51
|
Depth profiles of protein-bound microcystin in Küçükçekmece Lagoon. Toxicon 2021; 198:156-163. [PMID: 33992691 DOI: 10.1016/j.toxicon.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Microcystis is the most commonly found toxic cyanobacterial genus around the world and has a negative impact on the ecosystem. As a predominant producer of the potent hepatotoxin microcystin (MC), the genus causes outbreaks in freshwaters worldwide. Standard analytical methods that are used for the detection of microcystin variants can only measure the free form of microcystin in cells. Since microcystin was found as free and protein-bound forms in the cells, a significant proportion of microcystin is underestimated with analytical methods. The aim of the study was to measure protein-bound microcystins and determine the environmental factors that affect the binding of microcystin to proteins. Samples were taken at depths of surface, 1 m, 5 m, 10 m, 15 m, and 18 m in Küçükçekmece Lagoon to analyze depth profiles of two different microcystin forms from June to September 2012 at regular monthly intervals. Our findings suggest that the most important parameter affecting protein-bound microcystin at surface water is high light. Due to favorable environmental conditions such as temperature, light, and physicochemical parameters, the higher microcystin contents, both free and protein-bound MCs, were found in summer periods.
Collapse
|
52
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
53
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
54
|
Pawlik-Skowrońska B, Bownik A. Cyanobacterial anabaenopeptin-B, microcystins and their mixture cause toxic effects on the behavior of the freshwater crustacean Daphnia magna (Cladocera). Toxicon 2021; 198:1-11. [PMID: 33915136 DOI: 10.1016/j.toxicon.2021.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Comparison of the toxic effects caused by the pure cyanobacterial cyclic hexapeptide anabaenopeptin-B (AN-B), the heptapeptides: microcystin-LR (MC-LR) and MC-LF as well as a binary mixture of AN-B with MC-LR on the swimming speed and hopping frequency - essential activities of Daphnia, was experimentally determined. Till now, no information on behavioral effects of AN-B and its mixture with microcystins, commonly produced by cyanobacteria, was available. Also MC-LF effect on aquatic crustaceans was determined for the first time. The results showed that AN-B exerted considerable inhibition of D. magna swimming speed and hopping frequency similar to MC-LR and MC-LF. The mixture of AN-B and MC-LR caused stronger toxic effects, than the individual oligopeptides used at the same concentration. The much lower 48 h- EC50 value of the AN-B and MC-LR mixture (0.95 ± 0.12 μg/mL) than those of individual oligopeptides AN-B (6.3 ± 0.63 μg/mL), MC-LR (4.0 ± 0.27 μg/mL), MC-LF (3.9 ± 0.20 μg/mL) that caused swimming speed inhibition explains the commonly observed stronger toxicity of complex crude cyanobacterial extracts to daphnids than individual microcystins. The obtained results indicated that AN-B, microcystins and their mixture exerted time- and concentration-dependent motility disturbances of crustaceans and they can be good candidates for evaluation of toxicity in early warning systems. Other cyanobacterial oligopeptides beyond microcystins should be considered as a real threat for aquatic organisms.
Collapse
Affiliation(s)
- Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
55
|
Fernandes SPS, Kovář P, Pšenička M, Silva AMS, Salonen LM, Espiña B. Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15053-15063. [PMID: 33760592 DOI: 10.1021/acsami.0c18808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.
