51
|
Regulation of sodium pump endocytosis by cardiotonic steroids: Molecular mechanisms and physiological implications. ACTA ACUST UNITED AC 2007; 14:171-81. [PMID: 17961998 DOI: 10.1016/j.pathophys.2007.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have previously shown that ouabain and other cardiotonic steroids interact with the plasmalemmal Na/K-ATPase and cause a time and dose dependent endocytosis of the Na/K-ATPase. This endocytosis is demonstrable using fluorescence imaging as well as conventional biochemical and biophysical cell separation methods. In proximal tubule cells, this process appears to regulate the density of basolateral Na/K-ATPase expression directly as well as indirectly modulate transepithelial sodium transport. Work with genetic manipulations, as well as pharmacological agents with cell culture models, have demonstrated that the cardiotonic steroid stimulated endocytosis of the plasmalemmal Na/K-ATPase requires caveolin and clathrin as well as the activation of c-Src, transactivation of the EGFR and activation of PI3K. Interestingly c-Src, EGFR and ERK1/2 all appear to be endocytosed along with the plasmalemmal Na/K-ATPase. These observations suggest a close analogy between a subset of plasmalemmal Na/K-ATPase and signaling companions with conventional receptor tyrosine kinases. While further studies are necessary to delineate the role of this endocytosis in the generation as well as the limit of signal transduction through the Na/K-ATPase signal cascade, we propose that it has an important role in the regulation of renal sodium handling as well as other important processes.
Collapse
|
52
|
Kulikov A, Eva A, Kirch U, Boldyrev A, Scheiner-Bobis G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1691-702. [PMID: 17524349 DOI: 10.1016/j.bbamem.2007.04.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Cardiotonic steroids (CTS) like ouabain are not only specific inhibitors of the sodium pump (Na(+),K(+)-ATPase), they also can influence various cytosolic signaling events in a hormone-like manner. In the neuroblastoma cell line SH-SY5Y ouabain triggers multiple signaling pathways. Within 30 min of incubation with 1 or 10 microM ouabain, SH-SY5Y cells generate reactive oxygen species to a level approximately 50% above control and show a modest but significant elevation in cytosolic [Ca(2+)] of about 25%. After 6 h of exposure, ouabain stimulates a series of anti-apoptotic actions in SH-SY5Y cells, including concentration-dependent phosphorylation of Erk1/2, Akt, and Bad. Nevertheless, at the same time this CTS also induces a series of events that inhibit retinoic acid-induced neuritogenesis and promote cell death. Both of these latter phenomena are possibly associated with the observed ouabain-induced reduction in the abundance of the anti-apoptotic proteins Bcl-XL and Bcl-2. In addition, ouabain treatment results in cytochrome c release into the cytosol and induces activation of caspase 3, events that point towards the stimulation of apoptotic pathways that are probably enhanced by the stimulation of p53 phosphorylation at Ser15 also observed in this study. These pathways may eventually lead to cell death: treatment with 10 nM ouabain results in a 20% decrease in cell number after 4 days of incubation and treatment with 1 microM ouabain decreases cells number by about 75%. The results obtained here emphasize the importance of further research in order to elucidate the various signalling cascades triggered by ouabain and possibly other CTS that are used in the treatment of heart failure and to identify their primary receptor(s).
Collapse
Affiliation(s)
- Andrey Kulikov
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Frankfurter Str. 100, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
53
|
Haloui M, Taurin S, Akimova OA, Guo DF, Tremblay J, Dulin NO, Hamet P, Orlov SN. [Na]i -induced c-Fos expression is not mediated by activation of the 5' -promoter containing known transcriptional elements. FEBS J 2007; 274:3557-3567. [PMID: 17565602 DOI: 10.1111/j.1742-4658.2007.05885.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vascular smooth muscle cells and several other cell types, inhibition of Na(+)/K(+)-ATPase leads to the expression of early response genes, including c-Fos. We designed this study to examine whether or not a putative Na(+) (i)/K(+) (i)-sensitive element is located within the c-Fos 5'-UTR from - 650 to + 103 containing all known response elements activated by 'classic' stimuli, such as growth factors and Ca(2+) (i)-raising compounds. In HeLa cells, the highest increment of c-Fos mRNA content was noted after 6 h of Na(+)/K(+)-ATPase inhibition with ouabain that was abolished by actinomycin D, an inhibitor of RNA synthesis. c-Fos protein accumulation in ouabain-treated cells correlated with a gain of Na(+) (i) and loss of K(+) (i). Augmented c-Fos expression was also observed under inhibition of Na(+)/K(+)-ATPase in K(+)-free medium and in the presence of the Na(+) ionophore monensin. The effect of ouabain on c-Fos expression was sharply attenuated under dissipation of the transmembrane Na(+) gradient, but was preserved in the presence of Ca(2+) chelators and the extracellular regulated kinase inhibitor PD98059, thus indicating an Na(+) (i)-mediated, Ca(2+) (i)- and extracellular regulated kinase-independent mechanism of gene expression. In contrast to massive c-Fos expression, we failed to detect any effect of ouabain on accumulation of luciferase driven by the c-Fos 5'-UTR. Negative results were also obtained in ouabain-treated vascular smooth muscle cells and C11 Madin-Darby canine kidney cells possessing augmented c-Fos expression. Our results reveal that Na(+) (i)-induced c-Fos expression is not mediated by the 5'-UTR containing transcriptional elements activated by growth factors and other 'classic stimuli'.
