51
|
van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology (Berl) 2015; 232:3455-67. [PMID: 26141192 PMCID: PMC4537820 DOI: 10.1007/s00213-015-4000-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE Bipolar disorder (BD) is a disabling and life-threatening disease characterized by states of depression and mania. New and efficacious treatments have not been forthcoming partly due to a lack of well-validated models representing both facets of BD. OBJECTIVES We hypothesized that cholinergic- and dopaminergic-pharmacological manipulations would model depression and mania respectively, each attenuated by lithium treatment. METHODS C57BL/6 J mice received the acetylcholinesterase inhibitor physostigmine or saline before testing for "behavioral despair" (immobility) in the tail suspension test (TST) and forced swim test (FST). Physostigmine effects on exploration and sensorimotor gating were assessed using the cross-species behavioral pattern monitor (BPM) and prepulse inhibition (PPI) paradigms. Other C57BL/6 J mice received chronic lithium drinking water (300, 600, or 1200 mg/l) before assessing their effects alone in the BPM or with physostigmine on FST performance. Another group was tested with acute GBR12909 (dopamine transporter inhibitor) and chronic lithium (1000 mg/l) in the BPM. RESULTS Physostigmine (0.03 mg/kg) increased immobility in the TST and FST without affecting activity, exploration, or PPI. Lithium (600 mg/l) resulted in low therapeutic serum concentrations and normalized the physostigmine-increased immobility in the FST. GBR12909 induced mania-like behavior in the BPM of which hyper-exploration was attenuated, though not reversed, after chronic lithium (1000 mg/ml). CONCLUSIONS Increased cholinergic levels induced depression-like behavior and hyperdopaminergia induced mania-like behavior in mice, while chronic lithium treated some, but not all, facets of these effects. These data support a cholinergic-monoaminergic mechanism for modeling BD aspects and provide a way to assess novel therapeutics.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Research Service, VA San Diego Healthcare System, San Diego, CA
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Research Service, VA San Diego Healthcare System, San Diego, CA
- Correspondence: Jared W. Young, Ph.D., Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California, 92093-0804, Tel: +1 619 543 3582, Fax: +1 619 735 9205,
| |
Collapse
|
52
|
Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future. Neuroscience 2015; 321:163-188. [PMID: 26314632 DOI: 10.1016/j.neuroscience.2015.08.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
Collapse
Affiliation(s)
- R W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States
| | - C A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
53
|
van Enkhuizen J, Geyer MA, Minassian A, Perry W, Henry BL, Young JW. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models: Rodent and human studies. Neurosci Biobehav Rev 2015; 58:4-18. [PMID: 26297513 DOI: 10.1016/j.neubiorev.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022]
Abstract
Psychiatric patients with bipolar disorder suffer from states of depression and mania, during which a variety of symptoms are present. Current treatments are limited and neurocognitive deficits in particular often remain untreated. Targeted therapies based on the biological mechanisms of bipolar disorder could fill this gap and benefit patients and their families. Developing targeted therapies would benefit from appropriate animal models which are challenging to establish, but remain a vital tool. In this review, we summarize approaches to create a valid model relevant to bipolar disorder. We focus on studies that use translational tests of multivariate exploratory behavior, sensorimotor gating, decision-making under risk, and attentional functioning to discover profiles that are consistent between patients and rodent models. Using this battery of translational tests, similar behavior profiles in bipolar mania patients and mice with reduced dopamine transporter activity have been identified. Future investigations should combine other animal models that are biologically relevant to the neuropsychiatric disorder with translational behavioral assessment as outlined here. This methodology can be utilized to develop novel targeted therapies that relieve symptoms for more patients without common side effects caused by current treatments.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - Brook L Henry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
54
|
Investigating the mechanism(s) underlying switching between states in bipolar disorder. Eur J Pharmacol 2015; 759:151-62. [PMID: 25814263 DOI: 10.1016/j.ejphar.2015.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the 'holy grail' of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching.
