to regulate gene expression and transduce light signals. In this study, we identified rrc1 (reduced red-light responses in cry1cry2 background 1), an Arabidopsis mutant that is impaired in phyB-mediated light responses. A genetic analysis demonstrated that RRC1 affected light signaling in a phyB-dependent manner. RRC1 encodes an ortholog of the human potential splicing factor SR140. The RRC1 polypeptide contains a C-terminal arginine/serine-rich (RS) domain that is important for the regulation of alternative splicing. Although the complete loss of RRC1 caused pleiotropic developmental abnormalities, the deletion of the RS domain specifically reduced phyB signaling and caused aberrant alternative splicing of several SR protein genes. Moreover, semi-quantitative RT-PCR analysis revealed that the alternative splicing patterns of some of the SR protein genes were altered in a red-light-dependent manner, and that these responses were reduced in both phyB and rrc1 mutants. These findings suggest that the regulation of alternative splicing by the RS domain of RRC1 plays an important role in phyB signal transduction.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cloning, Molecular
- Color
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Pleiotropy
- Light
- Phytochrome B/genetics
- Phytochrome B/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/radiation effects
- Plasmids/genetics
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Deletion
- Signal Transduction
- Transformation, Genetic
Collapse
Affiliation(s)
- Hiromasa Shikata
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 2012; 22:1184-95. [PMID: 22391557 PMCID: PMC3371709 DOI: 10.1101/gr.134106.111] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alternative splicing (AS) is a key regulatory mechanism that contributes to transcriptome and proteome diversity. As very few genome-wide studies analyzing AS in plants are available, we have performed high-throughput sequencing of a normalized cDNA library which resulted in a high coverage transcriptome map of Arabidopsis. We detect ∼150,000 splice junctions derived mostly from typical plant introns, including an eightfold increase in the number of U12 introns (2069). Around 61% of multiexonic genes are alternatively spliced under normal growth conditions. Moreover, we provide experimental validation of 540 AS transcripts (from 256 genes coding for important regulatory factors) using high-resolution RT-PCR and Sanger sequencing. Intron retention (IR) is the most frequent AS event (∼40%), but many IRs have relatively low read coverage and are less well-represented in assembled transcripts. Additionally, ∼51% of Arabidopsis genes produce AS transcripts which do not involve IR. Therefore, the significance of IR in generating transcript diversity was generally overestimated in previous assessments. IR analysis allowed the identification of a large set of cryptic introns inside annotated coding exons. Importantly, a significant fraction of these cryptic introns are spliced out in frame, indicating a role in protein diversity. Furthermore, we show extensive AS coupled to nonsense-mediated decay in AFC2, encoding a highly conserved LAMMER kinase which phosphorylates splicing factors, thus establishing a complex loop in AS regulation. We provide the most comprehensive analysis of AS to date which will serve as a valuable resource for the plant community to study transcriptome complexity and gene regulation.
Collapse
Affiliation(s)
- Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
55
|
Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JWS. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 2012; 40:2454-69. [PMID: 22127866 PMCID: PMC3315328 DOI: 10.1093/nar/gkr932] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/22/2011] [Accepted: 10/10/2011] [Indexed: 11/26/2022] Open
Abstract
Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT-PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5' or 3'UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3'-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes.