Collapse
Affiliation(s)
- Mounsif Haloui
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sebastien Taurin
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Olga A Akimova
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Deng-Fu Guo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Johanne Tremblay
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nickolai O Dulin
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Pavel Hamet
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sergei N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM) - Technopôle ANGUS, Montreal, PQ, Canada Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
54
|
Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007; 293:C509-36. [PMID: 17494630 DOI: 10.1152/ajpcell.00098.2007] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiotonic steroids (CTS), long used to treat heart failure, are endogenously produced in mammals. Among them are the hydrophilic cardenolide ouabain and the more hydrophobic cardenolide digoxin, as well as the bufadienolides marinobufagenin and telecinobufagin. The physiological effects of endogenous ouabain on blood pressure and cardiac activity are consistent with the "Na(+)-lag" hypothesis. This hypothesis assumes that, in cardiac and arterial myocytes, a CTS-induced local increase of Na(+) concentration due to inhibition of Na(+)/K(+)-ATPase leads to an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) via a backward-running Na(+)/Ca(2+) exchanger. The increase in [Ca(2+)](i) then activates muscle contraction. The Na(+)-lag hypothesis may best explain short-term and inotropic actions of CTS. Yet all data on the CTS-induced alteration of gene expression are consistent with another hypothesis, based on the Na(+)/K(+)-ATPase "signalosome," that describes the interaction of cardiac glycosides with the Na(+) pump as machinery activating various signaling pathways via intramembrane and cytosolic protein-protein interactions. These pathways, which may be activated simultaneously or selectively, elevate [Ca(2+)](i), activate Src and the ERK1/2 kinase pathways, and activate phosphoinositide 3-kinase and protein kinase B (Akt), NF-kappaB, and reactive oxygen species. A recent development indicates that new pharmaceuticals with antihypertensive and anticancer activities may be found among CTS and their derivatives: the antihypertensive rostafuroxin suppresses Na(+) resorption and the Src-epidermal growth factor receptor-ERK pathway in kidney tubule cells. It may be the parent compound of a new principle of antihypertensive therapy. Bufalin and oleandrin or the cardenolide analog UNBS-1450 block tumor cell proliferation and induce apoptosis at low concentrations in tumors with constitutive activation of NF-kappaB.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Frankfurter Str 100, Giessen, Germany.
| | | |
Collapse
|
55
|
Valente RC, Capella LS, Nascimento CR, Lopes AG, Capella MAM. Modulation of multidrug resistance protein (MRP1/ABCC1) expression: a novel physiological role for ouabain. Cell Biol Toxicol 2007; 23:421-7. [PMID: 17453352 DOI: 10.1007/s10565-007-9004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/12/2007] [Indexed: 12/12/2022]
Abstract
Besides being a (Na(+),K(+))-ATPase inhibitor, high doses of the hormone ouabain have also been reported to modulate both the expression and activity of proteins belonging to the ATP binding cassette family of transporters, such as ABCC7 (CFTR), ABCB1 (P-glycoprotein), and ABCC1 (MRP1). Although these proteins are present in the kidney, only ABCB1 has a putative physiological role in this organ, secreting endobiotics and xenobiotics. In the present work, we studied the relationship between ouabain and ABCC1 expression and function, aiming to establish a physiological role for ouabain. It was observed that prolonged (24 h) but not short (30 min) incubation with 1 nmol/L or higher ouabain concentrations decreased the expression of ABCC1 protein and induced its mRNA expression. This decrease was rapidly reversible, reaching control levels after incubation of cells in ouabain-free medium for 3 h, denoting a hormonal action. Moreover, concentrations equal or higher than 100 nmol/L ouabain also induced impairment of ABCC1 activity, increasing the accumulation of carboxyfluorescein diacetate, an ABCC1 fluorescent substrate. Because ouabain is now accepted as an endogenous hormone, our results suggest that ABCC1 is regulated by hormones related to body volume control, which may have implications for the treatment of hypertensive cancer patients. Moreover, providing ABCC1 is expressed in several other tissues, such as brain, testis, and the immune system, and is related to the transport of glutathione, it is possible that ouabain release may control a number of functions within these organs and tissues by modulating both the expression and the activity of ABCC1.
Collapse
Affiliation(s)
- R C Valente
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
56
|
Qiu J, Gao HQ, Zhou RH, Liang Y, Zhang XH, Wang XP, You BA, Cheng M. Proteomics analysis of the proliferative effect of low-dose ouabain on human endothelial cells. Biol Pharm Bull 2007; 30:247-53. [PMID: 17268060 DOI: 10.1248/bpb.30.247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Digitalis has been used to treat congestive heart failure for more than 200 years, although the dual effects (proliferation and death) induced by digitalis on cell growth have been known for many years, the mechanisms by which digitalis causes the actions were not completely known. The aim of this work was to characterize the proliferative effect of ouabain on cell growth in endothelial cells, and, to do the differential proteomic analysis of human umbilical vein endothelial cells (HUVEC) in response to ouabain and examine changes in protein expression. HUVEC were exposed to different concentrations (0.1-100 nM) of ouabain at 12-48 h intervals. Cell growth and morphological changes of HUVEC treated with ouabain were compared with cells under nontreated conditions. Ouabain stimulated HUVEC cell proliferation at low concentrations and induced cell death at higher concentrations. Using proteomics study, we identified 32 proteins of HUVEC with various important cellular functions and revealed 8 proteins such as Annexin A1, Annexin A2, Malate dehydrogenase, Myosin regulatory light chain 2 (MRLC2), Profilin-1, S100 calcium-binding protein A13, Triosephosphate isomerase and Translationally controlled tumor protein, regulated by low-dose ouabain treatment and MRLC2 was subsequently confirmed by Western blot. Our results give new insights into the cellular and molecular mechanisms of the proliferation action of low-dose ouabain on HUVEC and provide new avenues for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Geriatrics, Shandong University Qilu Hospital, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Nesher M, Shpolansky U, Rosen H, Lichtstein D. The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci 2007; 80:2093-2107. [PMID: 17499813 DOI: 10.1016/j.lfs.2007.03.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/08/2007] [Accepted: 03/14/2007] [Indexed: 12/25/2022]
Abstract
Digitalis-like compounds (DLC) are a family of steroid hormones synthesized in and released from the adrenal gland. DLC, the structure of which resembles that of plant cardiac glycosides, bind to and inhibit the activity of the ubiquitous cell surface enzyme Na(+), K(+)-ATPase. However, there is a large body of evidence suggesting that the regulation of ion transport by Na(+), K(+)-ATPase is not the only physiological role of DLC. The binding of DLC to Na(+), K(+)-ATPase induces the activation of various signal transduction cascades that activate changes in intracellular Ca(++) homeostasis, and in specific gene expression. These, in turn, stimulate endocytosis and affect cell growth and proliferation. At the systemic level, DLC were shown to be involved in the regulation of major physiological parameters including water and salt homeostasis, cardiac contractility and rhythm, systemic blood pressure and behavior. Furthermore, the DLC system has been implicated in several pathological conditions, including cardiac arrhythmias, hypertension, cancer and depressive disorders. This review evaluates the evidence for the different aspects of DLC action and delineates open questions in the field.
