51
|
DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun 2014; 457:133-40. [PMID: 25522878 DOI: 10.1016/j.bbrc.2014.12.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
To better understand the genetic of rice agronomic traits, we selected two different rice germplasms in phenotypes, Xian80 and Suyunuo, to construct genetic population for QTL analysis. A total of 25 QTLs for six traits were found in a 175 F2 population. Major QTLs, qPH12,qLW12.2, qLL12 and qGW12.1, explaining 50.00%, 57.08%, 15.41% and 22.51% phenotypic variation for plant height, leaf width, leaf length and grain width, respectively, were located on the same interval of chromosome 12 flanking SSR markers RM519 and RM1103. In consideration of the great effects on plant height and leaf width, the locus was named DNL1 (Dwarf and Narrowed Leaf 1). Using a segregating population derived from F2 heterozygous individuals, a total of 1363 dwarfism and narrowed-leaf individuals was selected for screening recombinants. By high-resolution linkage analysis in 141 recombination events, DNL1 was narrowed to a 62.39kb region of InDel markers ID12M28 and HF43. The results of ORF analysis in target region and nucleotide sequence alignment indicated that DNL1 encodes cellulose synthase-like D4 protein, and a single nucleotide substitution (C2488T) in dnl1 result in decrease in plant height and leaf width. Bioinformatical analysis demonstrated that a conserved role for OsCSLD4 in the regulation of plant growth and development. Expression analysis for OsCSLDs showed OsCSLD4 highly expressed in roots, while other CSLD members had comparatively lower expression levels. However, no clear evidence about CSLD4/DNL1 expression was associated with its function.
Collapse
|
52
|
Ordonio RL, Ito Y, Hatakeyama A, Ohmae-Shinohara K, Kasuga S, Tokunaga T, Mizuno H, Kitano H, Matsuoka M, Sazuka T. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Sci Rep 2014; 4:5287. [PMID: 24924234 PMCID: PMC4055941 DOI: 10.1038/srep05287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/23/2014] [Indexed: 11/09/2022] Open
Abstract
Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants--both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes.
Collapse
Affiliation(s)
- Reynante L Ordonio
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Yusuke Ito
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Asako Hatakeyama
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Kozue Ohmae-Shinohara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Shigemitsu Kasuga
- Education and Research Center of Alpine Field Science, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | | | - Hiroshi Mizuno
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
53
|
Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara KI, Nagato Y, Itoh JI. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:927-36. [PMID: 24654985 DOI: 10.1111/tpj.12517] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/09/2014] [Accepted: 03/17/2014] [Indexed: 05/20/2023]
Abstract
Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.
Collapse
Affiliation(s)
- Takanori Yoshikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The grass family is one of the largest families in angiosperms and has evolved a characteristic inflorescence morphology, with complex branches and specialized spikelets. The origin and development of the highly divergent inflorescence architecture in grasses have recently received much attention. Increasing evidence has revealed that numerous factors, such as transcription factors and plant hormones, play key roles in determining reproductive meristem fate and inflorescence patterning in grasses. Moreover, some molecular switches that have been implicated in specifying inflorescence shapes contribute significantly to grain yields in cereals. Here, we review key genetic and molecular switches recently identified from two model grass species, rice (Oryza sativa) and maize (Zea mays), that regulate inflorescence morphology specification, including meristem identity, meristem size and maintenance, initiation and outgrowth of axillary meristems, and organogenesis. Furthermore, we summarize emerging networks of genes and pathways in grass inflorescence morphogenesis and emphasize their evolutionary divergence in comparison with the model eudicot Arabidopsis thaliana. We also discuss the agricultural application of genes controlling grass inflorescence development.
Collapse
Affiliation(s)
- Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | | |
Collapse
|
55
|
Cardarelli M, Cecchetti V. Auxin polar transport in stamen formation and development: how many actors? FRONTIERS IN PLANT SCIENCE 2014; 5:333. [PMID: 25076953 PMCID: PMC4100440 DOI: 10.3389/fpls.2014.00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 05/20/2023]
Abstract
In flowering plants, proper development of stamens, the male reproductive organs, is required for successful sexual reproduction. In Arabidopsis thaliana normally six stamen primordia arise in the third whorl of floral organs and subsequently differentiate into stamen filaments and anthers, where male meiosis occurs, thus ending the early developmental phase. This early phase is followed by a late developmental phase, which consists of a rapid elongation of stamen filaments coordinated with anther dehiscence and pollen maturation, and terminates with mature pollen grain release at anthesis. Increasing evidence suggests that auxin transport is necessary for both early and late phases of stamen development. It has been shown that different members of PIN (PIN-FORMED) family are involved in the early phase, whereas members of both PIN and P-glycoproteins of the ABCB (PGP) transporter families are required during the late developmental phase. In this review we provide an overview of the increasing knowledge on auxin transporters involved in Arabidopsis stamen formation and development and we discuss their role and functional conservation across plant species.
