51
|
Kabir A, Kumar GS. Probing the interaction of spermine and 1-naphthyl acetyl spermine with DNA polynucleotides: a comparative biophysical and thermodynamic investigation. MOLECULAR BIOSYSTEMS 2014; 10:1172-83. [PMID: 24643290 DOI: 10.1039/c3mb70616h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interaction of spermine and its analogue, 1-naphthyl acetyl spermine with four double stranded DNA polynucleotides has been studied to understand the structural and thermodynamic basis of the binding. The efficacy and specificity of DNA binding of this analogue has not yet been revealed. The energetics of the interaction was studied by isothermal titration calorimetry and differential scanning calorimetry. Circular dichroism spectroscopy, UV-thermal melting and ethidium bromide displacement assay have been employed to characterize the association. Circular dichroism studies showed that 1-naphthyl acetyl spermine caused a stronger structural perturbation in the polynucleotides. Among the adenine-thymine polynucleotides the alternating polynucleotide was more preferred by naphthyl acetyl spermine compared to the preference of spermine for the homo sequence. The higher melting stabilization revealed by the optical melting and differential scanning calorimetry results suggested that the binding of 1-naphthyl acetyl spermine increased the melting temperature and the total standard molar enthalpy of the transition of adenine-thymine polynucleotides. Microcalorimetry results revealed that unlike spermine the binding of 1-naphthyl acetyl spermine was endothermic. The interaction was characterized by total enthalpy-entropy compensation and high standard molar heat capacity values. There are differences in the mode of association of 1-naphthyl acetyl spermine and spermine. 1-naphthyl acetyl spermine binds with an enhanced affinity with the adenine-thymine hetero polynucleotide. Thus, the result suggests the importance of polyamine analogues and their ability to interfere with normal polyamine interactions.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
52
|
Liu G, Fang T, Yan T, Jia G, Zhao H, Chen X, Wu C, Wang J. Systemic responses of weaned rats to spermine against oxidative stress revealed by a metabolomic strategy. RSC Adv 2014. [DOI: 10.1039/c4ra09975c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
53
|
Kabir A, Suresh Kumar G. Targeting double-stranded RNA with spermine, 1-naphthylacetyl spermine and spermidine: a comparative biophysical investigation. J Phys Chem B 2014; 118:11050-64. [PMID: 25184857 DOI: 10.1021/jp5035294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA targeting is an evolving new approach to anticancer therapeutics that requires identification of small molecules to selectively target specific RNA structures. In this report, the interaction of biogenic polyamines spermine, spermidine and the synthetic analogue 1-naphthylacetyl spermine with three double-stranded RNA polynucleotides--poly(I)·poly(C), poly(C)·poly(G), and poly(A)·poly(U)--has been described to understand the structural and thermodynamic basis of the binding and the comparative efficacy of the analogue over the natural polyamines. Circular dichroism spectroscopy, thermal melting experiments, and ethidium bromide displacement assay were used to characterize the interaction. Microcalorimetry studies were performed to deduce the energetics of the interaction and atomic force microscopy experiments done to gain insight into the interaction at the molecular level. The experiments demonstrated structural perturbations in the polynucleotides on binding of the polyamines. Thermal melting studies showed enhanced stabilization of RNA-polyamine complexes with increase in the total standard molar enthalpy of transition. The binding affinity was strongest for poly(I)·poly(C) as revealed by microcalorimetry results and varied as poly(I)·poly(C) > poly(C)·poly(G) > poly(A)·poly(U). The order of affinity for the polyamines was spermine >1-naphthylacetyl spermine > spermidine. Total enthalpy-entropy compensation and high standard molar heat capacity values characterized the interactions. The results of the study on the binding of polyamines to dsRNAs presented here have been compared to those reported earlier with dsDNAs. The present findings advance our knowledge on the mechanism of interaction of polyamines with RNA and may help in the search for analogues that can interfere with biogenic polyamine metabolism and function.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology , Kolkata 700 032, India
| | | |
Collapse
|
54
|
Dunford LJ, Sinclair KD, Kwong WY, Sturrock C, Clifford BL, Giles TC, Gardner DS. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development. FASEB J 2014; 28:4880-92. [PMID: 25077559 PMCID: PMC4216596 DOI: 10.1096/fj.14-255364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet.—Dunford, L. J., Sinclair, K. D., Kwong, W. Y., Sturrock, C., Clifford, B. L., Giles, T. C., Gardner, D. S.. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Tom C Giles
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
55
|
Pigott E, DuHadaway JB, Muller AJ, Gilmour S, Prendergast GC, Mandik-Nayak L. 1-Methyl-tryptophan synergizes with methotrexate to alleviate arthritis in a mouse model of arthritis. Autoimmunity 2014; 47:409-18. [PMID: 24798341 DOI: 10.3109/08916934.2014.914507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with no known cure. Current strategies to treat RA, including methotrexate (MTX), target the later inflammatory stage of disease. Recently, we showed that inhibiting indoleamine-2,3-dioxygenase (IDO) with 1-methyl-tryptophan (1MT) targets autoantibodies and cytokines that drive the initiation of the autoimmune response. Therefore, we hypothesized that combining 1MT with MTX would target both the initiation and chronic inflammatory phases of the autoimmune response and be an effective co-therapeutic strategy for arthritis. To test this, we used K/BxN mice, a pre-clinical model of arthritis that develops joint-specific inflammation with many characteristics of human RA. Mice were treated with 1MT, MTX, alone or in combination, and followed for arthritis, autoantibodies, and inflammatory cytokines. Both 1MT and MTX were able to partially inhibit arthritis when used individually; however, combining MTX + 1MT was significantly more effective than either treatment alone at delaying the onset and alleviating the severity of joint inflammation. We went on to show that combination of MTX + 1MT did not lower inflammatory cytokine or autoantibody levels, nor could the synergistic co-therapeutic effect be reversed by the adenosine receptor antagonist theophylline or be mimicked by inhibition of polyamine synthesis. However, supplementation with folinic acid did reverse the synergistic co-therapeutic effect, demonstrating that, in the K/BxN model, MTX synergizes with 1MT by blocking folate metabolism. These data suggest that pharmacological inhibition of IDO with 1MT is a potential candidate for use in combination with MTX to increase its efficacy in the treatment of RA.