Collapse
Affiliation(s)
- Maria Kalyna
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Craig G. Simpson
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Naeem H. Syed
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Dominika Lewandowska
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Branislav Kusenda
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Jacqueline Marshall
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - John Fuller
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Linda Cardle
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Jim McNicol
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Huy Q. Dinh
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - John W. S. Brown
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria, Cell and Molecular Sciences, The James Hutton Institute, Division of Plant Sciences, University of Dundee at JHI, Biomathematics and Statistics Scotland at JHI, Invergowrie, Dundee DD2 5DA, Scotland, UK and Center for Integrative Bioinformatics, Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
56
|
Reddy ASN, Rogers MF, Richardson DN, Hamilton M, Ben-Hur A. Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. FRONTIERS IN PLANT SCIENCE 2012; 3:18. [PMID: 22645572 PMCID: PMC3355732 DOI: 10.3389/fpls.2012.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/18/2012] [Indexed: 05/20/2023]
Abstract
Extensive alternative splicing (AS) of precursor mRNAs (pre-mRNAs) in multicellular eukaryotes increases the protein-coding capacity of a genome and allows novel ways to regulate gene expression. In flowering plants, up to 48% of intron-containing genes exhibit AS. However, the full extent of AS in plants is not yet known, as only a few high-throughput RNA-Seq studies have been performed. As the cost of obtaining RNA-Seq reads continues to fall, it is anticipated that huge amounts of plant sequence data will accumulate and help in obtaining a more complete picture of AS in plants. Although it is not an onerous task to obtain hundreds of millions of reads using high-throughput sequencing technologies, computational tools to accurately predict and visualize AS are still being developed and refined. This review will discuss the tools to predict and visualize transcriptome-wide AS in plants using short-reads and highlight their limitations. Comparative studies of AS events between plants and animals have revealed that there are major differences in the most prevalent types of AS events, suggesting that plants and animals differ in the way they recognize exons and introns. Extensive studies have been performed in animals to identify cis-elements involved in regulating AS, especially in exon skipping. However, few such studies have been carried out in plants. Here, we review the current state of research on splicing regulatory elements (SREs) and briefly discuss emerging experimental and computational tools to identify cis-elements involved in regulation of AS in plants. The availability of curated alternative splice forms in plants makes it possible to use computational tools to predict SREs involved in AS regulation, which can then be verified experimentally. Such studies will permit identification of plant-specific features involved in AS regulation and contribute to deciphering the splicing code in plants.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Program in Molecular Plant Biology, Department of Biology, Colorado State UniversityFort Collins, CO, USA
| | - Mark F. Rogers
- Department of Computer Science, Colorado State UniversityFort Collins, CO, USA
| | - Dale N. Richardson
- Centro de Investigação em Biodiversidade e Recursos Genéticos, University of PortoVairão, Portugal
| | - Michael Hamilton
- Department of Computer Science, Colorado State UniversityFort Collins, CO, USA
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State UniversityFort Collins, CO, USA
- Program in Molecular Plant Biology, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
57
|
Severing EI, van Dijk ADJ, Morabito G, Busscher-Lange J, Immink RGH, van Ham RCHJ. Predicting the impact of alternative splicing on plant MADS domain protein function. PLoS One 2012; 7:e30524. [PMID: 22295091 PMCID: PMC3266260 DOI: 10.1371/journal.pone.0030524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022] Open
Abstract
Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1-3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on the interaction capabilities of the encoded MIKC proteins.
Collapse
Affiliation(s)
- Edouard I. Severing
- Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands
| | - Aalt D. J. van Dijk
- Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands
| | - Giuseppa Morabito
- Plant Developmental Systems, Plant Research International, Wageningen, The Netherlands
| | | | - Richard G. H. Immink
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Plant Developmental Systems, Plant Research International, Wageningen, The Netherlands
| | - Roeland C. H. J. van Ham
- Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
58
|
Petrillo E, Sanchez SE, Kornblihtt AR, Yanovsky MJ. Alternative splicing adds a new loop to the circadian clock. Commun Integr Biol 2011; 4:284-286. [PMID: 21980559 DOI: 10.4161/cib.4.3.14777] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/12/2023] Open
Abstract
Circadian clocks allow organisms to adjust multiple physiological and developmental processes in anticipation of daily and seasonal changes in the environment. At the molecular level these clocks consist of interlocked feedback loops, involving transcriptional activation and repression, but also post-translational modifications. In a recently published work we provided evidence that PRMT5, a protein arginine methyl transferase, is part of a novel loop within the circadian clock of the plant Arabidopsis thaliana by regulating alternative splicing of key clock mRNAs. We also found evidence indicating that PRMT5 has a role in the regulation of alternative splicing and the circadian network in Drosophila melanogaster, although the clock connection in the latter is more elusive and seems to be at the output level. We conclude that alternative precursor messenger RNA (premRNA) splicing is part of the circadian program and could be a main actor in the fine-tuning of biological clocks. Here, we embrace the alternative splicing process as part of the circadian program and discuss the possibility that this mechanism is of fundamental relevance for the fine-tuning of biological clocks.