Collapse
|
55
|
Yang KC, Wang SJ, Hsieh WC, Lirng JF, Yang CC, Deng JF, Lin CL, Chou YH. Longitudinal changes in the dopamine transporter and cognition in suicide attempters with charcoal burning. Psychiatry Res 2015; 231:160-7. [PMID: 25572798 DOI: 10.1016/j.pscychresns.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/24/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Suicide with charcoal burning, which results in carbon monoxide (CO) poisoning, is common in Asia. This study was designed to elucidate associations between changes in the dopamine transporter (DAT) and cognitive function in patients following CO poisoning during a follow-up period of 6 months. Participants comprised 31 healthy controls (HCs) and 21 CO poisoning patients. Each subject underwent single photon emission computed tomography with [(99m)Tc] TRODAT-1 to measure DAT availability and completed a cognitive battery assessing attention, memory, and executive function. For CO poisoning patients, a second DAT measurement and repeated cognitive evaluations were performed 6 months later. At baseline, DAT availability over bilateral striatum in CO poisoning subjects was significantly lower than in HCs. After 6 months, there was no significant change of DAT availability in CO poisoning patients. CO poisoning patients also had worse cognitive performance in all domains compared with HCs at baseline. After 6 months, most cognitive functions were significantly improved, except for the Wisconsin Card Sorting Test (WCST), a measure of executive function. Interestingly, changes in the WCST were significantly correlated with changes in DAT availability during the 6-month follow-up period. The persistence of reduced DAT availability and its association with impaired performance on the WCST indicate a crucial role of DAT in the recovery of executive function following CO poisoning.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shyh-Jen Wang
- Department of Nuclear Medicine, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Wen-Chi Hsieh
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan; Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Chen-Chang Yang
- Department of Toxicology, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Jou-Fang Deng
- Department of Toxicology, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Chun-Lung Lin
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan; Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
56
|
Mansur RB, Brietzke E, McIntyre RS. Is there a "metabolic-mood syndrome"? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev 2015; 52:89-104. [PMID: 25579847 DOI: 10.1016/j.neubiorev.2014.12.017] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 12/12/2022]
Abstract
Obesity and mood disorders are highly prevalent and co-morbid. Epidemiological studies have highlighted the public health relevance of this association, insofar as both conditions and its co-occurrence are associated with a staggering illness-associated burden. Accumulating evidence indicates that obesity and mood disorders are intrinsically linked and share a series of clinical, neurobiological, genetic and environmental factors. The relationship of these conditions has been described as convergent and bidirectional; and some authors have attempted to describe a specific subtype of mood disorders characterized by a higher incidence of obesity and metabolic problems. However, the nature of this association remains poorly understood. There are significant inconsistencies in the studies evaluating metabolic and mood disorders; and, as a result, several questions persist about the validity and the generalizability of the findings. An important limitation in this area of research is the noteworthy phenotypic and pathophysiological heterogeneity of metabolic and mood disorders. Although clinically useful, categorical classifications in both conditions have limited heuristic value and its use hinders a more comprehensive understanding of the association between metabolic and mood disorders. A recent trend in psychiatry is to move toward a domain specific approach, wherein psychopathology constructs are agnostic to DSM-defined diagnostic categories and, instead, there is an effort to categorize domains based on pathogenic substrates, as proposed by the National Institute of Mental Health (NIMH) Research Domain Criteria Project (RDoC). Moreover, the substrates subserving psychopathology seems to be unspecific and extend into other medical illnesses that share in common brain consequences, which includes metabolic disorders. Overall, accumulating evidence indicates that there is a consistent association of multiple abnormalities in neuropsychological constructs, as well as correspondent brain abnormalities, with broad-based metabolic dysfunction, suggesting, therefore, that the existence of a "metabolic-mood syndrome" is possible. Nonetheless, empirical evidence is necessary to support and develop this concept. Future research should focus on dimensional constructs and employ integrative, multidisciplinary and multimodal approaches.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil.
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW This article reviews the recent literature on reward processing dysfunction in major depression (MDD), bipolar disorder and schizophrenia, with a focus on approach motivation, reward learning and reward-based decision-making. RECENT FINDINGS Emerging evidence indicates the presence of reward processing abnormalities across all three disorders, supporting a transdiagnostic approach. In particular, findings are consistent with a role of abnormal phasic striatal dopamine signaling, which is critical for reinforcement learning, efficient mobilization of effort to obtain reward and allocation of attention to reward-predictive cues. Specifically, reward-related striatal signaling appears blunted in MDD and the negative symptoms of schizophrenia, elevated in bipolar (hypo)mania, and contextually misallocated in the positive symptoms of psychosis. However, whether shared or distinct pathophysiological mechanisms contribute to abnormal striatal signaling across the three disorders remains unknown. SUMMARY New evidence of reward processing abnormalities in MDD, bipolar disorder and schizophrenia has led to a greater understanding of the neural processes associated with symptomatology common across these conditions (e.g., anhedonia). Dissecting various subcomponents of reward processing that map onto partially different neurobiological pathways and investigating their dysregulation in different psychiatric disorders holds promise for developing more targeted, and hopefully efficacious treatment and intervention strategies.