Collapse
Affiliation(s)
- Maoz Nesher
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Uri Shpolansky
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
58
|
Jiang X, Ren YP, Lv ZR. Ouabain induces cardiac remodeling in rats independent of blood pressure. Acta Pharmacol Sin 2007; 28:344-52. [PMID: 17302996 DOI: 10.1111/j.1745-7254.2007.00496.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To investigate the ouabain's effects on cardiac remodeling in rats. METHODS Male Sprague-Dawley rats were treated with ouabain. Systolic blood pressure (SBP) was recorded weekly. After 4 and 6 weeks, echocardiography were performed, hemodynamic parameters were measured by invasive cardiac catheterization, changes in cardiac ultrastructure were analyzed using transmission electron microscopy, the collagen fraction of the left ventricle was assessed with Picrosirius red stain, and RT-PCR was applied to evaluate the mRNA level of myosin heavy chain-alpha and -beta in the left ventricle. RESULTS Having been treated with ouabain for 4 weeks, there was no significant difference in the mean SBP of the two groups. However, left ventricular hypertrophy, myocardial ultrastructure deterioration, and extracellular matrix remodeling were induced by ouabain treatment; meanwhile, cardiac systolic and diastolic performance were both worsened. Moreover, the cardiac MHC-beta mRNA was upregulated by ouabain treatment, whereas MHC-alpha mRNA was downregulated. After 4 weeks, the mean SBP in the ouabain group began to increase and was significantly higher than that in control group after 6 weeks (P<0.01); the rats'cardiac structure and function were worsened. CONCLUSION These results suggested that ouabain induces alterations in cardiac structure and function, and the effects happened before the increase of blood pressure. The results indicated that ouabain induced cardiac remodeling in rats independent of blood pressure.
Collapse
Affiliation(s)
- Xing Jiang
- Geriatric-Cardiovascular Department, the People Hospital of Shaanxi Province and the Third Hospital of Xi'an Jiaotong University, Xi'an 710068, China.
| | | | | |
Collapse
|
59
|
Balzan S, D'Urso G, Nicolini G, Forini F, Pellegrino M, Montali U. Erythrocyte sodium pump stimulation by ouabain and an endogenous ouabain-like factor. Cell Biochem Funct 2007; 25:297-303. [PMID: 17191274 DOI: 10.1002/cbf.1387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cardiac glycosides inhibit the sodium pump. However, some studies suggest that nanomolar ouabain concentrations can stimulate the activity of the sodium pump. In this study, using the Na(+)/K(+)-ATPase of human erythrocytes, we compared the effect of digoxin, ouabain and an ouabain like-factor (OLF), on (86)Rb uptake. Ouabain concentrations below 10(-9) M significantly stimulate Rb(+) uptake, and the maximal increase above base-line values is 18 +/- 5% at 10(-10) M ouabain. No stimulation is observed in the same conditions by digoxin. OLF behaved like ouabain, producing an activation of Rb(+) flux at concentrations lower than 10(-9) M ouabain equivalents (14 +/- 3% at 10(-10) M). Western blot analysis revealed the presence of both alpha(1) and alpha(3) pump isoforms in human erythrocytes. Our data confirm the analogies between OLF and ouabain and suggest that Na(+)/K(+)-ATPase activation may be related to the alpha(3) isoform. In addition, we investigated whether ouabain at different concentrations was effective in altering the intracellular calcium concentration of erythrocytes. We found that ouabain at concentration lower than 10(-9) M did not affect this homeostasis.
Collapse
Affiliation(s)
- Silvana Balzan
- CNR Institute of Clinical Physiology, Via Moruzzi 1, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Cardiac glycosides have been used for decades to treat congestive heart failure. The recent identification of cardiotonic steroids such as ouabain, digoxin, marinobufagenin, and telocinobufagin in blood plasma, adrenal glands, and hypothalamus of mammals led to exciting new perspectives in the pathology of heart failure and arterial hypertension. Biosynthesis of ouabain and digoxin occurs in adrenal glands and is under the control of angiotensin II, endothelin, and epinephrine released from cells of the midbrain upon stimulation of brain areas sensing cerebrospinal Na(+) concentration and, apparently, the body's K(+) content. Rapid changes of endogenous ouabain upon physical exercise may favor the economy of the heart by a rise of intracellular Ca(2)(+) levels in cardiac and atrial muscle cells. According to the sodium pump lag hypothesis, this may be accomplished by partial inhibition of the sodium pump and Ca(2+) influx via the Na(+)/Ca(2+) exchanger working in reverse mode or via activation of the Na(+)/K(+)-ATPase signalosome complex, generating intracellular calcium oscillations, reactive oxygen species, and gene activation via nuclear factor-kappaB or extracellular signal-regulated kinases 1 and 2. Elevated concentrations of endogenous ouabain and marinobufagenin in the subnanomolar concentration range were found to stimulate proliferation and differentiation of cardiac and smooth muscle cells. They may have a primary role in the development of cardiac dysfunction and failure because (i) offspring of hypertensive patients evidently inherit elevated plasma concentrations of endogenous ouabain; (ii) such elevated concentrations correlate positively with cardiac dysfunction, hypertrophy, and arterial hypertension; (iii) about 40% of Europeans with uncomplicated essential hypertension show increased concentrations of endogenous ouabain associated with reduced heart rate and cardiac hypertrophy; (iv) in patients with advanced arterial hypertension, circulating levels of endogenous ouabain correlate with BP and total peripheral resistance; (v) among patients with idiopathic dilated cardiomyopathy, high circulating levels of endogenous ouabain and marinobufagenin identify those individuals who are predisposed to progressing more rapidly to heart failure, suggesting that endogenous ouabain (and marinobufagenin) may contribute to toxicity upon digoxin therapy. In contrast to endogenous ouabain, endogenous marinobufagenin may act as a natriuretic substance as well. It shows a higher affinity for the ouabain-insensitive alpha(1) isoform of Na(+)/K(+)-ATPase of rat kidney tubular cells and its levels are increased in volume expansion and pre-eclampsia. Digoxin, which is synthesized in adrenal glands, seems to counteract the hypertensinogenic action of ouabain in rats, as do antibodies against ouabain, for example, (Digibind) and rostafuroxin (PST 2238), a selective ouabain antagonist. It lowers BP in ouabain- and adducin-dependent hypertension in rats and is a promising new class of antihypertensive medication in humans.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | |
Collapse
|
61
|
Akimova O, Tremblay J, Hamet P, Orlov SN. The Na+/K+-ATPase as [K+]o sensor: Role in cardiovascular disease pathogenesis and augmented production of endogenous cardiotonic steroids. PATHOPHYSIOLOGY 2006; 13:209-16. [PMID: 16857351 DOI: 10.1016/j.pathophys.2006.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/15/2006] [Indexed: 11/17/2022] Open
Abstract
Current evidence demonstrates that augmented production of endogenous cardiotonic steroids (CTS) such as ouabain and marinobufagenin is involved in the pathogenesis of hypertension and other cardiovascular diseases associated with volume expansion. It is also well documented that the development of hypertension and the cardiovascular complications of this disease are provoked by hypokalemia and suppressed by high-K(+) diet. We hypothesized that altered extracellular K(+) (K(+))(o) handling contributes to the pathogenesis of hypertension via modulation of interaction of endogenous CTS with Na(+)/K(+)-ATPase. To examine this hypothesis, experiments were performed with C7-Madin-Darby canine kidney epithelial cells at [K(+)](o) detected in plasma under control conditions (4.5mM), severe hypokalemia (2mM), and hyperkalemia (7mM). Elevation of [K(+)](o) from 2 to 7mM increased the threshold of modulation of intracellular (Na(+))(i) and (K(+))(i) content by ouabain from 1 to 10nM, which corresponds to the range of endogenous CTS detected in plasma from patients with volume-expanded disorders. In control medium, approximately 30% activation of cell proliferation was observed with 3nM ouabain, whereas the addition of 0.3nM ouabain was sufficient to induce about the same increment of cell proliferation in K(+)-depleted medium. [K(+)](o) elevation up to 7mM completely abolished the proliferative effect of ouabain. At [K(+)](o)=2, 4.5 and 7mM, the death of ouabain-treated cells was indicated in the presence of 10, 30 and 300nM ouabain, respectively. In conclusion, our results showed that modulation of [K(+)](o) in a pathophysiologically reasonable range sharply affected efficacy of endogenous CTS in the elevation of the [Na(+)](i)/[K(+)](i) ratio and in triggering (Na(+))(i),(K(+))(i)-independent signaling resulting in cell proliferation and death. We propose that Na(+)/K(+)-ATPase may be considered as a [K(+)](o) sensor involved in the crosstalk of (K(+))(o) handling with the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Olga Akimova
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
62
|
Eva A, Kirch U, Scheiner-Bobis G. Signaling pathways involving the sodium pump stimulate NO production in endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1809-14. [PMID: 17054900 DOI: 10.1016/j.bbamem.2006.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 09/12/2006] [Accepted: 09/13/2006] [Indexed: 02/03/2023]
Abstract
The cardiac steroid ouabain, a known inhibitor of the sodium pump (Na+, K+ -ATPase), has been shown to release endothelin from endothelial cells when used at concentrations below those that inhibit the pump. The present study addresses the question of which signaling pathways are activated by ouabain in endothelial cells. Our findings indicate that ouabain, applied at low concentrations to human umbilical cord endothelial cells (HUAECs), induces a reaction cascade that leads to translocation of endothelial nitric oxide synthase (eNOS) and to activation of phosphatidylinositol 3-kinase (PI3K). These events are followed by phosphorylation of Akt (also known as protein kinase B, or PKB) and activation of eNOS by phosphorylation. This signaling pathway, which results in increased nitric oxide (NO) production in HUAECs, is inhibited by the PI3K-specific inhibitor LY294002. Activation of the reaction cascade is not due to endothelin-1 (ET-1) binding to the ET-1 receptor B (ETB), since application of the ETB-specific antagonist BQ-788 did not have any effect on Akt or eNOS phosphorylation. The results shown here indicate that ouabain binding to the sodium pump results in the activation of the proliferation and survival pathways involving PI3K, Akt activation, stimulation of eNOS, and production of NO in HUAECs. Together with results from previous publications, the current investigation implies that the sodium pump is involved in vascular tone regulation.
Collapse
Affiliation(s)
- Alexander Eva
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany
| | | | | |
Collapse
|
63
|
Larre I, Ponce A, Fiorentino R, Shoshani L, Contreras RG, Cereijido M. Contacts and cooperation between cells depend on the hormone ouabain. Proc Natl Acad Sci U S A 2006; 103:10911-6. [PMID: 16835298 PMCID: PMC1544148 DOI: 10.1073/pnas.0604496103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion is a crucial step in proliferation, differentiation, migration, apoptosis, and metastasis. In previous works we have shown that cell adhesion is modulated by ouabain, a highly specific inhibitor of Na+,K+-ATPase, recently found to be a hormone. In the present work we pursue the investigation of the effect of ouabain on a special type of cell-cell interaction: the rescue of ouabain-sensitive MDCK cells (W) by ouabain-resistant cells (R). In cultured monolayers of pure W cells, ouabain triggers the "P-->A mechanism" (from pump/adhesion) consisting of a cascade of phosphorylations that retrieves adhesion-associated molecules occludin and beta-catenin and results in detachment of the cell. When W cells are instead cocultured with R cells, the P-->A reaction is blocked, and W cells are rescued. Furthermore, in these R/W cocultures ouabain promotes cell-cell communication by means of gap junctions by specifically enhancing the expression of connexin 32 and addressing this molecule to the plasma membrane. Ouabain also promotes the internalization of the beta-subunit of the Na+,K+-ATPase. These observations open the possibility that the crucial processes mentioned at the beginning would be under the control of the hormone ouabain.