Collapse
Affiliation(s)
- Elizabeth Pigott
- The Lankenau Institute for Medical Research , Wynnewood, PA , USA
| | | | | | | | | | | |
Collapse
|
56
|
Valdés-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front Chem 2014; 1:42. [PMID: 24790970 PMCID: PMC3982577 DOI: 10.3389/fchem.2013.00042] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
Fungi, as well as the rest of living organisms must deal with environmental challenges such as stressful stimuli. Fungi are excellent models to study the general mechanisms of the response to stress, because of their simple, but conserved, signal-transduction and metabolic pathways that are often equivalent to those present in other eukaryotic systems. A factor that has been demonstrated to be involved in these responses is polyamine metabolism, essentially of the three most common polyamines: putrescine, spermidine and spermine. The gathered evidences on this subject suggest that polyamines are able to control cellular signal transduction, as well as to modulate protein-protein interactions. In the present review, we will address the recent advances on the study of fungal metabolism of polyamines, ranging from mutant characterization to potential mechanism of action during different kinds of stress in selected fungal models.
Collapse
Affiliation(s)
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, México
| |
Collapse
|
57
|
Qi C, Zhang N, Yan J, Liu X, Bing T, Mei H, Shangguan D. Activity enhancement of G-quadruplex/hemin DNAzyme by spermine. RSC Adv 2014. [DOI: 10.1039/c3ra45429k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
58
|
Encapsulation of biogenic and synthetic polyamines by nanoparticles PEG and mPEG-anthracene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:30-9. [DOI: 10.1016/j.jphotobiol.2013.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022]
|
59
|
Lee MJ, Chen Y, Huang YP, Hsu YC, Chiang LH, Chen TY, Wang GJ. Exogenous polyamines promote osteogenic differentiation by reciprocally regulating osteogenic and adipogenic gene expression. J Cell Biochem 2013; 114:2718-28. [DOI: 10.1002/jcb.24620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/17/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Mon-Juan Lee
- Department of Bioscience Technology; Chang Jung Christian University; Tainan; Taiwan
| | | | - Yuan-Pin Huang
- Department of Cosmetics and Fashion Styling; Cheng Shiu University; Kaohsiung; Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Sciences; Chang Jung Christian University; Tainan; Taiwan
| | - Lan-Hsin Chiang
- Department of Bioscience Technology; Chang Jung Christian University; Tainan; Taiwan
| | - Tzu-Yu Chen
- Department of Bioscience Technology; Chang Jung Christian University; Tainan; Taiwan
| | | |
Collapse
|
60
|
Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol 2013; 59:830-41. [PMID: 23665184 DOI: 10.1016/j.jhep.2013.04.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Laboratory of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
61
|
Morón B, Spalinger M, Kasper S, Atrott K, Frey-Wagner I, Fried M, McCole DF, Rogler G, Scharl M. Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis. PLoS One 2013; 8:e73703. [PMID: 24040033 PMCID: PMC3767590 DOI: 10.1371/journal.pone.0073703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022] Open
Abstract
Background Spermidine is a dietary polyamine that is able to activate protein tyrosine phosphatase non-receptor type 2 (PTPN2). As PTPN2 is known to be a negative regulator of interferon-gamma (IFN-γ)-induced responses, and IFN-γ stimulation of immune cells is a critical process in the immunopathology of inflammatory bowel disease (IBD), we wished to explore the potential of spermidine for reducing pro-inflammatory effects in vitro and in vivo. Methods Human THP-1 monocytes were treated with IFN-γ and/or spermidine. Protein expression and phosphorylation were analyzed by Western blot, cytokine expression by quantitative-PCR, and cytokine secretion by ELISA. Colitis was induced in mice by dextran sodium sulfate (DSS) administration. Disease severity was assessed by recording body weight, colonoscopy and histology. Results Spermidine increased expression and activity of PTPN2 in THP-1 monocytes and reduced IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT) 1 and 3, as well as p38 mitogen-activated protein kinase (MAPK) in a PTPN2 dependent manner. Subsequently, IFN-γ-induced expression/secretion of intracellular cell adhesion molecule (ICAM)-1 mRNA, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 was reduced in spermidine-treated cells. The latter effects were absent in PTPN2-knockdown cells. In mice with DSS-induced colitis, spermidine treatment resulted in ameliorated weight loss and decreased mucosal damage indicating reduced disease severity. Conclusions Activation of PTPN2 by spermidine ameliorates IFN-γ-induced inflammatory responses in THP-1 cells. Furthermore, spermidine treatment significantly reduces disease severity in mice with DSS-induced colitis; hence, spermidine supplementation and subsequent PTPN2 activation may be helpful in the treatment of chronic intestinal inflammation such as IBD.
Collapse
Affiliation(s)
- Belén Morón
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Marianne Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Kasper
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, United States of America
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
62
|
Jin D, Wang L, Lee YI. Determination of the polyamines in human toenails as 1-(5-fluoro-2,4-dinitrophenyl)-4-methylpiperazine derivatives using high-performance liquid chromatography. Microchem J 2013. [DOI: 10.1016/j.microc.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Makletsova MG, Kulikova OI, Stvolinskii SL, Fedorova TN. The content of polyamines in the brains of 10-day-old and adult SAMP1/SAMR1 mice, which are characterized by different rates of aging. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Kabir A, Suresh Kumar G. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 2013; 8:e70510. [PMID: 23894663 PMCID: PMC3722294 DOI: 10.1371/journal.pone.0070510] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
65
|
Jung YS, Kim SJ, Kwon DY, Jun DS, Kim YC. Significance of alterations in the metabolomics of sulfur-containing amino acids during liver regeneration. Biochimie 2013; 95:1605-10. [PMID: 23669448 DOI: 10.1016/j.biochi.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
It has been known that liver regeneration is accompanied with a profound change in the metabolomics of sulfur-containing substances in liver. However, its physiological significance in the liver regenerative process is still unclear. Our previous work showed that buthioninesulfoximine and phorone, both widely used to deplete intracellular glutathione (GSH) in biological experiments, induced contrasting changes in the sulfur-containing amino acid metabolism in liver. In this study we employed these GSH-depleting agents to evaluate the role of sulfur-containing substances in the early phase of liver regeneration. Male rats treated with buthioninesulfoximine or phorone were subjected to two-thirds partial hepatectomy (PHx). At the doses used, the magnitude of GSH depletion after PHx was comparable, but buthioninesulfoximine administration inhibited the progression of liver regeneration as determined by liver weight increase, elevation of serum alanine aminotransferase activity, and cyclin D1 and proliferating cell nuclear antigen (PCNA) protein expressions, whereas liver recovery was significantly accelerated in the phorone-treated rats, suggesting that the role of GSH in this process is minimal. Hepatic concentrations of methionine, S-adenosylmethionine, cysteine, taurine and GSH were all elevated by PHx. Methionine adenosyltransferase activity was also induced in the remnant liver. Buthioninesulfoximine administration depressed the elevation of S-adenosylmethionine, but increased the catabolism of cysteine to taurine. In contrast, S-adenosylmethionine elevation was augmented whereas cysteine, hypotaurine and taurine were decreased in the phorone-treated rats. PHx elevated hepatic putrescine and spermidine, but lowered spermine concentrations. Buthioninesulfoximine administration increased putrescine further, but decreased spermidine and spermine concentrations. On the contrary, both spermidine and spermine concentrations were elevated in the rats treated with phorone. The results suggest that the availability of S-adenosylmethionine plays a critical role in the progression of liver regeneration via enhancement of polyamine synthesis. These findings raise the possibility that regulating hepatic transsulfuration reactions may be capable of modifying the recovery process after liver injury.