Collapse
|
58
|
van Enkhuizen J, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, Geyer MA, Young JW. Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology 2014; 39:3112-22. [PMID: 25005251 PMCID: PMC4229584 DOI: 10.1038/npp.2014.170] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/10/2022]
Abstract
Individuals with bipolar disorder (BD) exhibit deleterious decision making, negatively impacting their lives. Such aberrant decision making can be quantified using the Iowa Gambling Task (IGT), which requires choosing between advantageous and disadvantageous options based on different reward/punishment schedules. The mechanisms underlying this behavioral deficit are unknown, but may include the reduced dopamine transporter (DAT) functioning reported in BD patients. Using both human and mouse IGTs, we tested whether reduced DAT functioning would recreate patterns of deficient decision making of BD patients. We assessed the IGT performance of 16 BD subjects (7 female) and 17 healthy control (HC) subjects (12 female). We recorded standard IGT performance measures and novel post-reward and post-punishment decision-making strategies. We characterized a novel single-session mouse IGT using C57BL/6J mice (n = 44). The BD and HC IGT performances were compared with the effects of chronic (genetic knockdown (KD; n = 31) and wild-type (n = 28) mice) and acute (C57BL/6J mice (n = 89) treated with the DAT inhibitor GBR12909) reductions of DAT functioning in mice performing this novel IGT. BD patients exhibited impaired decision making compared with HC subjects. Both the good-performing DAT KD and GBR12909-treated mice exhibited poor decision making in the mouse IGT. The deficit of each population was driven by high-reward sensitivity. The single-session mouse IGT measures dynamic risk-based decision making similar to humans. Chronic and acute reductions of DAT functioning in mice impaired decision-making consistent with poor IGT performance of BD patients. Hyperdopaminergia caused by reduced DAT may impact poor decision making in BD patients, which should be confirmed in future studies.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Brook L Henry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kerin K Higa
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA, Tel: +1 619 543 3582, Fax: +1 619 735 9205, E-mail:
| |
Collapse
|
59
|
van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW, Geyer MA. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol 2014; 753:114-26. [PMID: 25107282 DOI: 10.1016/j.ejphar.2014.05.063] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023]
Abstract
Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - David S Janowsky
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
60
|
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28:505-26. [PMID: 24554693 DOI: 10.1177/0269881114523864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| |
Collapse
|
61
|
Microstructural changes of the nucleus accumbens due to increase of estradiol level during menstrual cycle contribute to recurrent manic episodes--a single case study. Psychiatry Res 2014; 221:149-54. [PMID: 24345761 DOI: 10.1016/j.pscychresns.2013.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022]
Abstract
We examined a rapid-cycling bipolar disorder patient who demonstrated manic episode regularly at around day 7 of the menstrual cycle. We hypothesize that gonadal hormones may induce a state-dependent change in cerebral microstructure and function. Following this hypothesis, the serum levels of estradiol and progesterone were analyzed and diffusion tensor imaging data were examined between the manic and euthymic states of the patient. Estradiol levels increased in the late follicular phase at manic state when compared to the luteal or early follicular phase at euthymic state. DTI results showed that the patient had increased fractional anisotropy values at manic state in the bilateral nucleus accumbens (NAc) and its connected areas, which is a major projection field of the mesolimbic dopamine (DA) system, perhaps reflecting microstructural changes due to neuronal activation related to manic episodes. According to these results, we consider that the mesolimbic DA system of this patient has hypersensitivity to estradiol, and elevation of the estradiol level increases the activity of the dopaminergic system, which in turn may contribute to recurrent manic episodes. Our findings provide a clue for understanding how fluctuations in gonadal hormone may amplify or ameliorate the symptomatology of psychiatric disorders related to the menstrual cycle.