Collapse
Affiliation(s)
- Soraia P S Fernandes
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Petr Kovář
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Milan Pšenička
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Artur M S Silva
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura M Salonen
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
56
|
Brêda-Alves F, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11528-11539. [PMID: 33128150 DOI: 10.1007/s11356-020-11367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The large-scale use of herbicides deteriorates water quality and threatens aquatic biodiversity. Unfortunately, there are few studies on the ecological effects of herbicides on toxin-producing strains of cyanobacteria under changing nutrient conditions. The objective of the present study was to investigate the effects of the herbicide clethodim and nitrogen variation on the allelopathic interactions and toxin production of Microcystis aeruginosa BCCUSP232 and Raphidiopsis raciborskii (formerly known as Cylindrospermopsis raciborskii) ITEPA1. M. aeruginosa had increased cell density when exposed to the clethodim (H +) (23.55 mg/L), whereas the highest cell density of R. raciborskii was observed in the treatment with clethodim plus limited nitrogen. Also, the cell-free exudate of R. raciborskii significantly stimulated the growth of M. aeruginosa on day 3 of the experiment. The concentration of chlorophyll-a in M. aeruginosa cultures generally increased in all the treatments, while in R. raciborskii cultures, the opposite occurred. Total microcystins (MCs) content of M. aeruginosa in the mixed cultures was 68% higher in nitrogen-enriched conditions than the control. A similar increase in MC content occurred in M. aeruginosa unialgal culture treated with R. raciborskii exudate. Total saxitoxin concentration was 81% higher in mixed cultures of R. raciborskii simultaneously exposed to high nitrogen and clethodim. Similarly, unialgal cultures of R. raciborskii exposed to either high nitrogen or clethodim had higher saxitoxins concentrations than the control. The intracellular H2O2 content of M. aeruginosa cultures decreased, whereas, in R. raciborskii cultures, it increased during exposure to high nitrogen and clethodim. Only R. raciborskii had a significant variation in peroxidase activity. The activities of glutathione S-transferase of both strains were higher in the presence of clethodim. These results revealed that nitrogen enrichment and the presence of clethodim might lead to the excessive proliferation of M. aeruginosa and R. raciborskii and increased production of cyanotoxins in aquatic environments.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil.
| | - Valéria de Oliveira Fernandes
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria
| |
Collapse
|
57
|
Habtemariam H, Kifle D, Leta S, Beekman W, Lürling M. Cyanotoxins in drinking water supply reservoir (Legedadi, Central Ethiopia): implications for public health safety. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04313-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractCyanobacterial blooms in drinking water supply affect its quality, which ultimately impacts ecosystem and public health. Thus, this cross-sectional study was conducted to perform a preliminary study on cyanotoxins via analysis of samples collected only once from two sites during the month of peak algal bloom and to subsequently prompt a comprehensive risk assessment in a major drinking water source, Legedadi Reservoir, of Addis Ababa, the capital city of Ethiopia. Samples were collected during peak algal bloom month (January 2018) from two sampling sites, near the dam (S1) and at the center of the reservoir (S2). Identification and enumeration of phytoplankton taxa were done and the measurement of common hepatotoxin (MCs and NOD) concentrations was conducted using liquid chromatography-tandem mass spectrometry. In the reservoir, cyanobacteria made up to 98% of total phytoplankton abundance, with Dolichospermum and Microcystis spp, dominating the phytoplankton community. In these first cyanotoxin analyses conducted for a drinking water supply source in Ethiopia, six major MC variants, namely MC-dmRR, MC-RR, MC-YR, MC-dmLR, MC-LR, and MC-LA, were detected in both algal seston and water samples. MC-LR was the most dominant MCs variant, while nodularin was not detected for both sampling sites. Extracellular total MC concentrations (μg L−1) of 453.89 and 61.63 and intracellular total MC concentrations (μg L−1) of 189.29 and 112.34 were recorded for samples from S1 and S2, respectively. The high concentrations of extracellular MCs, with MC-LR constituting the greatest proportion, indicate the extremely high potential public health risk for end-users.
Collapse
|
58
|
Colas S, Marie B, Lance E, Quiblier C, Tricoire-Leignel H, Mattei C. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. ENVIRONMENTAL RESEARCH 2021; 193:110590. [PMID: 33307089 DOI: 10.1016/j.envres.2020.110590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anatoxin-a (ATX-a) is a neurotoxic alkaloid, produced by several freshwater planktonic and benthic cyanobacteria (CB). Such CB have posed human and animal health issues for several years, as this toxin is able to cause neurologic symptoms in humans following food poisoning and death in wild and domestic animals. Different episodes of animal intoxication have incriminated ATX-a worldwide, as confirmed by the presence of ATX-a-producing CB in the consumed water or biofilm, or the observation of neurotoxic symptoms, which match experimental toxicity in vivo. Regarding toxicity parameters, toxicokinetics knowledge is currently incomplete and needs to be improved. The toxin can passively cross biological membranes and act rapidly on nicotinic receptors, its main molecular target. In vivo and in vitro acute effects of ATX-a have been studied and make possible to draw its mode of action, highlighting its deleterious effects on the nervous systems and its effectors, namely muscles, heart and vessels, and the respiratory apparatus. However, very little is known about its putative chronic toxicity. This review updates available data on ATX-a, from the ecodynamic of the toxin to its physiological and molecular targets.