Collapse
|
59
|
Staiger D, Green R. RNA-based regulation in the plant circadian clock. TRENDS IN PLANT SCIENCE 2011; 16:517-523. [PMID: 21782493 DOI: 10.1016/j.tplants.2011.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
The circadian clock is an endogenous, approximately 24-h timer that enables plants to anticipate daily changes in their environment and regulates a considerable fraction of the transcriptome. At the core of the circadian system is the oscillator, made up of interconnected feedback loops, involving transcriptional regulation of clock genes and post-translational modification of clock proteins. Recently, it has become clear that post-transcriptional events are also critical for shaping rhythmic mRNA and protein profiles. This review covers regulation at the RNA level of both the core clock and output genes in Arabidopsis (Arabidopsis thaliana), with comparisons with other model organisms. We discuss the role of splicing, mRNA decay and translational regulation as well as recent insights into rhythms of noncoding regulatory RNAs.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33501 Bielefeld, Germany.
| | | |
Collapse
|
60
|
Reddy ASN, Shad Ali G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:875-89. [PMID: 21766458 DOI: 10.1002/wrna.98] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Global analyses of splicing of precursor messenger RNAs (pre-mRNAs) have revealed that alternative splicing (AS) is highly pervasive in plants. Despite the widespread occurrence of AS in plants, the mechanisms that control splicing and the roles of splice variants generated from a gene are poorly understood. Studies on plant serine/arginine-rich (SR) proteins, a family of highly conserved proteins, suggest their role in both constitutive splicing and AS of pre-mRNAs. SR proteins have a characteristic domain structure consisting of one or two RNA recognition motifs at the N-terminus and a C-terminal RS domain rich in arginine/serine dipeptides. Plants have many more SR proteins compared to animals including several plant-specific subfamilies. Pre-mRNAs of plant SR proteins are extensively alternatively spliced to increase the transcript complexity by about six-fold. Some of this AS is controlled in a tissue- and development-specific manner. Furthermore, AS of SR pre-mRNAs is altered by various stresses, raising the possibility of rapid reprogramming of the whole transcriptome by external signals through regulation of the splicing of these master regulators of splicing. Most SR splice variants contain a premature termination codon and are degraded by up-frameshift 3 (UPF3)-mediated nonsense-mediated decay (NMD), suggesting a link between NMD and regulation of expression of the functional transcripts of SR proteins. Limited functional studies with plant SRs suggest key roles in growth and development and plant responses to the environment. Here, we discuss the current status of research on plant SRs and some promising approaches to address many unanswered questions about plant SRs.
Collapse
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| | | |
Collapse
|
61
|
Support vector machines-based identification of alternative splicing in Arabidopsis thaliana from whole-genome tiling arrays. BMC Bioinformatics 2011; 12:55. [PMID: 21324185 PMCID: PMC3051901 DOI: 10.1186/1471-2105-12-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 02/16/2011] [Indexed: 11/15/2022] Open
Abstract
Background Alternative splicing (AS) is a process which generates several distinct mRNA isoforms from the same gene by splicing different portions out of the precursor transcript. Due to the (patho-)physiological importance of AS, a complete inventory of AS is of great interest. While this is in reach for human and mammalian model organisms, our knowledge of AS in plants has remained more incomplete. Experimental approaches for monitoring AS are either based on transcript sequencing or rely on hybridization to DNA microarrays. Among the microarray platforms facilitating the discovery of AS events, tiling arrays are well-suited for identifying intron retention, the most prevalent type of AS in plants. However, analyzing tiling array data is challenging, because of high noise levels and limited probe coverage. Results In this work, we present a novel method to detect intron retentions (IR) and exon skips (ES) from tiling arrays. While statistical tests have typically been proposed for this purpose, our method instead utilizes support vector machines (SVMs) which are appreciated for their accuracy and robustness to noise. Existing EST and cDNA sequences served for supervised training and evaluation. Analyzing a large collection of publicly available microarray and sequence data for the model plant A. thaliana, we demonstrated that our method is more accurate than existing approaches. The method was applied in a genome-wide screen which resulted in the discovery of 1,355 IR events. A comparison of these IR events to the TAIR annotation and a large set of short-read RNA-seq data showed that 830 of the predicted IR events are novel and that 525 events (39%) overlap with either the TAIR annotation or the IR events inferred from the RNA-seq data. Conclusions The method developed in this work expands the scarce repertoire of analysis tools for the identification of alternative mRNA splicing from whole-genome tiling arrays. Our predictions are highly enriched with known AS events and complement the A. thaliana genome annotation with respect to AS. Since all predicted AS events can be precisely attributed to experimental conditions, our work provides a basis for follow-up studies focused on the elucidation of the regulatory mechanisms underlying tissue-specific and stress-dependent AS in plants.
