51
|
Tartaglione A, Spadavecchia L, Maculotti M, Bandini F. Resting state in Alzheimer's disease: a concurrent analysis of Flash-Visual Evoked Potentials and quantitative EEG. BMC Neurol 2012. [PMID: 23190493 PMCID: PMC3527189 DOI: 10.1186/1471-2377-12-145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate to what extent Alzheimer's Disease (AD) affects Resting State activity, the possible impairment of independent electrophysiological parameters was determined in Eye-open and Eye-closed Conditions. Specifically, Flash-Visual Evoked Potential (F-VEP) and quantitative EEG (q-EEG) were examined to establish whether abnormalities of the former were systematically associated with changes of the latter. METHODS Concurrently recorded F-VEP and q-EEG were comparatively analysed under Eye-open and Eye-closed Conditions in 11 Controls and 19 AD patients presenting a normal Pattern-Visual Evoked Potential (P-VEP). Between Condition differences in latencies of P2 component were matched to variations in spectral components of q-EEG. RESULTS P2 latency increased in 10 AD patients with Abnormal Latency (AD-AL) under Eye-closed Condition. In these patients reduction of alpha activity joined an increased delta power so that their spectral profile equated that recorded under Eye-open Condition. On the opposite, in Controls as well as in AD patients with Normal P2 Latency (AD-NL) spectral profiles recorded under Eye-open and Eye-closed Conditions significantly differed from each other. At the baseline, under Eye-open Condition, the spectra overlapped each other in the three Groups. CONCLUSION Under Eye-closed Condition AD patients may present a significant change in both F-VEP latency and EEG rhythm modulation. The presence of concurrent changes of independent parameters suggests that the neurodegenerative process can impair a control system active in Eye-closed Condition which the electrophysiological parameters depend upon. F-VEP can be viewed as a reliable marker of such impairment.
Collapse
|
52
|
Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol 2012; 123:1798-809. [DOI: 10.1016/j.clinph.2012.02.061] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 11/26/2022]
|
53
|
Kim JS, Lee SH, Park G, Kim S, Bae SM, Kim DW, Im CH. Clinical Implications of Quantitative Electroencephalography and Current Source Density in Patients with Alzheimer’s Disease. Brain Topogr 2012; 25:461-74. [DOI: 10.1007/s10548-012-0234-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
54
|
Vecchio F, Tombini M, Buffo P, Assenza G, Pellegrino G, Benvenga A, Babiloni C, Rossini PM. Mobile phone emission increases inter-hemispheric functional coupling of electroencephalographic alpha rhythms in epileptic patients. Int J Psychophysiol 2012; 84:164-71. [DOI: 10.1016/j.ijpsycho.2012.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/25/2012] [Accepted: 02/01/2012] [Indexed: 01/16/2023]
|
55
|
Peña-Ortega F, Bernal-Pedraza R. Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:236289. [PMID: 22611415 PMCID: PMC3350957 DOI: 10.1155/2012/236289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ) oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25-35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1-42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
| | - Ramón Bernal-Pedraza
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
- Departamento de Farmacobiología, Cinvestav-IPN, Mexico City, DF, Mexico
| |
Collapse
|
56
|
Shao S, Shen K, Yu K, Wilder-Smith EPV, Li X. Frequency-domain EEG source analysis for acute tonic cold pain perception. Clin Neurophysiol 2012; 123:2042-9. [PMID: 22538122 DOI: 10.1016/j.clinph.2012.02.084] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate electrocortical responses to tonic cold pain by frequency-domain electroencephalogram (EEG) source analysis, and to identify potential electrocortical indices of acute tonic pain. METHODS Scalp EEG data were recorded from 26 healthy subjects under tonic cold pain (CP) and no-pain control (NP) conditions. EEG power spectra and the standardized low-resolution brain electromagnetic tomography (sLORETA) localized EEG cortical sources were compared between the two conditions in five frequency bands: 1-4 Hz, 4-8 Hz, 8-12 Hz, 12-18 Hz and 18-30 Hz. RESULTS In line with the EEG power spectral results, the source power significantly differed between the CP and NP conditions in 8-12 Hz (CP<NP) and 18-30 Hz (CP>NP) in extensive brain regions. Besides, there were also significantly different 4-8 Hz and 12-18 Hz source activities between the two conditions. Among the significant source activities, the left medial frontal and left superior frontal 4-8 Hz activities, the anterior cingulate 8-12 Hz activity and the posterior cingulate 12-18 Hz activity showed significant negative correlations with subjective pain ratings. CONCLUSIONS The brain's perception of tonic cold pain was characterized by cortical source power changes across different frequency bands in multiple brain regions. Oscillatory activities that significantly correlated with subjective pain ratings were found in the prefrontal and cingulate regions. SIGNIFICANCE These findings may offer useful measures for objective pain assessment and provide a basis for pain treatment by modulation of neural oscillations at specific frequencies in specific brain regions.