Collapse
Affiliation(s)
- Simon Colas
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | - Emilie Lance
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | - Catherine Quiblier
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; Université de Paris - Paris Diderot, 5 rue Thomas Mann, Paris, France
| | - Hélène Tricoire-Leignel
- Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France.
| | - César Mattei
- Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France.
| |
Collapse
|
59
|
Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production. Toxins (Basel) 2021; 13:toxins13010047. [PMID: 33435505 PMCID: PMC7828104 DOI: 10.3390/toxins13010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.
Collapse
|
60
|
Serrà A, Philippe L, Perreault F, Garcia-Segura S. Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. WATER RESEARCH 2021; 188:116543. [PMID: 33137522 DOI: 10.1016/j.watres.2020.116543] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 05/08/2023]
Abstract
This review compiles recent advances and challenges in the photocatalytic treatment of natural water by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occurrence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are critically discussed, especially the modification strategies involving TiO2 and the primary operational conditions that determine the scalability and integration of photocatalytic reactors. The relevance of light sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored by including natural organic matter and inorganic species to provide future directions in designing highly efficient strategies and scalable reactors.
Collapse
Affiliation(s)
- Albert Serrà
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
| | - Laetitia Philippe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA.
| |
Collapse
|
61
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
62
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
63
|
Wan X, Steinman AD, Gu Y, Zhu G, Shu X, Xue Q, Zou W, Xie L. Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45095-45107. [PMID: 32779064 DOI: 10.1007/s11356-020-10384-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence of microcystins (MCs) in freshwater poses serious threats to the drinking water safety and health of human beings. Although MCs have been detected in individual fresh waters in China, little is known about their occurrence over a large geographic scale. An investigation of 30 subtropical lakes in eastern China was performed during summer 2018 to determine the MCs concentrations in water and their possible risk via direct water consumption to humans, and to assess the associated environmental factors. MCs were detected in 28 of 30 lakes, and the highest mean MCs concentrations occurred in Lake Chaohu (26.7 μg/L), followed by Lake Taihu (3.11 μg/L). MC-LR was the primary variant observed in our study, and MCs were mainly produced by Microcystis, Anabaena (Dolicospermum), and Oscillatoria in these lakes. Replete nitrogen and phosphorus concentrations, irradiance, and stable water column conditions were critical for dominance of MC-producing cyanobacteria and high MCs production in our study. Hazard quotients indicated that human health risk of MCs in most lakes was at moderate or low levels except Lakes Chaohu and Taihu. Nutrient control management is recommended to decrease the likelihood of high MCs production. Finally, we recommend the regional scale thresholds of total nitrogen and total phosphorus concentrations of 1.19 mg/L and 7.14 × 10-2 mg/L, respectively, based on the drinking water guideline of MC-LR (1 μg/L) recommended by World Health Organization. These targets for nutrient control will aid water quality managers to reduce human health risks created by exposure to MCs.
Collapse
Affiliation(s)
- Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Yurong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiubo Shu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Wei Zou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
64
|
Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity. Toxins (Basel) 2020; 12:toxins12120752. [PMID: 33260604 PMCID: PMC7759803 DOI: 10.3390/toxins12120752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group. Finally, the toxins identified to levels 2 and 1 were prioritised according to their bioaccumulation factor, biodegradability, frequency of detection, and toxicity. This screening and prioritisation approach resulted in different natural toxins that should be further assessed for their ecotoxicological effects and considered in future studies.
