51
|
Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K. Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 2009; 109 Suppl 1:3-9. [DOI: 10.1111/j.1471-4159.2009.05926.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
52
|
Transcranial photo-inactivation of neural activities in the mouse auditory cortex. Neurosci Res 2008; 60:422-30. [DOI: 10.1016/j.neures.2007.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/11/2007] [Accepted: 12/25/2007] [Indexed: 11/19/2022]
|
53
|
Hutson KA, Durham D, Imig T, Tucci DL. Consequences of unilateral hearing loss: cortical adjustment to unilateral deprivation. Hear Res 2007; 237:19-31. [PMID: 18261867 DOI: 10.1016/j.heares.2007.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 11/19/2022]
Abstract
The effect of unilateral hearing loss on 2-deoxyglucose (2-DG) uptake in the central auditory system was studied in postnatal day 21 gerbils. Three weeks following a unilateral conductive hearing loss (CHL) or cochlear ablation (CA), animals were injected with 2-DG and exposed to an alternating auditory stimulus (1 and 2kHz tones). Uptake of 2-DG was measured in the inferior colliculus (IC), medial geniculate (MG), and auditory cortex (fields AI and AAF) of both sides of the brain in experimental animals and in anesthesia-only sham animals (SH). Significant differences in uptake, compared to SH, were found in the IC contralateral to the manipulated ear (CHL or CA) and in AAF contralateral to the CHL ear. We hypothesize that these findings may result from loss of functional inhibition in the IC contralateral to CA, but not CHL. Altered states of inhibition at the IC may affect activity in pathways ascending to auditory cortex, and ultimately activity in auditory cortex itself. Altered levels of activity in auditory cortex may explain some auditory processing deficits experienced by individuals with CHL.
Collapse
Affiliation(s)
- K A Hutson
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Duke University Medical Center, Box 3805, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
54
|
Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to man. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051402. [PMID: 17994863 PMCID: PMC2435254 DOI: 10.1117/1.2789693] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Columbia University, Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, 351ET, 1210 Amsterdam Avenue, New York, New York 10027, USA.
| |
Collapse
|
55
|
Husson TR, Mallik AK, Zhang JX, Issa NP. Functional imaging of primary visual cortex using flavoprotein autofluorescence. J Neurosci 2007; 27:8665-75. [PMID: 17687044 PMCID: PMC6672951 DOI: 10.1523/jneurosci.2156-07.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal autofluorescence, which results from the oxidation of flavoproteins in the electron transport chain, has recently been used to map cortical responses to sensory stimuli. This approach could represent a substantial improvement over other optical imaging methods because it is a direct (i.e., nonhemodynamic) measure of neuronal metabolism. However, its application to functional imaging has been limited because strong responses have been reported only in rodents. In this study, we demonstrate that autofluorescence imaging (AFI) can be used to map the functional organization of primary visual cortex in both mouse and cat. In cat area 17, orientation preference maps generated by AFI had the classic pinwheel structure and matched those generated by intrinsic signal imaging in the same imaged field. The spatiotemporal profile of the autofluorescence signal had several advantages over intrinsic signal imaging, including spatially restricted fluorescence throughout its response duration, reduced susceptibility to vascular artifacts, an improved spatial response profile, and a faster time course. These results indicate that AFI is a robust and useful measure of large-scale cortical activity patterns in visual mammals.
Collapse
Affiliation(s)
| | | | - Jing X. Zhang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Naoum P. Issa
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| |
Collapse
|
56
|
Dahmen JC, King AJ. Learning to hear: plasticity of auditory cortical processing. Curr Opin Neurobiol 2007; 17:456-64. [PMID: 17714932 DOI: 10.1016/j.conb.2007.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/12/2007] [Indexed: 10/22/2022]
Abstract
Sensory experience and auditory cortex plasticity are intimately related. This relationship is most striking during infancy when changes in sensory input can have profound effects on the functional organization of the developing cortex. But a considerable degree of plasticity is retained throughout life, as demonstrated by the cortical reorganization that follows damage to the sensory periphery or by the more controversial changes in response properties that are thought to accompany perceptual learning. Recent studies in the auditory system have revealed the remarkably adaptive nature of sensory processing and provided important insights into the way in which cortical circuits are shaped by experience and learning.