Collapse
Affiliation(s)
- Isabel Larre
- Department of Physiology, Biophysics, and Neurosciences, Centro de Investigación y de Estudios Avanzados, México City, DF 07300, México
| | - Arturo Ponce
- Department of Physiology, Biophysics, and Neurosciences, Centro de Investigación y de Estudios Avanzados, México City, DF 07300, México
| | - Rosana Fiorentino
- Department of Physiology, Biophysics, and Neurosciences, Centro de Investigación y de Estudios Avanzados, México City, DF 07300, México
| | - Liora Shoshani
- Department of Physiology, Biophysics, and Neurosciences, Centro de Investigación y de Estudios Avanzados, México City, DF 07300, México
| | - Rubén G. Contreras
- Department of Physiology, Biophysics, and Neurosciences, Centro de Investigación y de Estudios Avanzados, México City, DF 07300, México
| | - Marcelino Cereijido
- Department of Physiology, Biophysics, and Neurosciences, Centro de Investigación y de Estudios Avanzados, México City, DF 07300, México
| |
Collapse
|
64
|
Blaustein MP, Zhang J, Chen L, Hamilton BP. How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol 2006; 290:R514-23. [PMID: 16467498 DOI: 10.1152/ajpregu.00819.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A critical question in hypertension research is: How is long-term blood pressure controlled? Excessive NaCl ingestion or NaCl retention by the kidneys and the consequent tendency toward plasma volume expansion lead to hypertension. Nevertheless, the precise mechanisms linking salt to high blood pressure are unresolved. The discovery of endogenous ouabain, an adrenocortical hormone, provided an important clue. Ouabain, a selective Na+ pump inhibitor, has cardiotonic and vasotonic effects. Plasma endogenous ouabain levels are significantly elevated in approximately 40% of patients with essential hypertension and in animals with several forms of salt-dependent hypertension. Also, prolonged ouabain administration induces hypertension in rodents. Mice with mutant Na+ pumps or Na/Ca exchangers (NCX) and studies with a ouabain antagonist and an NCX blocker are revealing the missing molecular mechanisms. These data demonstrate that alpha2 Na+ pumps and NCX1 participate in long-term regulation of vascular tone and blood pressure. Pharmacological agents or mutations in the alpha2 Na+ pump that interfere with the action of ouabain on the pump, and reduced NCX1 expression or agents that block NCX all impede the development of salt-dependent or ouabain-induced hypertension. Conversely, nanomolar ouabain, reduced alpha2 Na+ pump expression, and smooth muscle-specific overexpression of NCX1 all induce hypertension. Furthermore, ouabain and reduced alpha2 Na+ pump expression increase myogenic tone in isolated mesenteric small arteries in vitro, thereby tying these effects directly to the elevation of blood pressure. Thus, endogenous ouabain, and vascular alpha2 Na+ pumps and NCX1, are critical links between salt and hypertension. New pharmacological agents that act on these molecular links have potential in the clinical management of hypertension.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
65
|
Kajimura S, Seale AP, Hirano T, Cooke IM, Grau EG. Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. Gen Comp Endocrinol 2005; 143:240-50. [PMID: 15922343 DOI: 10.1016/j.ygcen.2005.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 04/02/2005] [Accepted: 04/03/2005] [Indexed: 11/24/2022]
Abstract
Ouabain, a cardiac glycoside and inhibitor of Na(+), K(+)-ATPase, is now believed to be a steroid hormone in mammals. We have recently identified ouabain immunoreactivity in the plasma of the tilapia, a euryhaline teleost. Changes in plasma concentrations of immunoreactive ouabain (20-40 pM) in response to salinity change were well correlated with the changes in plasma osmolality and cortisol. Our previous studies have shown that cortisol rapidly inhibits prolactin (PRL) release from the tilapia pituitary by suppressing intracellular Ca(2+) ([Ca(2+)]i) and cAMP. In the present study, low doses of ouabain (10-1000 pM) inhibited PRL release dose-dependently during 2-24 h of incubation. There was no effect on growth hormone (GH) release, except for a significant increase at 1000 pM during 8-24 h of incubation. Significant dose-related increases in PRL release were observed at higher doses of ouabain (100-1000 nM), whereas significant inhibition was seen in GH release at 1000 nM during 2-24h of incubation. Ouabain at 1-100 pM had no effect on Na(+), K(+)-ATPase activity of the pituitary homogenate. The enzyme activity was inhibited by higher concentrations of ouabain, 10% at 1 nM, 15% at 10 nM, 28% at 100 nM, and 45% at 1000 nM. Ouabain also attenuated stimulation of PRL release by the Ca(2+) ionophore, A23187, and by a combination of dibutyryl cAMP and a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthin. Intracellular Ca(2+) concentrations were monitored in the dispersed PRL cells with the Ca(2+)-sensitive dye, fura-2. Ouabain at 1 nM reversibly reduced [Ca(2+)]i within seconds, whereas 1 microM ouabain increased [Ca(2+)]i. A rapid reduction in [Ca(2+)]i was also observed when PRL cells were exposed to 1 microM cortisol, whereas there was no consistent effect at 1 nM. These results suggest that ouabain at physiological concentrations rapidly inhibits PRL release from the tilapia pituitary by suppressing intracellular Ca(2+) and cAMP metabolism. The stimulation of PRL release by high concentrations of ouabain (100-1000 nM) may result from an increase in [Ca(2+)]i, and subsequent depolarization due to the inhibition of Na(+), K(+)-ATPase activity.