Collapse
Affiliation(s)
- Shiyun Shao
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
57
|
Babiloni C, Carducci F, Lizio R, Vecchio F, Baglieri A, Bernardini S, Cavedo E, Bozzao A, Buttinelli C, Esposito F, Giubilei F, Guizzaro A, Marino S, Montella P, Quattrocchi CC, Redolfi A, Soricelli A, Tedeschi G, Ferri R, Rossi-Fedele G, Ursini F, Scrascia F, Vernieri F, Pedersen TJ, Hardemark HG, Rossini PM, Frisoni GB. Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease. Hum Brain Mapp 2012; 34:1427-46. [PMID: 22331654 DOI: 10.1002/hbm.22005] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/06/2022] Open
Abstract
Cortical gray matter volume and resting state cortical electroencephalographic rhythms are typically abnormal in subjects with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here we tested the hypothesis that in amnesic MCI and AD subjects, abnormalities of EEG rhythms are a functional reflection of cortical atrophy across the disease. Eyes-closed resting state EEG data were recorded in 57 healthy elderly (Nold), 102 amnesic MCI, and 108 AD patients. Cortical gray matter volume was indexed by magnetic resonance imaging recorded in the MCI and AD subjects according to Alzheimer's disease neuroimaging initiative project (http://www.adni-info.org/). EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). These rhythms were indexed by LORETA. Compared with the Nold, the MCI showed a decrease in amplitude of alpha 1 sources. With respect to the Nold and MCI, the AD showed an amplitude increase of delta sources, along with a strong amplitude reduction of alpha 1 sources. In the MCI and AD subjects as a whole group, the lower the cortical gray matter volume, the higher the delta sources, the lower the alpha 1 sources. The better the score to cognitive tests the higher the gray matter volume, the lower the pathological delta sources, and the higher the alpha sources. These results suggest that in amnesic MCI and AD subjects, abnormalities of resting state cortical EEG rhythms are not epiphenomena but are strictly related to neurodegeneration (atrophy of cortical gray matter) and cognition.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Viale Pinto 7, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Roca-Stappung M, Fernández T, Becerra J, Mendoza-Montoya O, Espino M, Harmony T. Healthy aging: Relationship between quantitative electroencephalogram and cognition. Neurosci Lett 2012; 510:115-20. [DOI: 10.1016/j.neulet.2012.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
|
59
|
Vecchio F, Buffo P, Sergio S, Iacoviello D, Rossini PM, Babiloni C. Mobile phone emission modulates event-related desynchronization of alpha rhythms and cognitive–motor performance in healthy humans. Clin Neurophysiol 2012; 123:121-8. [DOI: 10.1016/j.clinph.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022]
|
60
|
Fonseca LC, Tedrus GM, Prandi LR, Almeida AM, Furlanetto DS. Alzheimer's disease: relationship between cognitive aspects and power and coherence EEG measures. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:875-81. [DOI: 10.1590/s0004-282x2011000700005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/27/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: To evaluate the relationship between specific cognitive aspects and quantitative EEG measures, in patients with mild or moderate Alzheimer's disease (AD). METHOD: Thirty-eight AD patients and 31 controls were assessed by CERAD neuropsychological battery (Consortium to Establish a Registry for AD) and the electroencephalogram (EEG). The absolute power and coherences EEG measures were calculated at rest. The correlations between the cognitive variables and the EEG were evaluated. RESULTS: In the AD group there were significant correlations between different coherence EEG measures and Mini-Mental State Examination, verbal fluency, modified Boston naming, word list memory with repetition, word list recall and recognition, and constructional praxis (p<0.01). These correlations were all negative for the delta and theta bands and positive for alpha and beta. There were no correlations between cognitive aspects and absolute EEG power. CONCLUSION: The coherence EEG measures reflect different forms in the relationship between regions related to various cognitive dysfunctions.