Collapse
|
62
|
van Enkhuizen J, Geyer MA, Halberstadt AL, Zhuang X, Young JW. Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder. J Affect Disord 2014; 155:247-54. [PMID: 24287168 PMCID: PMC3924859 DOI: 10.1016/j.jad.2013.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Patients with BD suffer from multifaceted symptoms, including hyperactive and psychomotor agitated behaviors. Previously, we quantified hyperactivity, increased exploration, and straighter movements of patients with BD mania in the human Behavioral Pattern Monitor (BPM). A similar BPM profile is observed in mice that are hyperdopaminergic due to reduced dopamine transporter (DAT) functioning. We hypothesized that dopamine depletion through alpha-methyl-p-tyrosine (AMPT) administration would attenuate this mania-like profile. METHODS Male and female DAT wild-type (WT; n=26) and knockdown (KD; n=28) mice on a C57BL/6 background were repeatedly tested in the BPM to assess profile robustness and stability. The optimal AMPT dose was identified by treating male C57BL/6 mice (n=39) with vehicle or AMPT (10, 30, or 100mg/kg) at 24, 20, and 4h prior to testing in the BPM. Then, male and female DAT WT (n=40) and KD (n=37) mice were tested in the BPM after vehicle or AMPT (30mg/kg) treatment. RESULTS Compared to WT littermates, KD mice exhibited increased activity, exploration, straighter movement, and disorganized behavior. AMPT-treatment reduced hyperactivity and increased path organization, but potentiated specific exploration in KD mice without affecting WT mice. LIMITATIONS AMPT is not specific to dopamine and also depletes norepinephrine. CONCLUSIONS KD mice exhibit abnormal exploration in the BPM similar to patients with BD mania. AMPT-induced dopamine depletion attenuated some, but potentiated other, aspects of this mania-like profile in mice. Future studies should extend these findings into other aspects of mania to determine the suitability of AMPT as a treatment for BD mania.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, Research Service, VA San Diego Healthcare System, San Diego, CA
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, Research Service, VA San Diego Healthcare System, San Diego, CA,Correspondence: Jared W. Young, Ph.D. Department of Psychiatry University of California San Diego 9500 Gilman Drive MC 0804 La Jolla, California 92093-0804 Tel: +1 619 543 3582 Fax: +1 619 735 9205
| |
Collapse
|
63
|
Poletti M, Sambataro F. The development of delusion revisited: a transdiagnostic framework. Psychiatry Res 2013; 210:1245-59. [PMID: 23978732 DOI: 10.1016/j.psychres.2013.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 07/15/2013] [Accepted: 07/20/2013] [Indexed: 01/07/2023]
Abstract
This study proposes a transdiagnostic framework for delusion development, analysing psychiatric (schizophrenia, bipolar disorder, major depressive disorder) and neurological disorders (stroke, and neurodegenerative diseases) in which delusions are predominant. Our aim is to identify a transdiagnostic core of neural and cognitive alterations associated with delusions across distinct clinical disorders. Reviewed empirical evidence suggests delusions are associated: on the neural level with changes in the ventromedial prefrontal cortex (vmPFC) networks, and on the neuropsychological level with dysfunction in the processes (generation of affective value, the construction of internal models of the world, and the reflection about Self and/or Other's mental states) that these network mediate. The concurrent aberration of all these processes could be critical for the clinical transition to a psychotic delusional state. In particular, delusions could become clinically manifest when (1) stimuli are attributed an aberrant affective salience, that (2) is explained by the patient within distorted explanatory internal models that (3) are poorly inhibited by cognitive control systems. This framework extends the two-factor account of delusion model and suggests that common neural mechanisms for the delusions in psychiatric and in neurological disorders.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health and Pathological Addiction, AUSL of Reggio Emilia, Reggio Emilia, Italy.