Collapse
Affiliation(s)
- Shingo Kajimura
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
66
|
Zhang J, Lee MY, Cavalli M, Chen L, Berra-Romani R, Balke CW, Bianchi G, Ferrari P, Hamlyn JM, Iwamoto T, Lingrel JB, Matteson DR, Wier WG, Blaustein MP. Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. J Physiol 2005; 569:243-56. [PMID: 16166162 PMCID: PMC1464198 DOI: 10.1113/jphysiol.2005.091801] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A key question in hypertension is: How is long-term blood pressure controlled? A clue is that chronic salt retention elevates an endogenous ouabain-like compound (EOLC) and induces salt-dependent hypertension mediated by Na(+)/Ca(2)(+) exchange (NCX). The precise mechanism, however, is unresolved. Here we study blood pressure and isolated small arteries of mice with reduced expression of Na(+) pump alpha1 (alpha1(+/-)) or alpha2 (alpha2(+/-)) catalytic subunits. Both low-dose ouabain (1-100 nm; inhibits only alpha2) and high-dose ouabain (> or =1 microm; inhibits alpha1) elevate myocyte Ca(2)(+) and constrict arteries from alpha1(+/-), as well as alpha2(+/-) and wild-type mice. Nevertheless, only mice with reduced alpha2 Na(+) pump activity (alpha2(+/-)), and not alpha1 (alpha1(+/-)), have elevated blood pressure. Also, isolated, pressurized arteries from alpha2(+/-), but not alpha1(+/-), have increased myogenic tone. Ouabain antagonists (PST 2238 and canrenone) and NCX blockers (SEA0400 and KB-R7943) normalize myogenic tone in ouabain-treated arteries. Only the NCX blockers normalize the elevated myogenic tone in alpha2(+/-) arteries because this tone is ouabain independent. All four agents are known to lower blood pressure in salt-dependent and ouabain-induced hypertension. Thus, chronically reduced alpha2 activity (alpha2(+/-) or chronic ouabain) apparently regulates myogenic tone and long-term blood pressure whereas reduced alpha1 activity (alpha1(+/-)) plays no persistent role: the in vivo changes in blood pressure reflect the in vitro changes in myogenic tone. Accordingly, in salt-dependent hypertension, EOLC probably increases vascular resistance and blood pressure by reducing alpha2 Na(+) pump activity and promoting Ca(2)(+) entry via NCX in myocytes.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Schoner W, Scheiner-Bobis G. Endogenous Cardiac Glycosides: Hormones Using the Sodium Pump as Signal Transducer. Semin Nephrol 2005; 25:343-51. [PMID: 16139690 DOI: 10.1016/j.semnephrol.2005.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The search for an endogenous digitalis has led to the identification of the cardenolides ouabain and digoxin and the bufadienolide marinobufagenin in mammalian tissues and biological fluids. Ouabain's release from adrenal glands is under the control of epinephrine and angiotensin II; hence, its blood concentration changes rapidly on physical exercise. It also is controlled by brain areas sensing cerebrospinal Na+ concentration and apparently the body's K+ content because urinary K+ loss leads to an increase in its plasma concentration as well. Long-term treatment of rats with ouabain results in arterial hypertension, and 50% of Caucasians with low-renin hypertension have increased plasma concentrations of this cardenolide. Levels of digoxin, which is synthesized from acetate in adrenal glands, increase slightly in blood on prolonged exercise. It counteracts the hypertensinogenic action of ouabain in rats, as does the ouabain antagonist PST 2238. The plasma concentration of the bufadienolide marinobufagenin is increased after cardiac infarction. It may show natriuretic properties because it inhibits the alpha1 isoform of Na+/K+-adenosine triphosphatase (ATPase), the main sodium pump isoform of the kidney, much better than other sodium pump isoforms. These effects of endogenous cardiac glycosides are observed at concentrations that do not inhibit the sodium pump. Apparently, Na+/K+-ATPase is used by these steroids as a signal transducer to activate tissue proliferation, heart contractility, arterial hypertension, and natriuresis via various intracellular signaling pathways.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Giessen, Germany.
| | | |
Collapse
|
68
|
Akimova OA, Lopina OD, Hamet P, Orlov SN. Search for intermediates of Na+,K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids. PATHOPHYSIOLOGY 2005; 12:125-35. [PMID: 16023561 DOI: 10.1016/j.pathophys.2005.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 03/08/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that ouabain and other cardiotonic steroids (CTS) kill renal epithelial and vascular endothelial cells via their interaction with the Na+,K+-ATPase alpha-subunit, but independently of elevation of the [Na+]i/[K+]i ratio. In distinct cell types, side-by-side with inhibition of Na+,K+-ATPase-mediated ion fluxes, CTS trigger [Ca2+]i oscillation, activation of Ras, mitogen-activated protein kinases (MAPK), phosphoinositide-3 kinase (PI3K), and protein kinase C as well as the production of reactive oxygen species and cytoskeleton reorganization. This study examined the potential involvement of the above-listed intermediates in death signaling triggered by ouabain in C7-Madin-Darby canine kidney cells. In these cells, twofold decreased staining with dimethylthiazol diphenyltetrazolium (MTT) and detachment of up to 80% of dead cells were detected in 6 and 24 h of ouabain addition, respectively. We did not observe any effect of extra- (EGTA) and intracellular (BAPTA) Ca2+-chelators, [Ca2+]i-raising compounds (thapsigargin, ATP), inhibitors of Ras signaling (alpha-hydroxyfarnesyl-sulphosphoric acid), PI3K (wortmannin), MAPK ERK1/2 kinase (PD98059), tyrosine kinases (genistein) as well as activators (4beta-PMA, 8-Br-cAMP, 8-Br-cGMP, forskolin) and inhibitors (calphostin) of serine-threonine kinases on MTT staining and death of ouabain-treated cells. Ouabain did not affect cellular redox state and the production of superoxide anion and hydroperoxide. Neither N-acetylcysteine nor reduced gluthatione suppressed the death of ouabain-treated cells. Thus, our results show that none of the above-listed signaling systems plays a major role in the development of Nai+,Ki+-independent death machinery triggered by CTS interaction with the Na+,K+-ATPase alpha-subunit.
Collapse
Affiliation(s)
- Olga A Akimova
- Centre de Recherche, Centre hospitalier de l'Université de Montréal (CHUM-Hôtel-Dieu), Montreal, Que., H2W 1T7, Canada
| | | | | | | |
Collapse
|
69
|
Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR, Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 2005; 16:4034-45. [PMID: 15975899 PMCID: PMC1196317 DOI: 10.1091/mbc.e05-04-0295] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).