Collapse
|
61
|
Lee TW, Yu YWY, Wu HC, Chen TJ. Do resting brain dynamics predict oddball evoked-potential? BMC Neurosci 2011; 12:121. [PMID: 22114868 PMCID: PMC3259052 DOI: 10.1186/1471-2202-12-121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/24/2011] [Indexed: 12/13/2022] Open
Abstract
Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP) is still not clear. This study explored the relationship between resting electroencephalography (EEG) and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS) was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.
Collapse
Affiliation(s)
- Tien-Wen Lee
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | | | | |
Collapse
|
62
|
Babiloni C, Frisoni GB, Vecchio F, Lizio R, Pievani M, Cristina G, Fracassi C, Vernieri F, Rodriguez G, Nobili F, Ferri R, Rossini PM. Stability of clinical condition in mild cognitive impairment is related to cortical sources of alpha rhythms: an electroencephalographic study. Hum Brain Mapp 2011; 32:1916-31. [PMID: 21181798 PMCID: PMC6869969 DOI: 10.1002/hbm.21157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/10/2010] [Accepted: 08/10/2010] [Indexed: 11/10/2022] Open
Abstract
Previous evidence has shown that resting eyes-closed cortical alpha rhythms are higher in amplitude in mild cognitive impairment (MCI) than Alzheimer's disease (AD) subjects (Babiloni et al. [2006a]: Human Brain Mapp 27:162-172; [2006b]: Clin Neurophysiol 117:252-268; [2006c]: Neuroimage 29:948-964; [2006d]: Ann Neurol 59:323-334; [2006e]: Clin Neurophysiol 117:1113-1129; [2006f]: Neuroimage 31:1650-1665). This study tested the hypothesis that, in amnesic MCI subjects, high amplitude of baseline cortical alpha rhythms is related to long-term stability of global cognition on clinical follow-up. Resting electroencephalographic (EEG) data were recorded in 100 amnesic MCI subjects during eyes-closed condition. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Cortical EEG sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Global cognition was indexed by mini mental state evaluation (MMSE) score at the time of EEG recordings (baseline) and about after 1 year. Based on the MMSE percentage difference between baseline and 1-year follow-up (MMSEvar), the MCI subjects were retrospectively divided into three arbitrary groups: DECREASED (MMSEvar ≤ -4%; N = 43), STABLE (MMSEvar ≈ 0; N = 27), and INCREASED (MMSEvar ≥ +4%; N = 30). Subjects' age, education, individual alpha frequency, gender, and MMSE scores were used as covariates for statistical analysis. Baseline posterior cortical sources of alpha 1 rhythms were higher in amplitude in the STABLE than in the DECREASED and INCREASED groups. These results suggest that preserved resting cortical neural synchronization at alpha frequency is related to a long-term (1 year) stable cognitive function in MCI subjects. Future studies should use serial MMSE measurements to confirm and refine the present results.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Brain's alpha activity is highly reduced in euthymic bipolar disorder patients. Cogn Neurodyn 2011; 6:11-20. [PMID: 23372616 DOI: 10.1007/s11571-011-9172-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022] Open
Abstract
Brain's alpha activity and alpha responses belong to major electrical signals that are related to sensory/cognitive signal processing. The present study aims to analyze the spontaneous alpha activity and visual evoked alpha response in drug free euthymic bipolar patients. Eighteen DSM-IV euthymic bipolar patients (bipolar I n = 15, bipolar II n = 3) and 18 healthy controls were enrolled in the study. Patients needed to be euthymic at least for 4 weeks and psychotrop free for at least 2 weeks. Spontaneous EEG (4 min eyes closed, 4 min eyes open) and evoked alpha response upon application of simple visual stimuli were analyzed. EEG was recorded at 30 positions. The digital FFT-based power spectrum analysis was performed for spontaneous eyes closed and eyes open conditions and the response power spectrum was also analyzed for simple visual stimuli. In the analysis of spontaneous EEG, the ANOVA on alpha responses revealed significant results for groups (F(1,34) = 8.703; P < 0.007). Post-hoc comparisons showed that spontaneous EEG alpha power of healthy subjects was significantly higher than the spontaneous EEG alpha power of euthymic patients. Furthermore, visual evoked alpha power of healthy subjects was significantly higher than visual evoked alpha power of euthymic patients (F(1,34) = 4.981; P < 0.04). Decreased alpha activity in spontaneous EEG is an important pathological EEG finding in euthymic bipolar patients. Together with an evident decrease in evoked alpha responses, the findings may lead to a new pathway in search of biological correlates of cognitive impairment in bipolar disorder.