Collapse
Affiliation(s)
- Young S Jung
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, South Korea
| | | | | | | | | |
Collapse
|
66
|
Desforges B, Curmi PA, Bounedjah O, Nakib S, Hamon L, De Bandt JP, Pastré D. An intercellular polyamine transfer via gap junctions regulates proliferation and response to stress in epithelial cells. Mol Biol Cell 2013; 24:1529-43. [PMID: 23515223 PMCID: PMC3655814 DOI: 10.1091/mbc.e12-10-0729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polyamines are essential for mammalian cell growth and proliferation, and their synthesis in cells or transport from the extracellular environment has attracted much attention, especially in cancer research. Here it is shown for the first time that polyamines can be transferred from cell to cell via gap junctions to coordinate cell growth. In the organism, quiescent epithelial cells have the potential to resume cycling as a result of various stimuli, including wound healing or oxidative stress. Because quiescent cells have a low polyamine level, resuming their growth requires an increase of their intracellular polyamine levels via de novo polyamine synthesis or their uptake from plasma. Another alternative, explored here, is an intercellular exchange with polyamine-rich cycling cells via gap junctions. We show that polyamines promote gap junction communication between proliferating cells by promoting dynamical microtubule plus ends at the cell periphery and thus allow polyamine exchange between cells. In this way, cycling cells favor regrowth in adjacent cells deprived of polyamines. In addition, intercellular interactions mediated by polyamines can coordinate the translational response to oxidative stress through the formation of stress granules. Some putative in vivo consequences of polyamine-mediated intercellular interactions are also discussed regarding cancer invasiveness and tissue regeneration.
Collapse
Affiliation(s)
- Bénédicte Desforges
- Institut National de la Santé et de la Recherche Médicale, UMR829, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université Evry-Val d'Essonne, Evry 91025, France
| | | | | | | | | | | | | |
Collapse
|
67
|
LOMOZIK L, GASOWSKA A, BASINSKI K, BREGIER-JARZEBOWSKA R, JASTRZAB R. Potentiometric and spectral studies of complex formation in the Cu(II), 3′,5′-cyclic adenosine monophosphate, and tetramine systems. J COORD CHEM 2013. [DOI: 10.1080/00958972.2012.754019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L. LOMOZIK
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
- b Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences , Bydgoszcz , Poland
| | - A. GASOWSKA
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| | - K. BASINSKI
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| | | | - R. JASTRZAB
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| |
Collapse
|
68
|
Iacomino G, Picariello G, D'Agostino L. DNA and nuclear aggregates of polyamines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1745-55. [PMID: 22705882 DOI: 10.1016/j.bbamcr.2012.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022]
Abstract
Polyamines (PAs) are linear polycations that are involved in many biological functions. Putrescine, spermidine and spermine are highly represented in the nucleus of eukaryotic cells and have been the subject of decades of extensive research. Nevertheless, their capability to modulate the structure and functions of DNA has not been fully elucidated. We found that polyamines self-assemble with phosphate ions in the cell nucleus and generate three forms of compounds referred to as Nuclear Aggregates of Polyamines (NAPs), which interact with genomic DNA. In an in vitro setting that mimics the nuclear environment, the assembly of PAs occurs within well-defined ratios, independent of the presence of the DNA template. Strict structural and functional analogies exist between the in vitro NAPs (ivNAPs) and their cellular homologues. Atomic force microscopy showed that ivNAPs, as theoretically predicted, have a cyclic structure, and in the presence of DNA, they form a tube-like arrangement around the double helix. Features of the interaction between ivNAPs and genomic DNA provide evidence for the decisive role of "natural" NAPs in regulating important aspects of DNA physiology, such as conformation, protection and packaging, thus suggesting a new vision of the functions that PAs accomplish in the cell nucleus.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Instituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Riecerche, Avellino, Italy.
| | | | | |
Collapse
|
69
|
Kjellström J, Oredsson SM, Wennerberg J. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion. Cancer Cell Int 2012; 12:20. [PMID: 22640800 PMCID: PMC3487936 DOI: 10.1186/1475-2867-12-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) or the polyamine analogue N1,N11-diethylnorspermine (DENSPM). METHODS A human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 μM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 μM. A 96-well assay was used to determine cytotoxicity after five days after treatment. RESULTS The cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre-treatment of the cells with DFMO, and varied dependent on the concentration of DENSPM. The uptake of cisplatin was unchanged. CONCLUSIONS Taken together, these results demonstrate that combinations of polyamine synthesis inhibitors with BBR3464 appear to be a promising approach to enhance the anticancer activity against HSCC.