| | | |
Collapse
|
64
|
Henry BL, Minassian A, Patt V, Hua J, Young JW, Geyer MA, Perry W. Inhibitory deficits in euthymic bipolar disorder patients assessed in the human behavioral pattern monitor. J Affect Disord 2013; 150:948-54. [PMID: 23759280 PMCID: PMC3759601 DOI: 10.1016/j.jad.2013.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with inhibitory deficits characterized by a reduced ability to control inappropriate actions or thoughts. While aspects of inhibition such as exaggerated novelty-seeking and perseveration are quantified in rodent exploration of novel environments, similar models are rarely applied in humans. The human Behavioral Pattern Monitor (hBPM), a cross-species exploratory paradigm, has identified a pattern of impaired inhibitory function in manic BD participants, but this phenotype has not been examined across different BD phases. The objective of this study was to determine if euthymic BD individuals demonstrate inhibitory deficits in the hBPM, supporting disinhibition as an endophenotype for the disorder. METHODS 25 euthymic BD outpatients and 51 healthy comparison subjects were assessed in the hBPM, where activity was recorded by a concealed videocamera and an ambulatory monitoring sensor. RESULTS Euthymic BD individuals, similar to manic subjects, demonstrated increased motor activity, greater interaction with novel objects, and more frequent perseverative behavior relative to comparison participants. The quantity of locomotion was also reduced in BD individuals treated with mood stabilizers compared to other patients. LIMITATIONS Low sample size for treatment subgroups limits the evaluation of specific medication regimens. CONCLUSIONS Our results suggest that BD is distinguished by both trait- and state-dependent inhibitory deficits optimally assessed with sophisticated multivariate measures. These data support the use of the hBPM as a tool to elucidate the effects of BD across various illness states, facilitate the development of BD animal models, and advance our understanding of the neurobiology underlying the disorder.
Collapse
Affiliation(s)
- Brook L. Henry
- University of California San Diego, Department of Psychiatry, La Jolla, CA
| | - Arpi Minassian
- University of California San Diego, Department of Psychiatry, La Jolla, CA,Research Service, VA San Diego Healthcare System, San Diego, CA
| | - Virginie Patt
- University of California San Diego, Department of Psychiatry, La Jolla, CA
| | - Jessica Hua
- University of California San Diego, Department of Psychiatry, La Jolla, CA
| | - Jared W. Young
- University of California San Diego, Department of Psychiatry, La Jolla, CA
| | - Mark A. Geyer
- University of California San Diego, Department of Psychiatry, La Jolla, CA,Research Service, VA San Diego Healthcare System, San Diego, CA
| | - William Perry
- University of California San Diego, Department of Psychiatry, La Jolla, CA
| |
Collapse
|
65
|
Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 2013; 34:197-219. [PMID: 23506866 DOI: 10.1016/j.mam.2012.07.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 02/08/2023]
Abstract
The SLC6 family of secondary active transporters are integral membrane solute carrier proteins characterized by the Na(+)-dependent translocation of small amino acid or amino acid-like substrates. SLC6 transporters, which include the serotonin, dopamine, norepinephrine, GABA, taurine, creatine, as well as amino acid transporters, are associated with a number of human diseases and disorders making this family a critical target for therapeutic development. In addition, several members of this family are directly involved in the action of drugs of abuse such as cocaine, amphetamines, and ecstasy. Recent advances providing structural insight into this family have vastly accelerated our ability to study these proteins and their involvement in complex biological processes.