Collapse
|
64
|
Nishida K, Yoshimura M, Isotani T, Yoshida T, Kitaura Y, Saito A, Mii H, Kato M, Takekita Y, Suwa A, Morita S, Kinoshita T. Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clin Neurophysiol 2011; 122:1718-25. [DOI: 10.1016/j.clinph.2011.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 11/25/2022]
|
65
|
Roh JH, Park MH, Ko D, Park KW, Lee DH, Han C, Jo SA, Yang KS, Jung KY. Region and frequency specific changes of spectral power in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2011; 122:2169-76. [PMID: 21715226 DOI: 10.1016/j.clinph.2011.03.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 02/08/2011] [Accepted: 03/19/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To find out whether healthy control (HC), amnestic mild cognitive impairment (aMCI), and Alzheimer's disease (AD) subjects exhibit region and frequency specific spectral power differences and whether the spectral power changes correlate with domain-specific cognitive function. METHODS Forty-one AD, 38 aMCI, and 39 HC subjects underwent quantitative EEG and comprehensive neuropsychological tests. Repeated measures analysis of variance was performed to identify differences in EEG spectral power among the three groups by scalp region and EEG frequency. Correlations between region and frequency specific spectral powers and neuropsychological test scores were evaluated. RESULTS Temporal and parieto-occipital theta band powers were highest in AD. Whereas, parieto-occipital alpha and frontal and temporal beta 2 band powers were highest in HC and lowest in AD (p<0.05). Temporal and parieto-occipital theta powers negatively correlated with verbal and visuospatial memory recall, while parieto-occipital alpha and temporal beta 2 powers positively correlated with verbal memory recall (p<0.01). CONCLUSIONS Region and frequency specific oscillatory characteristics of EEG reflect domain-specific cognitive function in patients with aMCI and AD. SIGNIFICANCE Region and frequency specific spectral powers have clinical implications as additional markers differentiating AD, aMCI, and HC.
Collapse
Affiliation(s)
- Jee Hoon Roh
- Department of Neurology, Korea University College of Medicine, Korea University Medical Center, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Babiloni C, Marzano N, Lizio R, Valenzano A, Triggiani AI, Petito A, Bellomo A, Lecce B, Mundi C, Soricelli A, Limatola C, Cibelli G, Del Percio C. Resting state cortical electroencephalographic rhythms in subjects with normal and abnormal body weight. Neuroimage 2011; 58:698-707. [PMID: 21704716 DOI: 10.1016/j.neuroimage.2011.05.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
It is well known that resting state regional cerebral blood flow is abnormal in obese when compared to normal-weight subjects but the underlying neurophysiological mechanisms are poorly known. To address this issue, we tested the hypothesis that amplitude of resting state cortical electroencephalographic (EEG) rhythms differ among underweight, normal-weight, and overweight/obese subjects as a reflection of the relationship between cortical neural synchronization and regulation of body weight. Eyes-closed resting state EEG data were recorded in 16 underweight subjects, 25 normal-weight subjects, and 18 overweight/obese subjects. All subjects were psychophysically healthy (no eating disorders or major psychopathologies). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), beta 2 (20-30Hz), and gamma (30-40Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that parietal and temporal alpha 1 sources fitted the pattern underweight>normal-weight>overweight/obese (p<0.004), whereas occipital alpha 1 sources fitted the pattern normal-weight>underweight>overweight/obese (p<0.00003). Furthermore, amplitude of the parietal, occipital, and temporal alpha 2 sources was stronger in the normal-weight subjects than in the underweight and overweight/obese subjects (p<0.0007). These results suggest that abnormal weight in healthy overweight/obese subjects is related to abnormal cortical neural synchronization at the basis of resting state alpha rhythms and fluctuation of global brain arousal.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, Bioagromed, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Fonseca LC, Tedrus GMAS, Prandi LR, Andrade ACA. Quantitative electroencephalography power and coherence measurements in the diagnosis of mild and moderate Alzheimer's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:297-303. [DOI: 10.1590/s0004-282x2011000300006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: To evaluate the contribution of quantitative electroencephalographic (qEEG) analyses in the diagnosis of Alzheimer's disease (AD). METHOD: Thirty-five patients from the Neurology Outpatients Clinic of PUC-Campinas, diagnosed with AD according to the NINCDS/ADRDA were evaluated, and compared with a control group consisting of 30 individuals with no cognitive deficit. The procedures consisted of clinical-neurological, cognitive and behavioral analyses and the qEEG (absolute power and coherence). RESULTS: The AD group presented greater absolute power values in the delta and theta bands, greater theta/alpha indices and less frontal alpha and beta coherence. Logistic multiple regression models were constructed and those only showing variations in the qEEG (frontal alpha coherence and left frontal absolute theta power) showed an accuracy classification (72.3%) below that obtained in the mini-mental state examination (93%). CONCLUSION: The study of coherence and power in the qEEG showed a relatively limited accuracy with respect to its application in routine clinical practice.