Collapse
|
65
|
Flores C, Caixach J. High Levels of Anabaenopeptins Detected in a Cyanobacteria Bloom from N.E. Spanish Sau-Susqueda-El Pasteral Reservoirs System by LC-HRMS. Toxins (Basel) 2020; 12:toxins12090541. [PMID: 32842578 PMCID: PMC7551688 DOI: 10.3390/toxins12090541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
The appearance of a bloom of cyanobacteria in the Sau-Susqueda-El Pasteral system (River Ter, NE Spain) in the autumn of 2015 has been the most recent episode of extensive bloom detected in Catalonia. This system is devoted mainly to urban supply, regulation of the river, irrigation and production of hydroelectric energy. In fact, it is one of the main supply systems for the metropolitan area of cities such as Barcelona and Girona. An assessment and management plan was implemented in order to minimize the risk associated to cyanobacteria. The reservoir was confined and periodic sampling was carried out. Low and high toxicity was detected by cell bioassays with human cell lines. Additionally, analysis studies were performed by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–high resolution mass spectrometry (LC–HRMS). A microcystin target analysis and suspect screening of microcystins, nodularins, cylindrosperpmopsin and related cyanobacterial peptides by LC–HRMS were applied. The results for the analysis of microcystins were negative (<0.3 μg/L) in all the surface samples. Only traces of microcystin-LR, -RR and -dmRR were detected by LC–HRMS in a few ng/L from both fractions, aqueous and sestonic. In contrast, different anabaenopeptins and oscillamide Y at unusually high concentrations (µg-mg/L) were observed. To our knowledge, no previous studies have detected these bioactive peptides at such high levels. The reliable identification of these cyanobacterial peptides was achieved by HRMS. Although recently these peptides are detected frequently worldwide, these bioactive compounds have received little attention. Therefore, more studies on these substances are recommended, especially on their toxicity, health risk and presence in water resources.
Collapse
|
66
|
Improved extraction of multiclass cyanotoxins from soil and sensitive quantification with on-line purification liquid chromatography tandem mass spectrometry. Talanta 2020; 216:120923. [DOI: 10.1016/j.talanta.2020.120923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/20/2022]
|
67
|
β-Ν-Methylamino-L-alanine interferes with nitrogen assimilation in the cyanobacterium, non-BMAA producer, Synechococcus sp. TAU-MAC 0499. Toxicon 2020; 185:147-155. [PMID: 32687889 DOI: 10.1016/j.toxicon.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
The production of β-Ν-methylamino-L-alanine (BMAA) in cyanobacteria is triggered by nitrogen-starvation conditions and its biological role, albeit unknown, is associated with nitrogen assimilation. In the present study, the effect of BMAA (773 μg L-1) on nitrogen metabolism and physiology of the non-diazotrophic cyanobacterium and non-BMAA producer, Synechococcus sp. TAU-MAC 0499, was investigated. In order to study the combined effect of nitrogen availability and BMAA, nitrogen-starvation conditions were induced by transferring cells in nitrogen-free medium and subsequently exposing the cultures to BMAA. After short-term treatment (180 min) and in the presence of nitrogen, BMAA inhibited glutamine synthetase, which resulted in low concentration of glutamine. In the absence of nitrogen, although there was no effect on glutamine synthetase, a possible perturbation in nitrogen assimilation is reflected on the significant decrease in glutamate levels. During the long-term exposure (24-96 h), growth, photosynthetic pigments and total protein were not affected by BMAA exposure, except for an increase in protein and phycocyanin levels at 48 h in nitrogen replete conditions. Results suggest that BMAA interferes with nitrogen assimilation, in a different way, depending on the presence or absence of combined nitrogen, providing novel data on the potential biological role of BMAA.
Collapse
|
68
|
Weiss G, Kovalerchick D, Lieman-Hurwitz J, Murik O, De Philippis R, Carmeli S, Sukenik A, Kaplan A. Increased algicidal activity of Aeromonas veronii in response to Microcystis aeruginosa: interspecies crosstalk and secondary metabolites synergism. Environ Microbiol 2020; 21:1140-1150. [PMID: 30761715 DOI: 10.1111/1462-2920.14561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.