Collapse
|
62
|
Jiao Y, Meyerowitz EM. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 2011; 6:419. [PMID: 20924354 PMCID: PMC2990639 DOI: 10.1038/msb.2010.76] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 08/27/2010] [Indexed: 02/07/2023] Open
Abstract
Combining translating ribosome affinity purification with RNA-seq for cell-specific profiling of translating RNAs in developing flowers. Cell type comparisons of cell type-specific hormone responses, promoter motifs, coexpressed cognate binding factor candidates, and splicing isoforms. Widespread post-transcriptional regulation at both the intron splicing and translational stages. A new class of noncoding RNAs associated with polysomes.
What constitutes a differentiated cell type? How much do cell types differ in their transcription of genes? The development and functions of tissues rely on constant interactions among distinct and nonequivalent cell types. Answering these questions will require quantitative information on transcriptomes, proteomes, protein–protein interactions, protein–nucleic acid interactions, and metabolomes at cellular resolution. The systems approaches emerging in biology promise to explain properties of biological systems based on genome-wide measurements of expression, interaction, regulation, and metabolism. To facilitate a systems approach, it is essential first to capture such components in a global manner, ideally at cellular resolution. Recently, microarray analysis of transcriptomes has been extended to a cellular level of resolution by using laser microdissection or fluorescence-activated sorting (for review, see Nelson et al, 2008). These methods have been limited by stresses associated with cellular separation and isolation procedures, and biases associated with mandatory RNA amplification steps. A newly developed method, translating ribosome affinity purification (TRAP; Zanetti et al, 2005; Heiman et al, 2008; Mustroph et al, 2009), circumvents these problems by epitopetagging a ribosomal protein in specific cellular domains to selectively purify polysomes. We combined TRAP with deep sequencing, which we term TRAP-seq, to provide cell-level spatiotemporal maps for Arabidopsis early floral development at single-base resolution. Flower development in Arabidopsis has been studied extensively and is one of the best understood aspects of plant development (for review, see Krizek and Fletcher, 2005). Genetic analysis of homeotic mutants established the ABC model, in which three classes of regulatory genes, A, B and C, work in a combinatorial manner to confer organ identities of four whorls (Coen and Meyerowitz, 1991). Each class of regulatory gene is expressed in a specific and evolutionarily conserved domain, and the action of the class A, B and C genes is necessary for specification of organ identity (Figure 1A). Using TRAP-seq, we purified cell-specific translating mRNA populations, which we and others call the translatome, from the A, B and C domains of early developing flowers, in which floral patterning and the specification of floral organs is established. To achieve temporal specificity, we used a floral induction system to facilitate collection of early stage flowers (Wellmer et al, 2006). The combination of TRAP-seq with domain-specific promoters and this floral induction system enabled fine spatiotemporal isolation of translating mRNA in specific cellular domains, and at specific developmental stages. Multiple lines of evidence confirmed the specificity of this approach, including detecting the expression in expected domains but not in other domains for well-studied flower marker genes and known physiological functions (Figures 1B–D and 2A–C). Furthermore, we provide numerous examples from flower development in which a spatiotemporal map of rigorously comparable cell-specific translatomes makes possible new views of the properties of cell domains not evident in data obtained from whole organs or tissues, including patterns of transcription and cis-regulation, new physiological differences among cell domains and between flower stages, putative hormone-active centers, and splicing events specific for flower domains (Figure 2A–D). Such findings may provide new targets for reverse genetics studies and may aid in the formulation and validation of interaction and pathway networks. Beside cellular heterogeneity, the transcriptome is regulated at several steps through the life of mRNA molecules, which are not directly available through traditional transcriptome profiling of total mRNA abundance. By comparing the translatome and transcriptome, we integratively profiled two key posttranscriptional control points, intron splicing and translation state. From our translatome-wide profiling, we (i) confirmed that both posttranscriptional regulation control points were used by a large portion of the transcriptome; (ii) identified a number of cis-acting