Collapse
|
68
|
Yener GG, Başar E. Sensory evoked and event related oscillations in Alzheimer's disease: a short review. Cogn Neurodyn 2010; 4:263-74. [PMID: 22132038 DOI: 10.1007/s11571-010-9138-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/26/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022] Open
Abstract
Diagnosis and treatment of Alzheimer's disease (AD) depend on clinical evaluation and there is a strong need for an objective tool as a biomarker. Our group has investigated brain oscillatory responses in a small group of AD subjects. We found that the de novo (untreated) AD group differs from both the cholinergically-treated AD group and aged-matched healthy controls in theta and delta responses over left frontal-central areas after cognitive stimulation. On the contrary, the difference observed in AD groups upon a sensory visual stimulation includes response increase over primary or secondary visual sensorial areas compared to controls. These findings imply at least two different neural networks, depending on type of stimulation (i.e. cognitive or sensory). The default mode defined as activity in resting state in AD seems to be affected electrophysiologically. Coherences are also very valuable in observing the group differences, especially when a cognitive stimulus is applied. In healthy controls, higher coherence values are elicited after a cognitive stimulus than after a sensory task. Our findings support the notion of disconnectivity of cortico-cortical connections in AD. The differences in comparison of oscillatory responses upon sensory and cognitive stimulations and their role as a biomarker in AD await further investigation in series with a greater number of subjects.
Collapse
|
69
|
Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory–cognitive networks. Brain Res 2010; 1357:79-90. [DOI: 10.1016/j.brainres.2010.08.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/23/2010] [Accepted: 08/17/2010] [Indexed: 11/23/2022]
|
70
|
Theta power responses in mild Alzheimer’s disease during an auditory oddball paradigm: lack of theta enhancement during stimulus processing. J Neural Transm (Vienna) 2010; 117:1195-208. [DOI: 10.1007/s00702-010-0488-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 09/02/2010] [Indexed: 01/12/2023]
|
71
|
Hlinka J, Alexakis C, Diukova A, Liddle PF, Auer DP. Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis. Neuroimage 2010; 53:239-46. [PMID: 20538065 DOI: 10.1016/j.neuroimage.2010.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/15/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022] Open
Abstract
The last two decades have witnessed great progress in mapping neural networks associated with task-induced brain activation. More recently, identification of resting state networks (RSN) paved the way to investigate spontaneous task-unrelated brain activity. The cardinal features characterising RSN are low-frequency fluctuations of blood oxygenation level dependent (BOLD) signals synchronised between spatially distinct, but functionally connected brain areas. Simultaneous EEG/fMRI has been previously deployed to study the neurophysiological signature of RSN by comparing EEG power with BOLD amplitudes. We hypothesised that band-limited EEG power may be directly related to network-specific functional connectivity (FC) of BOLD signal time courses. Hence, we studied the association between individual EEG signature and FC in a core RSN, the so-called default mode network (DMN). Combined EEG/fMRI data of 20 healthy volunteers collected during a 15-minute rest period were analysed. Using an inter-subject analysis design, we demonstrated a network and frequency specific relation between RSN FC and EEG. In a multiple regression model, EEG band-powers explained 70% of DMN FC variance, with significant partial correlations of DMN FC to delta (r=-0.73) and beta (r=0.53) power. The identified EEG pattern has been previously associated with increased alertness. Conversely, an established EEG-derived sedation index (spectral edge frequency SEF95) closely correlated with DMN FC. The study presents an approach that opens a new perspective to EEG/fMRI correlation. Direct evidence was provided for a distinct neurophysiological correlate of DMN FC. This finding further validates the biological relevance of network-specific intrinsic FC and provides an initial neurophysiological basis for interpreting studies of DMN FC alterations.