Collapse
Affiliation(s)
- Akula Bala Pramod
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | | | | | | |
Collapse
|
66
|
Schmack K, Sekutowicz M, Rössler H, Brandl EJ, Müller DJ, Sterzer P. The influence of dopamine-related genes on perceptual stability. Eur J Neurosci 2013; 38:3378-83. [DOI: 10.1111/ejn.12339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/21/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Katharina Schmack
- Department of Psychiatry; Charité Campus Mitte; Charitéplatz 1 Berlin D-10117 Germany
| | - Maria Sekutowicz
- Department of Psychiatry; Charité Campus Mitte; Charitéplatz 1 Berlin D-10117 Germany
| | - Hannes Rössler
- Department of Psychiatry; Charité Campus Mitte; Charitéplatz 1 Berlin D-10117 Germany
| | - Eva J. Brandl
- Neurogenetics Section; Neuroscience Department; Centre for Addiction and Mental Health; Toronto ON Canada
| | - Daniel J. Müller
- Neurogenetics Section; Neuroscience Department; Centre for Addiction and Mental Health; Toronto ON Canada
| | - Philipp Sterzer
- Department of Psychiatry; Charité Campus Mitte; Charitéplatz 1 Berlin D-10117 Germany
| |
Collapse
|
67
|
Abstract
Bipolar disorder (BD) mania is a psychiatric disorder with multifaceted symptoms. Development of targeted treatments for BD mania may benefit from animal models that mimic multiple symptoms, as opposed to hyperactivity alone. Using the reverse-translated multivariate exploratory paradigm, the behavioural pattern monitor (BPM), we reported that patients with BD mania exhibit hyperactivity as well as increased specific exploration and more linear movements through space. This abnormal profile is also observed in mice with reduced function of the dopamine transporter (DAT) through either constitutive genetic [knockdown (KD)] or acute pharmacological (GBR12909) means. Here, we assessed the pharmacological predictive validity of these models by administering the BD-treatment valproic acid (VPA) for 28 d. After 1.5% VPA- or regular-chow treatment for 28 d, C57BL/6J mice received GBR12909 (9 mg/kg) or saline and were tested in the BPM. Similarly, DAT KD and wild type (WT) littermates were treated with VPA-chow and tested in the BPM. GBR12909-treated and DAT KD mice on regular chow were hyperactive, exhibited increased specific exploration and moved in straighter patterns compared to saline-treated and WT mice respectively. Chronic 1.5% VPA-chow treatment resulted in therapeutic concentrations of VPA and ameliorated hyperactivity in both models, while specific exploration and behavioural organization remained unaffected. Hence, the mania-like profile of mice with reduced functional DAT was partially attenuated by chronic VPA treatment, consistent with the incomplete symptomatic effect of VPA treatment in BD patients. Both DAT models may help to identify therapeutics that impact the full spectrum of BD mania.
Collapse
|
68
|
Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis 2013; 52:49-65. [DOI: 10.1016/j.nbd.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/21/2012] [Accepted: 06/02/2012] [Indexed: 02/08/2023] Open
|
69
|
Savitz J, Nugent AC, Bellgowan PSF, Wright N, Tinsley R, Zarate CA, Herscovitch P, Drevets WC. Catecholamine depletion in first-degree relatives of individuals with mood disorders: An [(18)F]fluorodeoxyglucose positron emission tomography study. NEUROIMAGE-CLINICAL 2013; 2:341-55. [PMID: 24179788 PMCID: PMC3778263 DOI: 10.1016/j.nicl.2013.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/23/2013] [Indexed: 11/26/2022]
Abstract
Catecholamine depletion with alpha-methylparatyrosine (AMPT) has previously been shown to induce depressive symptoms in currently remitted patients with major depressive disorder (MDD) but not healthy controls. Thus sensitivity to catecholamine depletion has been hypothesized to be an endophenotype of MDD. Here we tested this hypothesis in the context of a randomized, double-blinded, placebo-controlled design by measuring changes in mood in a group of psychiatrically-healthy individuals at risk of mood disorders by virtue of family history (high-risk subjects, HRs). In addition, we tested whether HRs differed from healthy controls with no family-history of mood disorders (low-risk controls, LRs) in their cerebral metabolic response when undergoing catecholamine depletion. Eight healthy LRs (6 males, mean age = 34.1 ± 7.1) and 6 healthy HRs (3 males, mean age = 29.3 ± 4.6) participated in two, 3-day-long identical sessions during which they completed standardized measures of depression, anxiety and fatigue and an [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan. On one occasion participants received 4 weight-adjusted doses of AMPT and on the other occasion participants received 4 doses of placebo. The LR and HR groups did not differ from each other in their mood during sham depletion. However, during the period of peak catecholamine depletion, the HR group reported significantly more depression, anxiety and fatigue than the LR group. A region-of-interest analysis showed that during catecholamine depletion versus placebo the combined LR and HR groups displayed a significant increase in cerebral metabolic rate in the left and right ventral striata, left and right amygdalae, and left and right hippocampi (FWE-corrected p < 0.05). Whole brain voxel-wise analyses indicated