Collapse
Affiliation(s)
- Zhaokan Yuan
- Department of Pharmacology, Medical College of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
70
|
Bauer N, Müller-Ehmsen J, Krämer U, Hambarchian N, Zobel C, Schwinger RHG, Neu H, Kirch U, Grünbaum EG, Schoner W. Ouabain-like compound changes rapidly on physical exercise in humans and dogs: effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension 2005; 45:1024-8. [PMID: 15837822 DOI: 10.1161/01.hyp.0000165024.47728.f7] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ouabain, an inhibitor of the sodium pump, has been identified as a constituent of bovine adrenal glands. We were interested whether the release of this cardiotonic steroid is stimulated by physical exercise. Hence, athletes and healthy dogs were subjected to ergometry. Ouabain-like compound (OLC) was measured in venous blood by enzyme-linked immunosorbent assay as well as by (86)Rb+ uptake inhibition (as ouabain equivalents). OLC increased in venous blood of athletes after 15 minutes of ergometry from 2.5+/-0.5 to 86.0+/-27.2 nmol/L (n=51; P<0.001), as did the concentration of a circulating inhibitor of the sodium pump from 7.3+/-1.7 to 129.8+/-51 nmol/L (ouabain equivalents, P<0.05). Half-maximal increase in heart rate and systolic blood pressure occurred at 5.1+/-1.2 nmol/L and at 30+/-1 nmol/L OLC, respectively. On rest, OLC decreased in humans and dogs with a half-life of 3 to 5 minutes. In beagles exposed to moderate exercise on a treadmill for 13 minutes, levels of OLC increased 46-fold (from 3.7+/-0.8 to 166.9+/-91.8 nmol/L; n=6; P<0.005). This effect was suppressed when the dogs had been treated for 3 weeks with the beta1-adrenergic receptor blocker atenolol or the angiotensin-converting enzyme inhibitor benazepril. We conclude that OLC changes rapidly during exercise and is under the control of norepinephrine and angiotensin II.
Collapse
Affiliation(s)
- Natali Bauer
- Clinic for Small Animal Internal Medicine and Forensic Affairs, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kometiani P, Liu L, Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol Pharmacol 2004; 67:929-36. [PMID: 15602003 DOI: 10.1124/mol.104.007302] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because beneficial effects of digitalis treatment in breast cancer patients have been suggested by epidemiological studies, we explored the mechanism of the growth inhibitory effects of these drugs on the estrogen receptor-negative human breast cancer cell line MDA-MB-435 s. Ouabain concentrations (100 nM or lower) that caused less than 25% inhibition of the pumping function of Na+/K+-ATPase had no effect on cell viability but inhibited proliferation. At the same concentrations, ouabain 1) activated Src kinase and stimulated the interaction of Src and Na+/K+-ATPase with epidermal growth factor receptor (EGFR); 2) caused a transient and then a sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2); 3) increased the expression of p21Cip1 but decreased that of p53; and 4) activated c-Jun NH2-terminal kinase (JNK) but not p38 kinase. These data, in conjunction with our previous findings on the signaling role of Na+/K+-ATPase in other cells, suggest that ouabain-induced activation/transactivation of Src/EGFR by Na+/K+-ATPase leads to activation of ERK1/2, the resulting increase in the level of cell cycle inhibitor p21Cip1, and growth arrest. Cooperation of JNK with ERK1/2 in this process is also suggested. Digoxin and digitoxin concentrations close to or at the therapeutic plasma levels had effects on proliferation and ERK1/2 similar to those of ouabain, supporting the proposed potential value of digitalis drugs for the treatment of breast cancer.
Collapse
Affiliation(s)
- Peter Kometiani
- Department of Pharmacology, Medical College of Ohio, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | | | |
Collapse
|
72
|
Akimova OA, Bagrov AY, Lopina OD, Kamernitsky AV, Tremblay J, Hamet P, Orlov SN. Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells. J Biol Chem 2004; 280:832-9. [PMID: 15494417 DOI: 10.1074/jbc.m411011200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that ouabain kills renal epithelial and vascular endothelial cells independently of elevation of the [Na(+)](i)/[K(+)](i) ratio. These observations raised the possibility of finding cardiotonic steroids (CTS) that inhibit the Na(+),K(+) pump without attenuating cell survival and vice versa. To test this hypothesis, we compared CTS action on Na(+),K(+) pump, [Na(+)](i) content, and survival of Madin-Darby canine kidney cells. At a concentration of 1 microM, ouabain and other tested cardenolides, as well as bufadienolides such as bufalin, cinobufagin, cinobufotalin, and telobufotoxin, led to approximately 10-fold inhibition of the Na(+),K(+) pump, a 2-3-fold decrease in staining with dimethylthiazol-diphenyltetrazolium (MTT), and massive death indicated by detachment of approximately 80% of cells and caspase-3 activation. In contrast, Na(+),K(+) pump inhibition and elevation of [Na(+)](i) seen in the presence of 3 microM marinobufagenin (MBG) and marinobufotoxin did not affect MTT staining and cell survival. Inhibition of the Na(+),Rb(+) pump in K(+)-free medium was not accompanied by a decline of MTT staining and cell detachment but increased sensitivity to CTS. In K(+)-free medium, half-maximal inhibition of (86)Rb influx was observed in the presence of 0.04 microM ouabain and 0.1 microM MBG, whereas half-maximal detachment and decline of MTT staining were detected at 0.03 and 0.004 microM of ouabain versus 10 and 3 microM of MBG, respectively. Both ouabain binding and ouabain-induced [Na(+)](i),[K(+)](i)-independent signaling were suppressed in the presence of MBG. Thus, our results show that CTS exhibit distinctly different potency in Na(+),K(+) pump inhibition and triggering of [Na(+)](i)/[K(+)](i)-independent signaling, including cell death.