Collapse
Affiliation(s)
- Jaroslav Hlinka
- Division of Academic Radiology, School of Clinical Sciences, University of Nottingham, Nottingham, UK.
| | | | | | | | | |
Collapse
|
72
|
Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clin Neurophysiol 2010; 121:502-7. [PMID: 20097602 DOI: 10.1016/j.clinph.2009.11.090] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 10/20/2009] [Accepted: 11/10/2009] [Indexed: 11/22/2022]
|
73
|
Cortical sources of EEG rhythms are abnormal in down syndrome. Clin Neurophysiol 2010; 121:1205-12. [PMID: 20362500 DOI: 10.1016/j.clinph.2010.02.155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/05/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Previous studies have been inconclusive whether dominant resting state alpha rhythms are greater or lower in amplitude in subjects with Down syndrome (DS) when compared to control subjects, ample resting alpha rhythms being considered as a reflection of good mechanisms of cortical neural synchronization. Here we tested the hypothesis that when the effects of head volume conduction are taken into account by the normalization of the cortical sources of resting alpha rhythms, these sources are lower in amplitude in DS subjects than in controls in line with typical findings in Alzheimer's disease patients. METHODS Eyes-closed resting electroencephalographic (EEG) data were recorded in 45 DS subjects (25 males; mean age of 22.8years+/-0.7 standard error of mean (SEM)) and in 45 age-matched cognitively normal subjects (25 males; mean age of 22.4years+/-0.5 SEM). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), beta 2 (20-30Hz), and gamma (30-40Hz). Cortical EEG sources were estimated by low resolution electromagnetic tomography (LORETA) and normalized across all voxels and frequencies. RESULTS Central, parietal, occipital, and temporal cortical sources of resting alpha and beta rhythms were lower in amplitude in the DS than control subjects, whereas the opposite was true for occipital delta cortical sources. A control analysis on absolute source values showed that they were globally larger in amplitude across several frequency bands in DS than control subjects. CONCLUSIONS These results suggest that normalized cortical sources of alpha rhythms are lower in amplitude in DS than control subjects, as it is typically found in Alzheimer's disease. SIGNIFICANCE DS is accompanied by a functional impairment of cortical neuronal synchronization mechanisms in the resting state condition.
Collapse
|
74
|
Babiloni C, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Buffo P, Cibelli G, Soricelli A, Eusebi F, Del Percio C. Resting state cortical rhythms in athletes: a high-resolution EEG study. Brain Res Bull 2010; 81:149-56. [PMID: 19879337 DOI: 10.1016/j.brainresbull.2009.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/21/2009] [Accepted: 10/19/2009] [Indexed: 11/30/2022]
Abstract
The present electroencephalographic (EEG) study tested the working hypothesis that the amplitude of resting state cortical EEG rhythms (especially alpha, 8-12 Hz) was higher in elite athletes compared with amateur athletes and non-athletes, as a reflection of the efficiency of underlying back-ground neural synchronization mechanisms. Eyes closed resting state EEG data were recorded in 16 elite karate athletes, 20 amateur karate athletes, and 25 non-athletes. The EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that the amplitude of parietal and occipital alpha 1 sources was significantly higher in the elite karate athletes than in the non-athletes and karate amateur athletes. Similar results were observed in parietal and occipital delta sources as well as in occipital theta sources. Finally, a control confirmatory experiment showed that the amplitude of parietal and occipital delta and alpha 1 sources was stronger in 8 elite rhythmic gymnasts compared with 14 non-athletes. These results supported the hypothesis that cortical neural synchronization at the basis of eyes-closed resting state EEG rhythms is enhanced in elite athletes than in control subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Mobile phone emission modulates inter-hemispheric functional coupling of EEG alpha rhythms in elderly compared to young subjects. Clin Neurophysiol 2010; 121:163-71. [DOI: 10.1016/j.clinph.2009.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 01/17/2023]
|
76
|