Collapse
Affiliation(s)
- Gad Weiss
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Dimitry Kovalerchick
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,Plants and Environmental Sciences, Metabomed Ltd, Yavne, 81220, Israel
| | - Judy Lieman-Hurwitz
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Omer Murik
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Roberto De Philippis
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies (DAGRI), University of Florence, 50144, Florence, Italy
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Assaf Sukenik
- Plants and Environmental Sciences, The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Aaron Kaplan
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
69
|
Krausfeldt LE, Farmer AT, Castro HF, Boyer GL, Campagna SR, Wilhelm SW. Nitrogen flux into metabolites and microcystins changes in response to different nitrogen sources in Microcystis aeruginosa NIES-843. Environ Microbiol 2020; 22:2419-2431. [PMID: 32338427 DOI: 10.1111/1462-2920.15032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/17/2023]
Abstract
The over-enrichment of nitrogen (N) in the environment has contributed to severe and recurring harmful cyanobacterial blooms, especially by the non-N2 -fixing Microcystis spp. N chemical speciation influences cyanobacterial growth, persistence and the production of the hepatotoxin microcystin, but the physiological mechanisms to explain these observations remain unresolved. Stable-labelled isotopes and metabolomics were employed to address the influence of nitrate, ammonium, and urea on cellular physiology and production of microcystins in Microcystis aeruginosa NIES-843. Global metabolic changes were driven by both N speciation and diel cycling. Tracing 15 N-labelled nitrate, ammonium, and urea through the metabolome revealed N uptake, regardless of species, was linked to C assimilation. The production of amino acids, like arginine, and other N-rich compounds corresponded with greater turnover of microcystins in cells grown on urea compared to nitrate and ammonium. However, 15 N was incorporated into microcystins from all N sources. The differences in N flux were attributed to the energetic efficiency of growth on each N source. While N in general plays an important role in sustaining biomass, these data show that N-speciation induces physiological changes that culminate in differences in global metabolism, cellular microcystin quotas and congener composition.
Collapse
Affiliation(s)
| | - Abigail T Farmer
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Gregory L Boyer
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
70
|
Yuan J, Kim HJ, Filstrup CT, Guo B, Imerman P, Ensley S, Yoon KJ. Utility of a PCR-based method for rapid and specific detection of toxigenic Microcystis spp. in farm ponds. J Vet Diagn Invest 2020; 32:369-381. [PMID: 32306863 PMCID: PMC7377613 DOI: 10.1177/1040638720916156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microcystis is a widespread freshwater cyanobacterium that can produce microcystin, a potent hepatotoxin harmful to animals and humans. Therefore, it is crucial to monitor for the presence of toxigenic Microcystis spp. to provide early warning of potential microcystin contamination. Microscopy, which has been used traditionally to identify Microcystis spp., cannot differentiate toxigenic from non-toxigenic Microcystis. We developed a PCR-based method to detect toxigenic Microcystis spp. based on detection of the microcystin synthetase C (mcyC) gene and 16S rRNA gene. Specificity was validated against toxic and nontoxic M. aeruginosa strains, as well as 4 intergeneric freshwater cyanobacterial strains. Analytical sensitivity was as low as 747 fg/µL genomic DNA (or 3 cells/µL) for toxic M. aeruginosa. Furthermore, we tested 60 water samples from 4 farm ponds providing drinking water to swine facilities in the midwestern United States using this method. Although all water samples were positive for Microcystis spp. (i.e., 16S rRNA gene), toxigenic Microcystis spp. were detected in only 34 samples (57%). Seventeen water samples contained microcystin (0.1-9.1 μg/L) determined with liquid chromatography-mass spectrometry, of which 14 samples (82%) were positive for mcyC. A significant correlation was found between the presence of toxigenic Microcystis spp. and microcystin in water samples (p = 0.0004). Our PCR method can be a low-cost molecular tool for rapid and specific identification of toxigenic Microcystis spp. in farm ponds, improving detection of microcystin contamination, and ensuring water safety for farm animals.