Collapse
Affiliation(s)
- Johan Kjellström
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital, S-221 85, Lund, Sweden.
| | | | | |
Collapse
|
70
|
Mandeville JS, Bourassa P, Thomas TJ, Tajmir-Riahi HA. Biogenic and synthetic polyamines bind cationic dendrimers. PLoS One 2012; 7:e36087. [PMID: 22558341 PMCID: PMC3338638 DOI: 10.1371/journal.pone.0036087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 11/19/2022] Open
Abstract
Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.
Collapse
Affiliation(s)
- Jean-Sebastian Mandeville
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Phillipe Bourassa
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Thekkumkattil John Thomas
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Heidar-Ali Tajmir-Riahi
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
71
|
Structural Basis of Substrate Binding Specificity Revealed by the Crystal Structures of Polyamine Receptors SpuD and SpuE from Pseudomonas aeruginosa. J Mol Biol 2012; 416:697-712. [DOI: 10.1016/j.jmb.2012.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/20/2011] [Accepted: 01/17/2012] [Indexed: 12/19/2022]
|
72
|
Roh C, Yu DK, Kim I, Jo SK. The biological response of spermidine induced by ionization radiation. Molecules 2011; 17:145-50. [PMID: 22198536 PMCID: PMC6268281 DOI: 10.3390/molecules17010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022] Open
Abstract
Globally, there are concerns over the risks associated with radiation exposure, so it is important to understand the biological effects of radiation exposure. Driven by the need to detect the presence of radiation exposure, biomarkers to monitor potential exposure after radiological accidents can be developed and would be extremely valuable for biological response. In this study, the behavior of spermidine as a biomarker was investigated in a C57BL/6 mouse model exposed to an acute whole-body sublethal dose of 6 Gy. The spermidine content values in serum increased for up to two days after 6 Gy irradiation. However, the enhanced spermidine content observed on day +3 in irradiated mice returned to normal levels on the subsequent five days. The result indicates that spermidine can be used as a biomarker of biological response to radiation exposure.
Collapse
Affiliation(s)
- Changhyun Roh
- Radiation Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea.
| | | | | | | |
Collapse
|
73
|
Sun LX, Chen LH, Lin ZB, Qin Y, Zhang JQ, Yang J, Ma J, Ye T, Li WD. Effects of Ganoderma lucidum polysaccharides on IEC-6 cell proliferation, migration and morphology of differentiation benefiting intestinal epithelium healing in vitro. J Pharm Pharmacol 2011; 63:1595-603. [PMID: 22060291 DOI: 10.1111/j.2042-7158.2011.01367.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Restoration of epithelial continuity in the intestinal surface after extensive destruction is important since intestinal epithelial cells stand as a boundary between the body's internal and external environment. Polysaccharides from Ganoderma lucidum (Gl-PS) may benefit intestinal epithelial wound healing in different aspects, which awaits clarification. To identify potential effects, a non-transformed small-intestinal epithelial cell line, IEC-6 cells, was used. METHODS Effects on epithelial cell proliferation, migration, morphology of differentiation and transforming growth factor beta (TGF-β) protein expression, as well as the cellular ornithine decarboxylase (ODC) mRNA and c-Myc mRNA expression, were assessed, respectively, by MTT assay, wound model in vitro, observation under a microscope after hematoxylin and eosin staining, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction assays. KEY FINDINGS It was shown that Gl-PS stimulated IEC-6 cell proliferation and migration significantly in a dose-dependent manner; 10 µg/ml Gl-PS improved the morphology of differentiation in IEC-6 cells. Inefficacy in expression of TGF-β in IEC-6 cells indicated a possible TGF-β independent action of Gl-PS. However, Gl-PS increased ODC mRNA and c-Myc mRNA expression in a dose-dependent manner, indicating, at least partially possible involvement of ODC and c-Myc gene expression in improvement of intestinal wound healing. CONCLUSIONS These results suggest the potential usefulness of Gl-PS to cure intestinal disorders characterized by injury and ineffective repair of the intestinal mucosa.
Collapse
Affiliation(s)
- Li-Xin Sun
- Department of Pharmacology, Basic Medical School, Peking University Health Science Center, Beijing Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Modification of secondary head-forming activity of microinjected ∆β-catenin mRNA by co-injected spermine and spermidine in Xenopus early embryos. Amino Acids 2011; 42:791-801. [DOI: 10.1007/s00726-011-0996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/26/2011] [Indexed: 11/25/2022]
|
75
|
Ishii I, Ikeguchi Y, Mano H, Wada M, Pegg AE, Shirahata A. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino Acids 2011; 42:619-26. [PMID: 21809076 PMCID: PMC3266501 DOI: 10.1007/s00726-011-1037-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/26/2011] [Indexed: 11/28/2022]
Abstract
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.
Collapse
Affiliation(s)
- Ikumi Ishii
- Laboratory of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Evidences for a role of protein cross-links in transglutaminase-related disease. Amino Acids 2011; 42:975-86. [DOI: 10.1007/s00726-011-1011-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023]
|
77
|
Williams M, Sprenger J, Human E, Al-Karadaghi S, Persson L, Louw AI, Birkholtz LM. Biochemical characterisation and novel classification of monofunctional S-adenosylmethionine decarboxylase of Plasmodium falciparum. Mol Biochem Parasitol 2011; 180:17-26. [PMID: 21803076 DOI: 10.1016/j.molbiopara.2011.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Plasmodium falciparum like other organisms is dependent on polyamines for proliferation. Polyamine biosynthesis in these parasites is regulated by a unique bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase (PfAdoMetDC/ODC). Only limited biochemical and structural information is available on the bifunctional enzyme due to the low levels and impurity of an instable recombinantly expressed protein from the native gene. Here we describe the high level expression of stable monofunctional PfAdoMetDC from a codon-harmonised construct, which permitted its biochemical characterisation indicating similar catalytic properties to AdoMetDCs of orthologous parasites. In the absence of structural data, far-UV CD showed that at least on secondary structure level, PfAdoMetDC corresponds well to that of the human protein. The kinetic properties of the monofunctional enzyme were also found to be different from that of PfAdoMetDC/ODC as mainly evidenced by an increased K(m). We deduced that complex formation of PfAdoMetDC and PfODC could enable coordinated modulation of the decarboxylase activities since there is a convergence of their k(cat) and lowering of their K(m). Such coordination results in the aligned production of decarboxylated AdoMet and putrescine for the subsequent synthesis of spermidine. Furthermore, based on the results obtained in this study we propose a new AdoMetDC subclass for plasmodial AdoMetDCs.