Inter-hemispheric functional coupling of eyes-closed resting EEG rhythms in adolescents with Down syndrome. Clin Neurophysiol 2009; 120:1619-27. [PMID: 19643663 DOI: 10.1016/j.clinph.2009.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 05/13/2009] [Accepted: 06/18/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We tested the hypothesis that inter-hemispheric directional functional coupling of eyes-closed resting EEG rhythms is abnormal in adolescents with Down syndrome (DS). METHODS Eyes-closed resting EEG data were recorded in 38 DS adolescents (18.7 years +/-0.67 SE, IQ=49+/-1.9 SE) and in 17 matched normal control subjects (NYoung=19.1 years +/-0.39 SE). The EEG data were recorded from 8 electrodes (Fp1, Fp2, C3, C4, T3, T4, O1, O2) referenced to vertex. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). Power of EEG rhythms was evaluated by FFT for control purposes, whereas inter-hemispheric directional EEG functional coupling was computed by directed transfer function (DTF). RESULTS As expected, alpha, beta, and gamma power was widely higher in NYoung than DS subjects, whereas the opposite was true for delta power. As a novelty, DTF (directionality) values globally prevailed from right to left occipital areas in NYoung subjects and in the opposite direction in DS patients. A control experiment showed that this DTF difference could not be observed in the comparison between DS adults with mild cognitive impairment and normal age-matched adults. CONCLUSIONS These results indicate a peculiar abnormal directional inter-hemispheric interplay in visual occipital areas of DS adolescents. SIGNIFICANCE Direction of inter-hemispheric EEG functional coupling unveils a new abnormal brain network feature in DS adolescents.
Collapse
|
77
|
Babiloni C, Frisoni GB, Del Percio C, Zanetti O, Bonomini C, Cassetta E, Pasqualetti P, Miniussi C, De Rosas M, Valenzano A, Cibelli G, Eusebi F, Rossini PM. Ibuprofen treatment modifies cortical sources of EEG rhythms in mild Alzheimer's disease. Clin Neurophysiol 2009; 120:709-18. [PMID: 19324592 DOI: 10.1016/j.clinph.2009.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 01/12/2009] [Accepted: 02/03/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Non-steroidal anti-inflammatory drugs such as ibuprofen have a protective role on risk of Alzheimer's disease (AD). Here we evaluated the hypothesis that long-term ibuprofen treatment affects cortical sources of resting electroencephalographic (EEG) rhythms in mild AD patients. METHODS Twenty-three AD patients (13 treated AD IBUPROFEN; 10 untreated AD PLACEBO) were enrolled. Resting EEG data were recorded before and 1 year after the ibuprofen/placebo treatment. EEG rhythms were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). LORETA was used for EEG source analysis. RESULTS In the AD PLACEBO group, amplitude of delta sources was globally greater at follow-up than baseline. Instead, amplitude of delta sources remained stable or decreased in the majority of the AD IBUPROFEN patients. Clinical (CDR) but not global cognitive status (MMSE) reflected EEG results. CONCLUSIONS These results suggest that in mild AD patients, a long-term ibuprofen treatment slightly slows down the progressive increment of delta rhythms as a sign of contrast against the neurodegenerative processes. SIGNIFICANCE They motivate future investigations with larger population and extended neuropsychological testing, to study the relationships among ibuprofen treatment, delta cortical sources, and higher order functions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Viale Pinto 7, Foggia I-71100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Nir RR, Lev R, Moont R, Granovsky Y, Sprecher E, Yarnitsky D. Neurophysiology of the cortical pain network: revisiting the role of S1 in subjective pain perception via standardized low-resolution brain electromagnetic tomography (sLORETA). THE JOURNAL OF PAIN 2008; 9:1058-69. [PMID: 18708299 DOI: 10.1016/j.jpain.2008.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/10/2008] [Accepted: 06/17/2008] [Indexed: 11/15/2022]
Abstract
UNLABELLED Multiple studies have supported the usefulness of standardized low-resolution brain electromagnetic tomography (sLORETA) in localizing generators of scalp-recorded potentials. The current study implemented sLORETA on pain event-related potentials, primarily aiming at validating this technique for pain research by identifying well-known pain-related regions. Subsequently, we pointed at investigating the still-debated and ambiguous topic of pain intensity coding at these regions, focusing on their relative impact on subjective pain perception. sLORETA revealed significant activations of the bilateral primary somatosensory (SI) and anterior cingulate cortices and of the contralateral operculoinsular and dorsolateral prefrontal (DLPFC) cortices (P < .05 for each). Activity of these regions, excluding DLPFC, correlated with subjective numerical pain scores (P < .05 for each). However, a multivariate