Collapse
Affiliation(s)
- Jian Yuan
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Hyun-Joong Kim
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Christopher T. Filstrup
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Baoqing Guo
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Paula Imerman
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Steve Ensley
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Kyoung-Jin Yoon
- Kyoung-Jin Yoon, Veterinary Medical Research Institute, 1907 ISU-C Drive, Ames, IA 50011.
| |
Collapse
|
71
|
Xu Q, Ma H, Zhang H, Fan J, Yin C, Liu X, Liu Y, Wang H, Yan H. Purification and activity of the first recombinant enzyme for biodegrading hepatotoxin by Sphingopyxis sp. USTB-05. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
72
|
Toporowska M, Mazur-Marzec H, Pawlik-Skowrońska B. The Effects of Cyanobacterial Bloom Extracts on the Biomass, Chl-a, MC and Other Oligopeptides Contents in a Natural Planktothrix agardhii Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082881. [PMID: 32331227 PMCID: PMC7215471 DOI: 10.3390/ijerph17082881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/29/2023]
Abstract
Blooms of the cyanobacterium Planktothrix agardhii are common in shallow, eutrophic freshwaters. P. agardhii may produce hepatotoxic microcystins (MCs) and many other bioactive secondary metabolites belonging mostly to non-ribosomal oligopeptides. The aim of this work was to study the effects of two extracts (Pa-A and Pa-B) of P. agardhii-predominated bloom samples with different oligopeptide profiles and high concentration of biogenic compounds on another natural P. agardhii population. We hypothesised that the P. agardhii biomass and content of oligopeptides in P. agardhii is shaped in a different manner by diverse mixtures of metabolites of different P. agardhii-dominated cyanobacterial assemblages. For this purpose, the biomass, chlorophyll a and oligopeptides content in the treated P. agardhii were measured. Seven-day microcosm experiments with four concentrations of the extracts Pa-A and Pa-B were carried out. Generally, aeruginosins (AERs), cyanopeptolins (CPs) and anabaenopeptins (APs) were the most numerous peptides; however, only 16% of them were common for both extracts. The addition of the extracts resulted in similar effects on P. agardhii: an increase in biomass, Chl-a and MC content in the exposed P. agardhii as well as changes in its oligopeptide profile were observed. MCs present in the extracts did not inhibit accumulation of P. agardhii biomass, and did not have any negative effect on MC and Chl-a content. No evidence for bioaccumulation of dissolved peptides in the P. agardhii exposed was found. As the two tested extracts differed considerably in oligopeptide composition, but contained similar high concentrations of nutrients, it seems that biogenic compounds, not oligopeptides themselves, positively influenced the mixed natural P. agardhii population.
Collapse
Affiliation(s)
- Magdalena Toporowska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland;
- Correspondence:
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland;
| |
Collapse
|
73
|
Guo H, Huang L, Hu S, Chen C, Huang X, Liu W, Wang S, Zhu Y, Zhao Y, Zhang D. Effects of Carbon/Nitrogen Ratio on Growth, Intestinal Microbiota and Metabolome of Shrimp ( Litopenaeus vannamei). Front Microbiol 2020; 11:652. [PMID: 32351483 PMCID: PMC7176362 DOI: 10.3389/fmicb.2020.00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/22/2020] [Indexed: 11/20/2022] Open
Abstract
Increasing the C/N ratio of input feed has been reported as a practical approach for improving water quality and enhancing shrimp growth through changing the bacterial community of rearing water. However, little is known about the effects of different C/N ratios of feed input on the intestinal microbiota and metabolome of shrimp. In the present study, the effects of three different C/N ratio levels (CN6, CN10, and CN15) maintained by adding sucrose on the growth, intestinal microbiota and metabolome of Litopenaeus vannamei, and bioflocs formation were investigated after 17 days of feeding. The results indicated that higher C/N ratio (10 and 15), especially CN15, of feed input significantly enhance the length and weight of shrimp individuals accompanied by a significant accumulation of bioflocs, compared to that of CN6. The increase of C/N ratio input decreased the α-diversity of the intestinal microbiota and changed the microbial community structure through increasing the relative abundance of Actinobacteria, Rhodobacteraceae (mainly consist of Roseobacter and Paracoccus groups), Alteromonadaceae, and inhibiting the growth of Cyanobacteria, certain Rhodobacteraceae, Mycoplasmataceae and Vibrio. The change of microbial community caused by increasing C/N ratio input was closely associated with various bioactive metabolites of flavonoids, benzenoids, prenol lipids, and indole derivatives, which are benefit for shrimp growth either as an antimicrobial agent or as a nutrient component. Overall, this study demonstrated that manipulating high C/N ratio of feed input helps to the growth of shrimp through increasing the relative abundance of potential beneficial bacteria and the accumulation of various bioactive metabolites to suppress the growth of detrimental bacteria.