Collapse
Affiliation(s)
- Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
57
|
Watanabe K, Kamatani D, Hishida R, Kudoh M, Shibuki K. Long-term depression induced by local tetanic stimulation in the rat auditory cortex. Brain Res 2007; 1166:20-8. [PMID: 17669373 DOI: 10.1016/j.brainres.2007.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 11/28/2022]
Abstract
In sensory cortices, synaptic plasticities such as long-term potentiation (LTP) and long-term depression (LTD) have important roles in the development of neural circuits and sensory information processing. However, the differential roles and mechanisms of the various types of LTP and LTD are not clear. In the present study, we investigated LTP and two types of LTD in slices obtained from the rat auditory cortex. Supragranular field potentials elicited by layer VI stimulation were recorded through a metal electrode. Transsynaptic field potentials exhibited marked LTP after tetanic stimulation (TS, 100 Hz for 1 s) was applied to layer VI. The same field potential components exhibited LTD after low-frequency stimulation (LFS, 1 Hz for 900 s) was applied to layer VI. LTD of supragranular field potentials was also induced by local TS applied to supragranular layers 0.3 mm from the recording site. Neither LTP nor LTD of either type was induced in the presence of 50 muM d-(-)-2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist. However, 500 muM (+)-alpha-methyl-4-carboxyphenylglycine (MCPG), an antagonist of metabotropic glutamate receptors, had no effect. LTD induced by LFS and that induced by local TS were suppressed in the presence of 3 muM bicuculline, an antagonist of GABA(A) receptors. Each of these forms of LTD occluded the other. These results and intracellular recordings in supragranular pyramidal neurons during LFS and local TS strongly suggest that the two types of LTD share common neural circuits for their induction.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata 951-8585, Japan
| | | | | | | | | |
Collapse
|
58
|
Kitaura H, Uozumi N, Tohmi M, Yamazaki M, Sakimura K, Kudoh M, Shimizu T, Shibuki K. Roles of nitric oxide as a vasodilator in neurovascular coupling of mouse somatosensory cortex. Neurosci Res 2007; 59:160-71. [PMID: 17655958 DOI: 10.1016/j.neures.2007.06.1469] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 11/17/2022]
Abstract
Neural activities trigger regional vasodilation in the brain. Diffusible messengers such as nitric oxide (NO) and prostanoids are considered to work as vasodilators in neurovascular coupling. However, their roles are still controversial. In the present study, cortical images of neural activities and vasodilation were recorded through the intact skull of C57BL/6 mice anesthetized with urethane. Flavoprotein fluorescence responses elicited by vibratory hindpaw stimulation were followed by darkening of arteriole images reflecting vasodilation in the somatosensory cortex. Vasodilation was also observed in light reflection images at the wavelength of 570 nm in the same mice. We perfused the surface of the cortex under the skull with 100 microM N(G)-nitro-l-arginine (l-NA), an inhibitor of NO synthase (NOS), and 10 microM indomethacin, an inhibitor of cyclooxygenase (COX). These drugs suppressed vasodilation without changing flavoprotein fluorescence responses. A mixture of l-NA and indomethacin almost completely eliminated vasodilation. In mice lacking neuronal NOS (nNOS), activity-dependent vasodilation was significantly suppressed compared with that in littermate control mice, while that in mice lacking cytosolic phospholipase A2 alpha (cPLA2alpha) was unchanged. These results indicate that NO works as a vasodilator in neurovascular coupling of the mouse somatosensory cortex.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kotak VC, Breithaupt AD, Sanes DH. Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proc Natl Acad Sci U S A 2007; 104:3550-5. [PMID: 17360680 PMCID: PMC1805556 DOI: 10.1073/pnas.0607177104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe hearing loss during early development is associated with deficits in speech and language acquisition. Although functional studies have shown a deafness-induced alteration of synaptic strength, it is not known whether long-term synaptic plasticity depends on auditory experience. In this study, sensorineural hearing loss (SNHL) was induced surgically in developing gerbils at postnatal day 10, and excitatory synaptic plasticity was examined subsequently in a brain slice preparation that preserves the thalamorecipient auditory cortex. Extracellular stimuli were applied at layer 6 (L6), whereas evoked excitatory synaptic potentials (EPSPs) were recorded from L5 neurons by using a whole-cell current clamp configuration. In control neurons, the conditioning stimulation of L6 significantly altered EPSP amplitude for at least 1 h. Approximately half of neurons displayed long-term potentiation (LTP), whereas the other half displayed long-term depression (LTD). In contrast, SNHL neurons displayed only LTD after the conditioning stimulation of L6. Finally, the vast majority of neurons recorded from control prehearing animals (postnatal days 9-11) displayed LTD after L6 stimulation. Thus, normal auditory experience may be essential for the maturation of synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Vibhakar C. Kotak
- *Center for Neural Science and
- To whom correspondence may be addressed. E-mail: or
| | | | - Dan H. Sanes
- *Center for Neural Science and
- Department of Biology, New York University, New York, NY 10003
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
60
|
Hishida R, Kamatani D, Kitaura H, Kudoh M, Shibuki K. Functional local connections with differential activity-dependence and critical periods surrounding the primary auditory cortex in rat cerebral slices. Neuroimage 2007; 34:679-93. [PMID: 17112744 DOI: 10.1016/j.neuroimage.2006.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022] Open
Abstract
Sensory information is processed in neural networks connecting the primary sensory cortices with surrounding higher areas. Here, we investigated the properties of local connections between the primary auditory cortex (area 41) and surrounding areas (areas 20, 36, 18a and 39) in rat cerebral slices. Neural activities elicited by repetitive electrical stimulation were visualized using the activity-dependent changes in endogenous fluorescence derived from mitochondrial flavoproteins, which mostly reflect activities produced by polysynaptic glutamatergic transmission. Polysynaptic feedforward propagation was dominant compared with the corresponding polysynaptic feedback propagation between the primary (area 41) and secondary (areas 20 and 36) auditory cortices, while such a tendency was less clear in other pathways. Long inter-areal (>1 mm) propagation with the same dominancy was observed after layer V stimulation between areas 41 and 20, and was not affected by cutting the underlying white matter. Activity-dependent changes in neural activities induced by low-frequency stimulation in the presence of 1 microM bicuculline were investigated using Ca2+ imaging. Significant potentiation of the polysynaptic Ca2+ activities was only observed in polysynaptic feedforward pathways from the primary to secondary auditory cortices. Experience-dependence of the connections between areas 41 and 20 was investigated using flavoprotein fluorescence imaging. The activities from areas 41 to 20 were reduced by cochlear lesions produced at P12 but not at P28, while the activities from areas 20 to 41 were reduced by the lesions at P28, suggesting the critical period for the polysynaptic feedforward connection was before P28, while for the polysynaptic feedback connection was after P28.
Collapse
Affiliation(s)
- Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1 Asahi-machi, Niigata 951-8585, Japan.
| | | | | | | | | |
Collapse
|
61
|
Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex. J Neurosci 2006; 26:11775-85. [PMID: 17093098 PMCID: PMC6674784 DOI: 10.1523/jneurosci.1643-06.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Collapse
Affiliation(s)
- Manavu Tohmi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hiroki Kitaura
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Seiji Komagata
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masaharu Kudoh
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|