Collapse
Affiliation(s)
- Marni Williams
- Department of Biochemistry, University of Pretoria, Hatfield, South Africa
| | | | | | | | | | | | | |
Collapse
|
78
|
The potential of metabolomic approaches for investigating mode(s) of action of xenobiotics: Case study with carbon tetrachloride. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 722:147-53. [DOI: 10.1016/j.mrgentox.2010.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/20/2010] [Indexed: 11/17/2022]
|
79
|
Metabolomic analysis of sulfur-containing substances and polyamines in regenerating rat liver. Amino Acids 2011; 42:2095-102. [PMID: 21626405 DOI: 10.1007/s00726-011-0946-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2011] [Indexed: 01/20/2023]
Abstract
We studied the significance of alterations in the metabolomics of sulfur-containing substances in rapidly regenerating rat livers. Male rats were subjected to two-thirds partial hepatectomy (PHx), and the changes in hepatic levels of major sulfur-containing amino acids and related substances were monitored for 2 weeks. Liver weight began to increase from 24 h after the surgery, and appeared to recover fully in 2 weeks. Serum alanine aminotransferase and aspartate aminotransferase activities were elevated immediately after the surgery and returned slowly to normal levels in 2 weeks. Methionine, S-adenosylmethionine (SAM), cystathionine and cysteine were increased rapidly and remained elevated for longer than 1 week. Hepatic glutathione concentration was increased gradually for 24 h, and then decreased thereafter, whereas hypotaurine was elevated drastically right after the surgery. Hepatic concentrations of polyamines were altered significantly by PHx. In the hepatectomized livers putrescine concentration was elevated rapidly, reaching a level 40- to 50-fold greater than normal in 6-12 h. Ornithine, the metabolic substrate for putrescine synthesis, was also elevated markedly. Spermidine was increased significantly, whereas spermine was depressed below normal, which appeared to be due to the increased consumption of decarboxylated SAM for spermidine biosynthesis. The results show that the metabolomics of sulfur-containing amino acids and related substances is altered profoundly in regenerating rat livers until the original weight is recovered. Hepatic concentrations of polyamines after PHx are closely associated with the alteration in the metabolomics of sulfur-containing substances. The implication of these changes in the progression of liver regeneration is discussed.
Collapse
|
80
|
Madrigal Pulido J, Padilla Guerrero I, Magaña Martínez IDJ, Cacho Valadez B, Torres Guzman JC, Salazar Solis E, Felix Gutierrez Corona J, Schrank A, Jiménez Bremont F, González Hernandez A. Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiol Res 2011; 166:494-507. [PMID: 21236653 DOI: 10.1016/j.micres.2010.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 09/29/2010] [Accepted: 10/02/2010] [Indexed: 11/30/2022]
Abstract
The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37°C. The apparent K(m) for ornithine at a pyridoxal phosphate concentration of 20mM was 22 μM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.
Collapse
|
81
|
Fu Y, Wang X, Zhang J, Xiao Y, Li W, Wang J. Orderly microaggregates of G-/C-rich oligonucleotides associated with spermine. Biomacromolecules 2011; 12:747-56. [PMID: 21235226 DOI: 10.1021/bm101372h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spermine-induced orderly assembling properties of G-/C-rich oligonucleotides are investigated in dilute and crowding conditions. The first time we report that the parallel G-quadruplexes is preferential to condense into anisotropic microaggregates in the presence of spermine, whereas the hybrid-type and the antiparallel G-quadruplexes have no significant interactions with spermine; and spermine can induce the condensation of i-motif C-rich oligonucleotides other than the random coiled C-rich strands. Moreover, the condensation of C-rich oligonucleotides can be reversibly regulated by pH and temperature. G-/C-rich oligonucleotides exhibit the cholesteric liquid crystalline phase at low strand concentration in the presence of spermine under crowding conditions. The results illuminate that the parallel G-quadruplex and i-motifs are probably necessity conformations for G-/C-rich oligonucleotides that involved in the regulation of chromosome organization in living cells.
Collapse
Affiliation(s)
- Yan Fu
- Key Laboratory for Green Chemical Technology MOE, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
82
|
Bando K, Kunimatsu T, Sakai J, Kimura J, Funabashi H, Seki T, Bamba T, Fukusaki E. GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. J Appl Toxicol 2010; 31:524-35. [DOI: 10.1002/jat.1591] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 11/11/2022]
|
83
|
Hassan MI, Mabrouk GM, Shehata HH, Aboelhussein MM. Antineoplastic effects of bee honey and Nigella sativa on hepatocellular carcinoma cells. Integr Cancer Ther 2010; 11:354-63. [PMID: 21147814 DOI: 10.1177/1534735410387422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To evaluate in vitro antitumor effects of bee honey (BH) and Nigella sativa (NS) on HepG2 through their antioxidant and apoptotic activities. METHODS HepG2 cell line was treated with different concentrations of diluted unfractionated BH and different concentrations of alcohol extract of NS. Exposure lasted for different time durations (6-72 hours), both dose-response and time course-response were conducted. Cell viability was tested by trypan blue exclusion test. Total antioxidant status and caspase-3 activity were estimated in the cell lysate. Nitric oxide levels were measured in culture supernatants of both treated and untreated HepG2 at all indicated times. RESULTS Treatment of HepG2 cells with BH and NS leads to a significant decrease in both the number of viable HepG2 cells and the levels of nitric oxide on one hand, but improvement of the total antioxidant status and caspase-3 activity on the other, especially in HepG2 cells treated with higher doses of BH and NS (20% and 5000 μg/mL, respectively) and for longer duration (72 hours). CONCLUSIONS BH and NS are effective in reducing the viability of HepG2 cells, improving their antioxidant status and inducing their apoptotic death.