features within the coding or noncoding sequences that correlate with splicing or translation state; and (iii) revealed correlation between each regulation mechanism and gene function. Our transcriptome-wide surveys have highlighted target genes transcripts of which are probably under extensive posttranscriptional regulation during flower development. Finally, we reported the finding of a large number of polysome-associated ncRNAs. About one-third of all annotated ncRNA in the Arabidopsis genome were observed co-purified with polysomes. Coding capacity analysis confirmed that most of them are real ncRNA without conserved ORFs. The group of polysome-associated ncRNA reported in this study is a potential new addition to the expanding riboregulator catalog; they could have roles in translational regulation during early flower development. Determining both the expression levels of mRNA and the regulation of its translation is important in understanding specialized cell functions. In this study, we describe both the expression profiles of cells within spatiotemporal domains of the Arabidopsis thaliana flower and the post-transcriptional regulation of these mRNAs, at nucleotide resolution. We express a tagged ribosomal protein under the promoters of three master regulators of flower development. By precipitating tagged polysomes, we isolated cell type-specific mRNAs that are probably translating, and quantified those mRNAs through deep sequencing. Cell type comparisons identified known cell-specific transcripts and uncovered many new ones, from which we inferred cell type-specific hormone responses, promoter motifs and coexpressed cognate binding factor candidates, and splicing isoforms. By comparing translating mRNAs with steady-state overall transcripts, we found evidence for widespread post-transcriptional regulation at both the intron splicing and translational stages. Sequence analyses identified structural features associated with each step. Finally, we identified a new class of noncoding RNAs associated with polysomes. Findings from our profiling lead to new hypotheses in the understanding of flower development.
Collapse
Affiliation(s)
- Yuling Jiao
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
63
|
Duque P. A role for SR proteins in plant stress responses. PLANT SIGNALING & BEHAVIOR 2011; 6:49-54. [PMID: 21258207 PMCID: PMC3122005 DOI: 10.4161/psb.6.1.14063] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 10/31/2010] [Indexed: 05/19/2023]
Abstract
Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.
Collapse
Affiliation(s)
- Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
64
|
Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Godoy Herz MA, Depetris-Chauvin A, Simpson CG, Brown JWS, Cerdán PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 2010; 468:112-6. [PMID: 20962777 DOI: 10.1038/nature09470] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/01/2010] [Indexed: 12/11/2022]
Abstract
Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- IFEVA, Facultad de Agronomía, UBA-CONICET, C1417DSE Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Guyon-Debast A, Lécureuil A, Bonhomme S, Guerche P, Gallois JL. A SNP associated with alternative splicing of RPT5b causes unequal redundancy between RPT5a and RPT5b among Arabidopsis thaliana natural variation. BMC PLANT BIOLOGY 2010; 10:158. [PMID: 20682047 PMCID: PMC3017782 DOI: 10.1186/1471-2229-10-158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/03/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND The proteasome subunit RPT5, which is essential for gametophyte development, is encoded by two genes in Arabidopsis thaliana; RPT5a and RPT5b. We showed previously that RPT5a and RPT5b are fully redundant in the Columbia (Col-0) accession, whereas in the Wassilewskia accession (Ws-4), RPT5b does not complement the effect of a strong rpt5a mutation in the male gametophyte, and only partially complements rpt5a mutation in the sporophyte. RPT5bCol-0 and RPT5bWs-4 differ by only two SNPs, one located in the promoter and the other in the seventh intron of the gene. RESULTS By exploiting natural variation at RPT5b we determined that the SNP located in RPT5b intron seven, rather than the promoter SNP, is the sole basis of this lack of redundancy. In Ws-4 this SNP is predicted to create a new splicing branchpoint sequence that induces a partial mis-splicing of the pre-mRNA, leading to the introduction of a Premature Termination Codon. We characterized 5 accessions carrying this A-to-T substitution in intron seven and observed a complete correlation between this SNP and both a 10 to 20% level of the RPT5b pre-mRNA mis-splicing and the lack of ability to complement an rpt5a mutant phenotype. CONCLUSION The accession-dependent unequal redundancy between RPT5a and RPT5b genes illustrates an example of evolutionary drifting between duplicated genes through alternative splicing.