Collapse
Affiliation(s)
- Maura Cardarelli
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- *Correspondence: Maura Cardarelli, Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy e-mail:
| | - Valentina Cecchetti
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di RomaRome, Italy
| |
Collapse
|
56
|
Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, Gierth M, Flügge UI, Krueger S. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. THE PLANT CELL 2013; 25:5011-29. [PMID: 24368794 PMCID: PMC3904002 DOI: 10.1105/tpc.113.118992] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 05/17/2023]
Abstract
In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.
Collapse
|
57
|
Li W, Wu C, Hu G, Xing L, Qian W, Si H, Sun Z, Wang X, Fu Y, Liu W. Characterization and fine mapping of a novel rice narrow leaf mutant nal9. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1016-25. [PMID: 23945310 DOI: 10.1111/jipb.12098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 06/22/2013] [Indexed: 05/09/2023]
Abstract
A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow leaf 9). The mutant also has other phenotypes, such as light green leaves at the seedling stage, reduced plant height, a small panicle and increased tillering. Genetic analysis revealed that the mutation is controlled by a single recessive gene. A hygromycin resistance assay showed that the mutation was not caused by T-DNA insertion, so a map-based cloning strategy was employed to isolate the nal9 gene. The mutant individuals from the F₂ generations of a cross between the nal9 mutant and Longtepu were used for mapping. With 24 F₂ mutants, the nal9 gene was preliminarily mapped near the marker RM156 on the chromosome 3. New INDEL markers were then designed based on the sequence differences between japonica and indica at the region near RM156. The nal9 gene was finally located in a 69.3 kb region between the markers V239B and V239G within BAC OJ1212_C05 by chromosome walking. Sequence and expression analysis showed that an ATP-dependent Clp protease proteolytic subunit gene (ClpP) was most likely to be the nal9 gene. Furthermore, the nal9 mutation was rescued by transformation of the ClpP cDNA driven by the 35S promoter. Accordingly, the ClpP gene was identified as the NAL9 gene. Our results provide a basis for functional studies of NAL9 in future work.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China; College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Yang W, Gao M, Yin X, Liu J, Xu Y, Zeng L, Li Q, Zhang S, Wang J, Zhang X, He Z. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome p450. MOLECULAR PLANT 2013; 6:1945-60. [PMID: 23775595 DOI: 10.1093/mp/sst107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Angiosperm seeds usually consist of two major parts: the embryo and the endosperm. However, the molecular mechanism(s) underlying embryo and endosperm development remains largely unknown, particularly in rice, the model cereal. Here, we report the identification and functional characterization of the rice GIANT EMBRYO (GE) gene. Mutation of GE resulted in a large embryo in the seed, which was caused by excessive expansion of scutellum cells. Post-embryonic growth of ge seedling was severely inhibited due to defective shoot apical meristem (SAM) maintenance. Map-based cloning revealed that GE encodes a CYP78A subfamily P450 monooxygenase that is localized to the endoplasmic reticulum. GE is expressed predominantly in the scutellar epithelium, the interface region between embryo and endosperm. Overexpression of GE promoted cell proliferation and enhanced rice plant growth and grain yield, but reduced embryo size, suggesting that GE is critical for coordinating rice embryo and endosperm development. Moreover, transgenic Arabidopsis plants overexpressing AtCYP78A10, a GE homolog, also produced bigger seeds, implying a conserved role for the CYP78A subfamily of P450s in regulating seed development. Taken together, our results indicate that GE plays critical roles in regulating embryo development and SAM maintenance.
Collapse
Affiliation(s)
- Weibing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Chen M, Luo J, Shao G, Wei X, Tang S, Sheng Z, Song J, Hu P. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. PLANT CELL REPORTS 2012; 31:863-72. [PMID: 22179305 DOI: 10.1007/s00299-011-1207-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 05/17/2023]
Abstract
Leaf width is an important agricultural trait in rice. QTL mapping in a recombinant inbred line population derived from the cross between the javanica cultivar D50 (narrow-leaved) and the indica cultivar HB277 (wide-leaved) identified five QTLs controlling flag leaf width. Fine mapping of the major QTL qFLW4 narrowed its location to a 74.8 kb interval between the SSR loci RM17483 and RM17486, a region which also contains the gene NAL1 (Narrow leaf 1). There was no difference in the level of NAL1 expression between cvs. D50 and HB277, but an analysis of the NAL1 transcripts showed that while most (if not all) of those produced in cv. D50 were full-length, two-thirds of those in HB277 were non-functional due to either loss or gain of sequence. The inference was that NAL1 is probably synonymous with qFLW4, and that the functional difference between the two alleles was due to alternative splicing. The analysis of expression of other known genes involved in the determination of leaf width provided no evidence of their having any clear functional association with qFLW4/NAL1.