Collapse
|
84
|
Similar antineoplastic effects of nimesulide, a selective COX-2 inhibitor, and prostaglandin E1 on B16-F10 murine melanoma cells. Melanoma Res 2010; 20:273-9. [PMID: 20404772 DOI: 10.1097/cmr.0b013e328339d8ac] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is now increasing evidence that a constitutive expression of cyclooxygenase 2 (COX-2) plays a role in the development and progression of malignant ectodermal tumours. In this study, we investigated whether the selective inhibition of COX-2 would be beneficial in melanoma treatment. Nimesulide, a selective inhibitor of COX-2 that causes the breakdown of proinflammatory 2-series prostaglandins (PG2), adversely affected the growth of B16-F10 melanoma cells through the induction of differentiation. The intracellular levels of polyamine, as a proliferation marker, were reduced by the treatment; at the same time, transglutaminase activation and increase in melanin content, as differentiation indicators, were observed. The potential antimetastatic activity of the drug was further shown by means of the Boyden invasion assay and gelatin zymography for metalloproteinase activity. Comparable results were obtained after the treatment of cells with one of the 1-series PGs (PGE1). Therefore, our hypothesis is that the antineoplastic activity observed for nimesulide may be ascribed to intracellular changes in alterations in PG levels.
Collapse
|
85
|
Krajewska E, Lewis C, Staton C, MacGowan A, MacNeil S. New insights into induction of early-stage neovascularization in an improved tissue-engineered model of psoriasis. J Tissue Eng Regen Med 2010; 5:363-74. [DOI: 10.1002/term.322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 04/16/2010] [Indexed: 11/09/2022]
|
86
|
Feirer RP, Mignon G, Litvay JD. Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 2010; 223:1433-5. [PMID: 17746056 DOI: 10.1126/science.223.4643.1433] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Embryogenic cultures of Daucus carota treated with 1 millimolar alpha-difluoromethylarginine, a specific inhibitor of arginine decarboxylase, exhibited nearly a 50 percent reduction in embryo formation compared with controls. Putrescine and spermidine concentrations in the treated cells were greatly reduced. Addition of putrescine, spermidine, or spermine to the culture medium restored embryogenesis in the treated cultures. Embryogenesis was not significantly affected by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase. These results suggest that polyamines have a major function in plant embryo development and that the wild carrot synthesizes polyamines through the biosynthetic pathway involving arginine decarboxylase rather than ornithine decarboxylase.
Collapse
|
87
|
Flores HE, Galston AW. Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 2010; 217:1259-61. [PMID: 17837648 DOI: 10.1126/science.217.4566.1259] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.
Collapse
|
88
|
Lentini A, Tabolacci C, Provenzano B, Rossi S, Beninati S. Phytochemicals and protein-polyamine conjugates by transglutaminase as chemopreventive and chemotherapeutic tools in cancer. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:627-633. [PMID: 20227887 DOI: 10.1016/j.plaphy.2010.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 05/28/2023]
Abstract
Identifying novel chemopreventive and chemotherapeutic agents and targeting them to patients at high risk of developing cancer or following curative treatment may go some way towards improving prognosis. This review examines current knowledge regarding the chemopreventive and chemotherapeutic potential of phytochemicals in cancer. Both in vitro and animal studies demonstrate that several phytochemicals increase the activity of intracellular transglutaminases, a family of enzymes involved in cell differentiation, through the covalent conjugation of polyamine to cellular protein, with promising anti-neoplastic properties. The substantial data available on certain plant secondary metabolites makes a strong case for integrating these safe and well-tolerated agents into clinical practice.
Collapse
Affiliation(s)
- Alessandro Lentini
- Department of Biology, University "Tor Vergata" Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
89
|
Bjelaković G, Stojanović I, Jevtović Stoimenov T, Pavlović D, Kocić G, Rossi S, Tabolacci C, Nikolić J, Sokolović D, Bjelakovic L. Metabolic correlations of glucocorticoids and polyamines in inflammation and apoptosis. Amino Acids 2010; 39:29-43. [PMID: 20169375 DOI: 10.1007/s00726-010-0489-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 01/16/2010] [Indexed: 01/28/2023]
Abstract
Glucocorticoid hormones (GC) are essential in all aspects of human health and disease. Their anti-inflammatory and immunosuppressive properties are reasons for therapeutic application in several diseases. GC suppress immune activation and uncontrolled overproduction and release of cytokines. GC inhibit the release of pro-inflammatory cytokines and stimulate the production of anti-inflammatory cytokines. Investigation of GC's mechanism of action, suggested that polyamines (PA) may act as mediators or messengers of their effects. Beside glucocorticoids, spermine (Spm) is one of endogenous inhibitors of cytokine production. There are many similarities in the metabolic actions of GC and PA. The major mechanism of GC effects involves the regulation of gene expression. PA are essential for maintaining higher order organization of chromatin in vivo. Spermidine and Spm stabilize chromatin and nuclear enzymes, due to their ability to form complexes with negatively charged groups on DNA, RNA and proteins. Also, there is an increasing body of evidence that GC and PA change the chromatin structure especially through acetylation and deacetylation of histones. GC display potent immunomodulatory activities, including the ability to induce T and B lymphocyte apoptosis, mediated via production of reactive oxygen species (ROS) in the mitochondrial pathway. The by-products of PA catabolic pathways (hydrogen peroxide, amino aldehydes, acrolein) produce ROS, well-known cytotoxic agents involved in programmed cell death (PCD) or apoptosis. This review is an attempt in the better understanding of relation between GC and PA, naturally occurring compounds of all eukaryotic cells, anti-inflammatory and apoptotic agents in physiological and pathological conditions connected to oxidative stress or PCD.
Collapse
Affiliation(s)
- G Bjelaković
- Faculty of Medicine, Institute of Biochemistry, University of Nis, Nis, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Mattila E, Marttila H, Sahlberg N, Kohonen P, Tähtinen S, Halonen P, Perälä M, Ivaska J. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase. BMC Cancer 2010; 10:7. [PMID: 20055993 PMCID: PMC2820462 DOI: 10.1186/1471-2407-10-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023] Open
Abstract
Background T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. Methods We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. Results From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. Conclusions In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening to identify small molecule PTP activators that could function as RTK antagonists in cells.