Collapse
Affiliation(s)
- Olga A Akimova
- Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec H2W 1T7, Canada
| | | | | | | | | | | | | |
Collapse
|
73
|
Xavier FE, Yogi Á, Callera GE, Tostes RC, Alvarez Y, Salaices M, Alonso MJ, Rossoni LV. Contribution of the endothelin and renin-angiotensin systems to the vascular changes in rats chronically treated with ouabain. Br J Pharmacol 2004; 143:794-802. [PMID: 15477225 PMCID: PMC1575934 DOI: 10.1038/sj.bjp.0705994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Renin-angiotensin and endothelin systems are involved in the cardiovascular effects produced by treatment with ouabain. We recently demonstrated that the contractile response to phenylephrine is decreased in ouabain-treated rats. The present study investigated whether endothelin-1 (ET-1) and angiotensin II (Ang II) contributes to the vascular changes observed in rats chronically treated with ouabain. Wistar rats were treated with ouabain (8.0 microg day(-1), s.c. pellets for 5 weeks) alone or in combination with an endothelin type A receptor (ET(A)) antagonist, BMS182874 (40 mg kg(-1) day(-1), per gavage) or an angiotensin type 1 (AT(1)) receptor antagonist, losartan (15 mg kg(-1) day(-1), p.o.). Treatment with ouabain increased systolic blood pressure and treatment with either losartan or BMS182874 prevented the development of ouabain-induced hypertension. The sensitivity and maximal response for phenylephrine were reduced in aortic rings from ouabain-treated rats. Removal of the endothelium or in vitro exposure to an inhibitor of nitric oxide synthase (NOS), N-nitro-L-arginine methyl ester (L-NAME, 100 microM) increased the responses to phenylephrine, an effect that was more pronounced in aortas from ouabain-treated rats. Endothelial NOS protein (eNOS) expression was increased after ouabain treatment. Treatment with BMS182874, but not with losartan, prevented the effects of ouabain on the reactivity of phenylephrine and in eNOS protein expression. Gene expression of pre-pro-ET-1 and ET(A) receptors was increased in aortic rings from ouabain-treated rats. ET(B) receptor gene expression was not altered by ouabain treatment. In conclusion, our results suggest that endothelin and angiotensin systems play an important role in the development of ouabain-induced hypertension. However, ET-1, by activation of ET(A) receptors, but not Ang II, contributes to changes in vascular reactivity to phenylephrine induced by chronic treatment with ouabain.
Collapse
Affiliation(s)
- Fabiano E Xavier
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Pós-Graduação em Ciências Fisiológicas – UFES, Vitória, ES, Brazil
| | - Álvaro Yogi
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Gláucia E Callera
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Yolanda Alvarez
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - María J Alonso
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Professor Lineu Prestes, 1524, sala 103, São Paulo, SP 05508-900, Brazil
- Author for correspondence:
| |
Collapse
|
74
|
Dostanic I, Paul RJ, Lorenz JN, Theriault S, Van Huysse JW, Lingrel JB. The alpha2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physiol Heart Circ Physiol 2004; 288:H477-85. [PMID: 15458945 DOI: 10.1152/ajpheart.00083.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although ouabain is known to induce hypertension, the mechanism of how this cardiac glycoside affects blood pressure is uncertain. The present study demonstrates that the alpha2-isoform of the Na-K-ATPase mediates the pressor effects of ouabain in mice. To accomplish this, we analyzed the effect of ouabain on blood pressure in wild-type mice, where the alpha2-isoform is sensitive to ouabain, and genetically engineered mice expressing a ouabain-insensitive alpha2-isoform of the Na-K-ATPase. Thus differences in the response to ouabain between these two genotypes can only be attributed to the alpha2-isoform of Na-K-ATPase. As the alpha1-isoform is naturally resistant to ouabain in rodents, it will not be inhibited by ouabain in either genotype. Whereas prolonged administration of ouabain increased levels of ouabain in serum from both wild-type and targeted animals, hypertension developed only in wild-type mice. In addition, bolus intravenous infusion of ouabain increased the systolic, mean arterial, and left ventricular blood pressure in only wild-type anesthetized mice. In vitro, ouabain increased vascular tone and thereby phenylephrine-induced contraction of the aorta in intact and endothelium-denuded wild-type mice but in alpha2-resistant mice. Ouabain also increased the magnitude of the spontaneous contractions of portal vein and the basal tone of the intact aorta from only wild-type mice. The increase in aortic basal tone was dependent on the presence of endothelium. Our studies also demonstrate that the alpha2-isoform of Na-K-ATPase mediates the ouabain-induced increase in vascular contractility. This could play a role in the development and maintenance of ouabain-induced hypertension.
Collapse
Affiliation(s)
- Iva Dostanic
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
75
|
Trevisi L, Visentin B, Cusinato F, Pighin I, Luciani S. Antiapoptotic effect of ouabain on human umbilical vein endothelial cells. Biochem Biophys Res Commun 2004; 321:716-21. [PMID: 15358165 DOI: 10.1016/j.bbrc.2004.07.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Indexed: 11/29/2022]
Abstract
The present study investigates the effect of ouabain on caspase-3 activation in human umbilical vein endothelial cells (HUVEC). Ouabain (EC(50) 20 nM) reduced caspase-3 activity in HUVEC treated for 24h in a medium deprived of fibroblast growth factor (FGF). Incubation for 5h in the absence of both FGF and serum produced an increase in caspase-3 activity that was completely abolished by 100 nM ouabain. Pretreatment with the phosphatidylinositol 3 kinase (PI-3K) inhibitor, wortmannin, prevented the protective effect of ouabain against serum deprivation. Furthermore, Western blotting analysis revealed an increase in phosphorylation of extracellular signal-regulated kinases (ERK-1 and ERK-2) induced by 100nM ouabain in serum-deprived cells. In accord, pretreatment of HUVEC with PD98059, inhibitor of the ERK pathway, abrogated the effect of ouabain. Our results show that ouabain has an antiapoptotic effect on HUVEC through the activation of PI-3K and ERK dependent pathways.
Collapse
Affiliation(s)
- Lucia Trevisi
- Dipartimento di Farmacologia ed Anestesiologia, Università di Padova, Padua, Italy
| | | | | | | | | |
Collapse
|