Collapse
Affiliation(s)
- Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Songtao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Xiaolin Huang
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Sipeng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yueyue Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yueji Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
74
|
D'Agostino PM, Al-Sinawi B, Mazmouz R, Muenchhoff J, Neilan BA, Moffitt MC. Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression. BMC Microbiol 2020; 20:35. [PMID: 32070286 PMCID: PMC7027233 DOI: 10.1186/s12866-020-1720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5′ RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes.
Collapse
Affiliation(s)
- Paul M D'Agostino
- School of Science, Western Sydney University, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Biosystems Chemistry, Department of Chemistry, Technische Universität München, Garching, Germany.,Technical Biochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Bakir Al-Sinawi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rabia Mazmouz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia Muenchhoff
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia. .,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | | |
Collapse
|
75
|
Li Q, Gu P, Zhang H, Luo X, Zhang J, Zheng Z. Response of submerged macrophytes and leaf biofilms to the decline phase of Microcystis aeruginosa: Antioxidant response, ultrastructure, microbial properties, and potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134325. [PMID: 31678882 DOI: 10.1016/j.scitotenv.2019.134325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Decaying cyanobacterial blooms carry a potential risk for submerged macrophyte and periphyton biofilms in aquatic environments. This study comprehensively studied the responses in growth, oxidative response, detoxification pathway, and ultrastructure characteristics of aquatic plants to Microcystis aeruginosa (M. aeruginosa) exudates and extracts released during the decline phase. Particular emphasis was placed on the variation of extracellular polymeric substances (EPS) and quorum-sensing signaling molecules. The results showed that superoxide dismutase, peroxidase, and glutathione S-transferase were significantly induced as antioxidant response, and the malondialdehyde content increased. Increased content of MC-LR (1.129 μg L-1) and NH4+-N (1.35 mg L-1) were found in the decline phase of M. aeruginosa, which played a vital role in the damage to submerged plants. In addition, a change in the amount of osmiophilic granules and a variation of organelles and membranes was observed. A broad distribution of α-d-glucopyranose polysaccharides was dominant and aggregated into clusters in biofilm EPS in response to exposure to decaying M. aeruginosa. Furthermore, exposure to exudates and extracts changed the abundance and structure of the microbial biofilm community. Increased contents of N-acylated-L-homoserine lactone signal molecule might result in a variation of biofilm EPS production in response to decaying M. aeruginosa. These results expand the understanding of how submerged macrophyte and periphyton biofilms respond to environmental stress caused by exudates and extracts of decaying M. aeruginosa.
Collapse
Affiliation(s)
- Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Hao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Xin Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
76
|
Stefanova K, Radkova M, Uzunov B, Gärtner G, Stoyneva-Gärtner M. Pilot search for cylindrospermopsin-producers in nine shallow Bulgarian waterbodies reveals nontoxic strains of Raphidiopsis raciborskii, R. mediterranea and Chrysosporum bergii. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1758595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Innsbruck University, Innsbruck, Austria
| | | |
Collapse
|
77
|
Johansson E, Legrand C, Björnerås C, Godhe A, Mazur-Marzec H, Säll T, Rengefors K. High Diversity of Microcystin Chemotypes within a Summer Bloom of the Cyanobacterium Microcystis botrys. Toxins (Basel) 2019; 11:toxins11120698. [PMID: 31805656 PMCID: PMC6950303 DOI: 10.3390/toxins11120698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
The fresh-water cyanobacterium Microcystis is known to form blooms world-wide, and is often responsible for the production of microcystins found in lake water. Microcystins are non-ribosomal peptides with toxic effects, e.g. on vertebrates, but their function remains largely unresolved. Moreover, not all strains produce microcystins, and many different microcystin variants have been described. Here we explored the diversity of microcystin variants within Microcystis botrys, a common bloom-former in Sweden. We isolated a total of 130 strains through the duration of a bloom in eutrophic Lake Vomb, and analyzed their microcystin profiles with tandem mass spectrometry (LC-MS/MS). We found that microcystin producing (28.5%) and non-producing (71.5%) M. botrys strains, co-existed throughout the bloom. However, microcystin producing strains were more prevalent towards the end of the sampling period. Overall, 26 unique M. botrys chemotypes were identified, and while some chemotypes re-occurred, others were found only once. The M. botrys chemotypes showed considerable variation both in terms of number of microcystin variants, as well as in what combinations the variants occurred. To our knowledge, this is the first report on microcystin chemotype variation and dynamics in M. botrys. In addition, our study verifies the co-existence of microcystin and non-microcystin producing strains, and we propose that environmental conditions may be implicated in determining their composition.