Collapse
Affiliation(s)
- Elina Mattila
- VTT Technical Research Centre of Finland, Medical Biotechnology, Itainen Pitkakatu 4B, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Ashokkumar P, Sudhandiran G. Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/ β-catenin pathway. Invest New Drugs 2009; 29:273-84. [PMID: 20013030 DOI: 10.1007/s10637-009-9359-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 11/11/2009] [Indexed: 01/30/2023]
Abstract
The protective role of Luteolin (LUT) against Azoxymethane (AOM)-induced mouse colon carcinogenesis has been documented earlier. The aim of this study is to investigate on the mechanism of chemopreventive action exhibited by LUT employing AOM-induced colon carcinogenesis in mice as an experimental model. LUT inhibited AOM-induced colon tumorigenesis by decreasing tumor incidence and size. LUT reduced the cell proliferation by decreasing the number of Argyrophillic nucleolar organizer region (AgNOR)/nucleus and Proliferating Cell Nuclear Antigen (PCNA) index. It was known that β-catenin is a key effector in Wingless and Int (Wnt) signaling pathway and 90% of colon tumors arise from mutations in this pathway. In this study, we show evidence that LUT inhibited colon carcinogenesis by decreasing AOM-induced cell proliferation through the involvement of β-catenin, Glycogen synthase kinase (GSK)-3β and cyclin D1, the key components in Wnt signaling pathway. In conclusion, the protective effect of LUT could be attributed to inhibition of AOM-induced cellular proliferation probably through the involvement of β-catenin, GSK-3β and cyclin D1.
Collapse
Affiliation(s)
- Pandurangan Ashokkumar
- Department of Biochemistry, University of Madras, Guindy campus, Chennai, Tamil Nadu, India
| | | |
Collapse
|
92
|
Abrighach H, Fajardo I, Sánchez-Jiménez F, Urdiales JL. Exploring polyamine regulation by nascent histamine in a human-transfected cell model. Amino Acids 2009; 38:561-73. [PMID: 19997758 DOI: 10.1007/s00726-009-0417-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/14/2009] [Indexed: 01/04/2023]
Abstract
There are multiple lines of evidence suggesting interplay between histamine and polyamines in several mammalian cell types. However, the complex metabolic context makes it difficult to elucidate the mechanisms involved. Histamine's effects can be elicited after its binding to any of the four subtypes of G-protein coupled histamine membrane receptors. In addition, intracellular histamine can also interfere with polyamine metabolism, since there are several metabolic connections between the synthesis and degradation pathways of both types of amines. In order to dissect the metabolic effects of intracellular histamine on polyamine metabolism, we chose a well-known cell culture line, i.e., the human embryonic kidney 293 cells (HEK-293 cells). Initially, we show that HEK-293 cells lack a polyamine metabolic response to extracellular histamine, even over a wide range of histamine concentrations. HEK-293 cells were transfected with active and inactive versions of human histidine decarboxylase, and changes in many of the overlapping metabolic factors and limiting steps were tested. Overall, the results indicate a regulatory effect of histamine on the post-transcriptional expression of ornithine decarboxylase and suggest that this effect is primarily responsible for the decrease in polyamine synthesis and partial blockade of cell-cycle progression, which should affect cell proliferation rate.
Collapse
Affiliation(s)
- H Abrighach
- Procel Lab, Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, 29071, Málaga, Spain
| | | | | | | |
Collapse
|
93
|
Abstract
The polyamines, spermidine and spermine, were first discovered in 1678 by Antonie van Leeuwenhoek. In the early part of the 20th century their structure was determined and their pathway of biosynthesis established. The polyamines are essential elements of cells from all species. They are required for optimum cell growth, and cells where polyamine production has been prevented by mutation, or blocked by inhibitors, require exogenous provision of at least one polyamine for continued survival. Despite this critical function, the polyamines have not attracted as much attention as they deserve in the wider field of biochemistry and cell biology. They are rarely mentioned in standard textbooks, despite over 75000 research papers having been written on the subject since 1900, and more than half (54%) were published after 1990. There have been a number of books dedicated to the polyamines published and "The Guide to the Polyamines" by Seymour Cohen deserves mention as a work of outstanding scholarship describing "everything you ever wanted to know about the polyamines" in exquisite detail. The current volume of Essays in Biochemistry has a much humbler aim: to introduce the polyamines to interested researchers and students, and to describe how they are associated with, and might be utilized as a target for intervention in major diseases such as cancer.
Collapse
|
94
|
Abstract
Cell-cycle progression is a one-way journey where the cell grows in size to be able to divide into two equally sized daughter cells. The cell cycle is divided into distinct consecutive phases defined as G(1) (first gap), S (synthesis), G(2) (second gap) and M (mitosis). A non-proliferating cell, which has retained the ability to enter the cell cycle when it receives appropriate signals, is in G(0) phase, and cycling cells that do not receive proper signals leave the cell cycle from G(1) into G(0). One of the major events of the cell cycle is the duplication of DNA during S-phase. A group of molecules that are important for proper cell-cycle progression is the polyamines. Polyamine biosynthesis occurs cyclically during the cell cycle with peaks in activity in conjunction with the G(1)/S transition and at the end of S-phase and during G(2)-phase. The negative regulator of polyamine biosynthesis, antizyme, shows an inverse activity compared with the polyamine biosynthetic activity. The levels of the polyamines, putrescine, spermidine and spermine, double during the cell cycle and show a certain degree of cyclic variation in accordance with the biosynthetic activity. When cells in G(0)/G(1) -phase are seeded in the presence of compounds that prevent the cell-cycle-related increases in the polyamine pools, the S-phase of the first cell cycle is prolonged, whereas the other phases are initially unaffected. The results point to an important role for polyamines with regard to the ability of the cell to attain optimal rates of DNA replication.
Collapse
|
95
|
Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O, Liebau E, Lüersen K. Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 2009; 24:206-17. [PMID: 19762559 DOI: 10.1096/fj.09-135889] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physiological polyamines are required in various biological processes. In the current study, we used norspermidine, a structural analog of the natural polyamine spermidine, to investigate polyamine uptake in the model organism Caenorhabditis elegans. Norspermidine was found to have two remarkable effects: it is toxic for the nematode, without affecting its food, Escherichia coli; and it hampers RNA interference. By characterizing a norspermidine-resistant C. elegans mutant strain that has been isolated in a genetic screen, we demonstrate that both effects, as well as the uptake of a fluorescent polyamine-conjugate, depend on the transporter protein CATP-5, a novel P(5B)-type ATPase. To our knowledge, CATP-5 represents the first P(5)-type ATPase that is associated with the plasma membrane, being expressed in the apical membrane of intestinal cells and the excretory cell. Moreover, genetic interaction studies using C. elegans polyamine synthesis mutants indicate that CATP-5 has a function redundant to polyamine synthesis and link reduced polyamine levels to retarded postembryonic development, reduced brood size, shortened life span, and small body size. We suggest that CATP-5 represents a crucial component of the pharmacologically important polyamine transport system, the molecular nature of which has not been identified so far in metazoa.