Collapse
Affiliation(s)
- Mingliang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Mimura M, Nagato Y, Itoh JI. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway. PLANTA 2012; 235:1081-9. [PMID: 22476293 DOI: 10.1007/s00425-012-1639-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 05/08/2023]
Affiliation(s)
- Manaki Mimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
61
|
Xue LJ, Zhang JJ, Xue HW. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS One 2012; 7:e31081. [PMID: 22363552 PMCID: PMC3281924 DOI: 10.1371/journal.pone.0031081] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed.
Collapse
Affiliation(s)
- Liang-Jiao Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
62
|
LI SP, DUAN YL, CHEN ZW, GUAN HZ, WANG CL, ZHENG LL, ZHOU YC, WU WR. Genetic analysis and gene mapping of DDF1, a pleiotropic gene involving in both vegetable and reproductive growth in rice. YI CHUAN = HEREDITAS 2011; 33:1374-9. [DOI: 10.3724/sp.j.1005.2011.01374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Man H, Pollmann S, Weiler EW, Kirby EG. Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase α-subunit (ASA1) transcript and protein abundances: an auxin-related mechanism for enhanced growth in GS transgenics? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4423-31. [PMID: 21642235 PMCID: PMC3170542 DOI: 10.1093/jxb/err026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 05/21/2023]
Abstract
The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA α-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was significantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis.
Collapse
Affiliation(s)
- Huimin Man
- Department of Biological Sciences, Rutgers University, University Heights, Newark, NJ 07102, USA
| | - Stephan Pollmann
- Department of Plant Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, D-44801 Bochum, Germany
| | - Elmar W. Weiler
- Department of Plant Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, D-44801 Bochum, Germany
| | - Edward G. Kirby
- Department of Biological Sciences, Rutgers University, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
64
|
Candela H, Pérez-Pérez JM, Micol JL. Uncovering the post-embryonic functions of gametophytic- and embryonic-lethal genes. TRENDS IN PLANT SCIENCE 2011; 16:336-345. [PMID: 21420345 DOI: 10.1016/j.tplants.2011.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/09/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
An estimated 500-1 000 Arabidopsis (Arabidopsis thaliana) genes mutate to embryonic lethality. In addition, several hundred mutations have been identified that cause gametophytic lethality. Thus, a significant fraction of the ∼25,000 protein-coding genes in Arabidopsis are indispensable to the early stages of the diploid phase or to the haploid gametophytic phase. The expression patterns of many of these genes indicate that they also act later in development but, because the mutants die at such early stages, conventional methods limit the study of their roles in adult diploid plants. Here, we describe the toolset that allows researchers to assess the post-embryonic functions of plant genes for which only gametophytic- and embryonic-lethal alleles have been isolated.
Collapse
Affiliation(s)
- Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
65
|
Hu J, Zhu L, Zeng D, Gao Z, Guo L, Fang Y, Zhang G, Dong G, Yan M, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. PLANT MOLECULAR BIOLOGY 2010; 73:283-92. [PMID: 20155303 DOI: 10.1007/s11103-010-9614-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/30/2010] [Indexed: 05/17/2023]
Abstract
Leaf morphology is an important agronomic trait in rice breeding. We isolated three allelic mutants of NARROW AND ROLLED LEAF 1 (nrl1) which showed phenotypes of reduced leaf width and semi-rolled leaves and different degrees of dwarfism. Microscopic analysis indicated that the nrl1-1 mutant had fewer longitudinal veins and smaller adaxial bulliform cells compared with the wild-type. The NRL1 gene was mapped to the chromosome 12 and encodes the cellulose synthase-like protein D4 (OsCslD4). Sequence analyses revealed single base substitutions in the three allelic mutants. Genetic complementation and over-expression of the OsCslD4 gene confirmed the identity of NRL1. The gene was expressed in all tested organs of rice at the heading stage and expression level was higher in vigorously growing organs, such as roots, sheaths and panicles than in elsewhere. In the mutant leaves, however, the expression level was lower than that in the wild-type. We conclude that OsCslD4 encoded by NRL1 plays a critical role in leaf morphogenesis and vegetative development in rice.
Collapse
Affiliation(s)
- Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 359 Tiyuchang Road, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Indole-3-acetic acid (IAA), the main auxin in higher plants, has profound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth. Although the genes and biochemical reactions for auxin biosynthesis in some plant pathogens are well understood, elucidation of the mechanisms by which plants produce auxin has proven to be difficult. So far, no single complete pathway of de novo auxin biosynthesis in plants has been firmly established. However, recent studies have led to the discoveries of several genes in tryptophan-dependent auxin biosynthesis pathways. Recent findings have also determined that local auxin biosynthesis plays essential roles in many developmental processes including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower development. In this review, I summarize the recent advances in dissecting auxin biosynthetic pathways and how the understanding of auxin biosynthesis provides a crucial angle for analyzing the mechanisms of plant development.
Collapse
Affiliation(s)
- Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| |
Collapse
|