regression analysis (R = .80; P = .024) distinguished the contralateral SI as the only region whose activation magnitude significantly predicted the subjective perception of noxious stimuli (P = .020), further substantiated by a reduced regression model (R = .75, P = .008). Based on (1) correspondence of the pain-activated regions identified by sLORETA with the acknowledged imaging-based pain-network and (2) the contralateral SI proving to be the most contributing region in pain intensity coding, we found sLORETA to be an appropriate tool for relevant pain research and further substantiated the role of SI in pain perception. PERSPECTIVE Because the literature of pain intensity coding offers inconsistent findings, the current article used a novel tool for revisiting this controversial issue. Results suggest that it is the activation magnitude of SI, which solely establishes the significant correlation with subjective pain ratings, in accordance with the classical clinical thinking, relating SI lesions to diminished perception of pain. Although this study cannot support a causal relation between SI activation magnitude and pain perception, such relation might be insinuated.
Collapse
Affiliation(s)
- Rony-Reuven Nir
- Laboratory of Clinical Neurophysiology, Department of Neurology, Rambam Health Care Campus, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
79
|
A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 2008; 1235:172-93. [PMID: 18640103 DOI: 10.1016/j.brainres.2008.06.103] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 12/31/2022]
Abstract
The analysis of the functional correlates of "brain oscillations" has become an important branch of neuroscience. Although research on the functional correlates of brain oscillation has progressed to a high level, studies on cognitive disorders are rare and mainly limited to schizophrenia patients. The present review includes the results of the changes in brain oscillations in patients with Alzheimer's, schizophrenia, bipolar disorders, mild cognitive impairment, attention-deficit hyperactivity disorder (ADHD), alcoholism and those with genetic disorders. Furthermore, the effects of pharmaca and the influence of neurotransmitters in patients with cognitive disorders are also reviewed. Following the review, a short synopsis is given related to the analysis of brain oscillations.
Collapse
|
80
|
Gianotti LRR, Künig G, Faber PL, Lehmann D, Pascual-Marqui RD, Kochi K, Schreiter-Gasser U. Rivastigmine effects on EEG spectra and three-dimensional LORETA functional imaging in Alzheimer's disease. Psychopharmacology (Berl) 2008; 198:323-32. [PMID: 18446328 DOI: 10.1007/s00213-008-1111-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/09/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The objective of the study is to investigate the electrocortical and the global cognitive effects of 3 months rivastigmine medication in a group of mild to moderate Alzheimer's disease patients. MATERIALS AND METHODS Multichannel EEG and cognitive performances measured with the Mini Mental State Examination in a group of 16 patients with mild to moderate Alzheimer's Disease were collected before and 3 months after the onset of rivastigmine medication. RESULTS Spectral analysis of the EEG data showed a significant power decrease in the delta and theta frequency bands during rivastigmine medication, i.e., a shift of the power spectrum towards 'normalization'. Three-dimensional low resolution electromagnetic tomography (LORETA) functional imaging localized rivastigmine effects in a network that includes left fronto-parietal regions, posterior cingulate cortex, bilateral parahippocampal regions, and the hippocampus. Moreover, a correlation analysis between differences in the cognitive performances during the two recordings and LORETA-computed intracortical activity showed, in the alpha1 frequency band, better cognitive performance with increased cortical activity in the left insula. CONCLUSION The results point to a 'normalization' of the EEG power spectrum due to medication, and the intracortical localization of these effects showed an increase of cortical activity in frontal, parietal, and temporal regions that are well-known to be affected in Alzheimer's disease. The topographic convergence of the present results with the memory network proposed by Vincent et al. (J. Neurophysiol. 96:3517-3531, 2006) leads to the speculation that in our group of patients, rivastigmine specifically activates brain regions that are involved in memory functions, notably a key symptom in this degenerative disease.
Collapse
Affiliation(s)
- Lorena R R Gianotti
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|