Collapse
Affiliation(s)
- Alexander Heinick
- Institute for Animal Physiology, Westfalian Wilhelms University, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
96
|
The polyamine analog PG11047 potentiates the antitumor activity of cisplatin and bevacizumab in preclinical models of lung and prostate cancer. Cancer Chemother Pharmacol 2009; 65:191-5. [DOI: 10.1007/s00280-009-1105-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
97
|
Abstract
Colorectal cancer chemoprevention, or chemoprophylaxis, is a drug-based approach to prevent colorectal cancer. Preventing colorectal adenomas with currently available agents demonstrates the promise of pharmacologic strategies directed at critical regulatory pathways. However, agent toxicity, lesion breakthrough and competing efficacy from endoscopy procedures challenge population-based implementation. This article reviews the role of colorectal cancer chemoprevention in the context of existing screening and surveillance guidelines and practice. Emphasis is placed on the role of the colorectal adenoma as a cancer precursor and its surrogacy in assessing individual risk and for evaluating chemoprevention efficacy. We discuss the importance of risk stratification for identifying subjects at moderate-to-high risk for colorectal cancer who are most likely to benefit from chemoprevention at an acceptable level of risk.
Collapse
Affiliation(s)
- Patricia A Thompson
- The University of Arizona, Gastrointestinal Cancer Program, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Eugene W Gerner
- Cancer Prevention Pharmaceuticals, PO Box 36285, Tucson, AZ 85740, USA and The University of Arizona, Gastrointestinal Cancer Program, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA, Tel.: +1 520 626 2197, Fax: +1 520 626 4480,
| |
Collapse
|
98
|
Entamoeba histolytica, heterologous expression and in situ immunolocalization of ornithine decarboxylase (EhODC). Exp Parasitol 2009; 123:99-104. [PMID: 19520076 DOI: 10.1016/j.exppara.2009.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 11/20/2022]
Abstract
Previous studies from this laboratory have dealt with the purification and biochemical characterization of ornithine decarboxylase (ODC) from Entamoeba histolytica. Enzyme compartmentalization has been described as a major mechanism in the regulation of polyamine metabolism. However, the subcellular location of ODC in the human parasite has remained unresolved. To examine this issue, we cloned the full-length gene (Ehodc) encoding for the parasite enzyme, whose open reading frame encodes for a peptide of 412 amino acids with an estimated molecular mass of 46kDa that exhibits similarity to other ODCs. Heterologous overexpression of the gene allowed us to purify the recombinant protein (rEhODC) by metal affinity chromatography. The purified polypeptide was used to raise heteroclonal antibodies that were utilized to localize the enzyme in situ by immunofluorescence and confocal microscopy. EhODC was observed to be associated with the plasma membrane, in vesicles close to the plasma membrane and in the EhkOs organelle.
Collapse
|
99
|
Abstract
Polyamines (putrescine, spermidine and spermine), secreted by the prostate gland, occur in high concentrations in the seminal fluid of many species, including man and rat. The physiological significance of seminal polyamines is still obscure, however. It has been postulated that polyamines may serve as amine donor substrates for transglutaminases (TGases), enzymes catalyzing protein crosslinking by the formation of gamma-glutamyl-lysine or bis(gamma-glutamyl)polyamine cross-bridges. We have analyzed TGase-activities and polyamine content of the various rat prostate lobes and rat seminal vesicles. Highest TGase activities were observed in the coagulating gland (anterior prostate) and the dorsolateral prostate, whereas very little TGase activity was present in the ventral prostate gland. In contrast, polyamine concentrations were highest in the ventral prostate but low in coagulating glands. Seminal vesicles, and in particular seminal vesicle secretions, contained low polyamine levels and intermediate TGase activity. Levels of protein-bound polyamines, not extractable by perchlorid acid, did not correlate with TGase-activities in ventral prostate and coagulating glands, suggesting an extracellular rather than intracellular function of prostatic TGase and polyamines. The observation that Km-values of rat prostate TGase for all three polyamines (57-120 microM, using N,N-dimethylated casein as protein substrate) were well below seminal polyamine concentrations is compatible with a regulatory role of polyamines in the process of seminal clot formation.
Collapse
Affiliation(s)
- J C Romijn
- Erasmus University, Dept. of Urology, Rotterdam/The Netherlands
| |
Collapse
|
100
|
Randazzo RAS, Bucki R, Janmey PA, Diamond SL. A series of cationic sterol lipids with gene transfer and bactericidal activity. Bioorg Med Chem 2009; 17:3257-65. [PMID: 19364656 DOI: 10.1016/j.bmc.2009.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022]
Abstract
A family of cationic lipids was synthesized via direct amide coupling of spermine to the C-24 position of cholic acid analogs. Four monosubstituted spermines and a bis-substituted spermine were evaluated as plasmid transfection reagents, as bacteriostatic agents, and as bactericidal agents. The incorporation of a double bond in the sterol moiety enhanced transfection efficiency significantly and produced two compounds with little cytotoxicity and transfection potency comparable to Lipofectamine2000. Inclusion of the double bond had no effect on the general trend of increasing bactericidal activity with increasing sterol hydrophobicity. Co-formulation of the most hydrophilic of the compounds with its bis-substituted analogue led to enhancement in transfection activity. The bis-substituted compound, when tested alone, emerged as the most bacteriostatic compound in the family with minimum inhibitory concentrations (MIC) of 4 microM against Bacillus subtilis and 16 microM against Escherichia coli and therapeutic indexes (minimum hemolytic concentration/minimum inhibitory concentration) of 61 and 15, respectively. Cationic lipids can be optimized for both gene delivery and antibacterial applications by similar modifications.
Collapse
Affiliation(s)
- R A S Randazzo
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, 1024 Vagelos Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|