significantly increased glucose metabolism in the left and right putamina (FWE-corrected p < 0.05) in the combined LR and HR groups in the AMPT versus the placebo session. In the LR group, alone, no significant elevation in glucose metabolism was observed in the regions-of-interest in the catecholamine depletion versus placebo condition. In the HR group, alone, the region-of-interest analysis showed a significant increase in cerebral metabolic rate in the left and right ventral striata (FWE-corrected p < 0.05). No regions-of-interest showed significantly different metabolism in the HR group versus the LR group in the placebo condition, however compared with the LR group, the HR group displayed nominally increased glucose metabolism in the left amygdala during catecholamine depletion (SVC-corrected p = 0.05). A region-of-interest analysis for the interaction contrast confirmed that catecholamine depletion had differential effects on HR and LR participants. Compared with the LR group, the HR group displayed significantly increased glucose metabolism in the left ventral striatum, left amygdala, and left lateral orbitofrontal cortex (OFC) (FWE-corrected p < 0.05). Our results suggest that sensitivity to catecholamine depletion may be a phenotypic marker of vulnerability to mood disorders that is characterized at the neurophysiological level by disinhibition of the striatum and its efferent projections comprising the limbic–cortical–striatal–pallidal–thalamic circuitry. High-risk subjects were more depressed and fatigued during catecholamine depletion. During depletion HR subjects > metabolism in the left striatum, amygdala, and OFC Sensitivity to catecholamine depletion may be an endophenotype of depression.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA ; Department of Medicine, Tulsa School of Community Medicine at the University of Tulsa, Tulsa, OK 74104, USA ; Section on Neuroimaging in Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
van Enkhuizen J, Geyer MA, Young JW. Differential effects of dopamine transporter inhibitors in the rodent Iowa gambling task: relevance to mania. Psychopharmacology (Berl) 2013; 225:661-74. [PMID: 22945515 PMCID: PMC3537839 DOI: 10.1007/s00213-012-2854-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/17/2012] [Indexed: 01/05/2023]
Abstract
RATIONALE The Iowa Gambling Task (IGT) can be used to quantify impulsive and risky choice behaviors in psychiatric patients, e.g., bipolar disorder (BD) sufferers. Although developing treatments for these behaviors is important, few predictive animal models exist. Inhibition of the dopamine transporter (DAT) can model profiles of altered motor activity and exploration seen in patients with BD. The effect of DAT inhibition on impulsive choices related to BD has received limited study however. We used a rodent IGT to elucidate the effects of similarly acting drugs on risky choice behavior. OBJECTIVES We hypothesized that (1) C57BL/6 mice could adopt the "safe" choice options in the IGT and (2) DAT inhibition would alter risk preference. METHODS Mice were trained in the IGT to a stable risk-preference and then administered the norepinephrine/DAT inhibitor amphetamine, or the more selective DAT inhibitors modafinil or GBR12909. RESULTS Mice developed a preference for the "safe" option, which was potentiated by amphetamine administration. GBR12909 or modafinil administration increased motor impulsivity, motivation significantly, and risk preference subtly. CONCLUSIONS The rodent IGT can measure different impulse-related behaviors and differentiate similarly acting BD-related drugs. The contrasting effects of amphetamine and modafinil in mice are similar to effects in rats and humans in corresponding IGT tasks, supporting the translational validity of the task. GBR12909 and modafinil elicited similar behaviors in the IGT, likely through a shared mechanism. Future studies using a within-session IGT are warranted to confirm the suitability of DAT inhibitors to model risk-preference in BD.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Research Service, VA San Diego Healthcare System, San Diego, CA
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Research Service, VA San Diego Healthcare System, San Diego, CA
- Correspondence: Jared W. Young, Ph.D., Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California, 92093-0804, Tel: +1 619 543 3582, Fax: +1 619 735 9205,
| |
Collapse
|
71
|
Abstract
Bipolar disorder (BD) is associated with obesity, overweight, and abdominal obesity, and BD individuals with obesity have a greater illness burden. Factors related to BD, its treatment, and the individual may all contribute to BD's association with obesity. Management strategies for the obese BD patient include use of medications with better metabolic profiles, lifestyle interventions, and adjunctive pharmacotherapy for weight loss. Obesity-related psychiatric and medical comorbidities should also be assessed and managed. Bariatric surgery may be an option for carefully selected patients. Greater research into the theoretical underpinnings and clinical management of the BD-obesity connection is needed.
Collapse
Affiliation(s)
- Susan L McElroy
- Lindner Center of HOPE, 4075 Old Western Road, Mason, OH 45040, USA.
| | | |
Collapse
|
72
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|