Collapse
Affiliation(s)
- Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France, F-78000 Versailles, France
| | - Alain Lécureuil
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France, F-78000 Versailles, France
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France, F-78000 Versailles, France
| | - Philippe Guerche
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France, F-78000 Versailles, France
| | - Jean-Luc Gallois
- Institut National de la Recherche Agronomique-UR1052 Station de Génétique et d'Amélioration des Fruits et Légumes, Domaine Saint Maurice, BP94, F84143, Montfavet, France
| |
Collapse
|
66
|
Abstract
AS (alternative splicing) is a post-transcriptional process which regulates gene expression through increasing protein complexity and modulating mRNA transcript levels. Regulation of AS depends on interactions between trans-acting protein factors and cis-acting signals in the pre-mRNA (precursor mRNA) transcripts, termed 'combinatorial' control. Dynamic changes in AS patterns reflect changes in abundance, composition and activity of splicing factors in different cell types and in response to cellular or environmental cues. Whereas the SR protein family of splicing factors is well-studied in plants, relatively little is known about other factors influencing the regulation of AS or the consequences of AS on mRNA levels and protein function. To address fundamental questions on AS in plants, we are exploiting a high-resolution RT (reverse transcription)-PCR system to analyse multiple AS events simultaneously. In the present paper, we describe the current applications and development of the AS RT-PCR panel in investigating the roles of splicing factors, cap-binding proteins and nonsense-mediated decay proteins on AS, and examining the extent of AS in genes involved in the same developmental pathway or process.
Collapse
|
67
|
Zhang PG, Huang SZ, Pin AL, Adams KL. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis. Mol Biol Evol 2010; 27:1686-97. [PMID: 20185454 DOI: 10.1093/molbev/msq054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene duplication at various scales, from single gene duplication to whole-genome (WG) duplication, has occurred throughout eukaryotic evolution and contributed greatly to the large number of duplicated genes in the genomes of many eukaryotes. Previous studies have shown divergence in expression patterns of many duplicated genes at various evolutionary time scales and cases of gain of a new function or expression pattern by one duplicate or partitioning of functions or expression patterns between duplicates. Alternative splicing (AS) is a fundamental aspect of the expression of many genes that can increase gene product diversity and affect gene regulation. However, the evolution of AS patterns of genes duplicated by polyploidy, as well as in a sizable number of duplicated gene pairs in plants, has not been examined. Here, we have characterized conservation and divergence in AS patterns in genes duplicated by a polyploidy event during the evolutionary history of Arabidopsis thaliana. We used reverse transcription-polymerase chain reaction to assay 104 WG duplicates in six organ types and in plants grown under three abiotic stress treatments to detect organ- and stress-specific patterns of AS. Differences in splicing patterns in one or more organs, or under stress conditions, were found between the genes in a large majority of the duplicated pairs. In a few cases, AS patterns were the same between duplicates only under one or more abiotic stress treatments and not under normal growing conditions or vice versa. We also examined AS in 42 tandem duplicates and we found patterns of AS roughly comparable with the genes duplicated by polyploidy. The alternatively spliced forms in some of the genes created premature stop codons that would result in missing or partial functional domains if the transcripts are translated, which could affect gene function and cause functional divergence between duplicates. Our results indicate that AS patterns have diverged considerably after gene and genome duplication during the evolutionary history of the Arabidopsis lineage, sometimes in an organ- or stress-specific manner. AS divergence between duplicated genes may have contributed to gene functional evolution and led to preservation of some duplicated genes.
Collapse
Affiliation(s)
- Peter G Zhang
- UBC Botanical Garden and Centre for Plant Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
68
|
Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2009; 38:265-78. [PMID: 19864257 PMCID: PMC2800227 DOI: 10.1093/nar/gkp869] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site.
Collapse
|
69
|
Abstract
The impact of AS (alternative splicing) is well-recognized in animal systems as a key regulator of gene expression and proteome complexity. In plants, AS is of growing importance as more genes are found to undergo AS, but relatively little is known about the factors regulating AS or the consequences of AS on mRNA levels and protein function. We have established an accurate and reproducible RT (reverse transcription)-PCR system to analyse AS in multiple genes. Initial studies have identified new AS events confirming that current values for the frequency of AS in plants are likely to be underestimates.
Collapse
|