Collapse
Affiliation(s)
- Emma Johansson
- Department of Biology, Lund University, Ecology Building, Sölvegatan 35-37, 22362 Lund, Sweden; (C.B.); (T.S.)
- Correspondence: (E.J.); (K.R.)
| | - Catherine Legrand
- Faculty of Health and Life Sciences, Linnaeus University, 39182 Kalmar, Sweden;
| | - Caroline Björnerås
- Department of Biology, Lund University, Ecology Building, Sölvegatan 35-37, 22362 Lund, Sweden; (C.B.); (T.S.)
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland;
| | - Torbjörn Säll
- Department of Biology, Lund University, Ecology Building, Sölvegatan 35-37, 22362 Lund, Sweden; (C.B.); (T.S.)
| | - Karin Rengefors
- Department of Biology, Lund University, Ecology Building, Sölvegatan 35-37, 22362 Lund, Sweden; (C.B.); (T.S.)
- Correspondence: (E.J.); (K.R.)
| |
Collapse
|
78
|
Facey JA, Apte SC, Mitrovic SM. A Review of the Effect of Trace Metals on Freshwater Cyanobacterial Growth and Toxin Production. Toxins (Basel) 2019; 11:E643. [PMID: 31694295 PMCID: PMC6891437 DOI: 10.3390/toxins11110643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cyanobacterial blooms are becoming more common in freshwater systems, causing ecological degradation and human health risks through exposure to cyanotoxins. The role of phosphorus and nitrogen in cyanobacterial bloom formation is well documented and these are regularly the focus of management plans. There is also strong evidence that trace metals are required for a wide range of cellular processes, however their importance as a limiting factor of cyanobacterial growth in ecological systems is unclear. Furthermore, some studies have suggested a direct link between cyanotoxin production and some trace metals. This review synthesises current knowledge on the following: (1) the biochemical role of trace metals (particularly iron, cobalt, copper, manganese, molybdenum and zinc), (2) the growth limitation of cyanobacteria by trace metals, (3) the trace metal regulation of the phytoplankton community structure and (4) the role of trace metals in cyanotoxin production. Iron dominated the literature and regularly influenced bloom formation, with 15 of 18 studies indicating limitation or colimitation of cyanobacterial growth. A range of other trace metals were found to have a demonstrated capacity to limit cyanobacterial growth, and these metals require further study. The effect of trace metals on cyanotoxin production is equivocal and highly variable. Better understanding the role of trace metals in cyanobacterial growth and bloom formation is an essential component of freshwater management and a direction for future research.
Collapse
Affiliation(s)
- Jordan A. Facey
- Freshwater and Estuarine Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | | | - Simon M. Mitrovic
- Freshwater and Estuarine Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
79
|
Malanga G, Giannuzzi L, Hernando M. The possible role of microcystin (D-Leu 1 MC-LR) as an antioxidant on Microcystis aeruginosa (Cyanophyceae). In vitro and in vivo evidence. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108575. [PMID: 31326544 DOI: 10.1016/j.cbpc.2019.108575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/18/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022]
Abstract
Microcystins constitute a serious threat to the quality of drinking water worldwide. However, the eco-physiological role of them is not completely known and it is suggested that toxins can play a role in the antioxidant protection. The objective of this study was to evaluate the microcystin antioxidant capacity in vitro by Electronic Paramagnetic Resonance, highly specific for the different reactive oxygen species and in vivo by 7 days exposure of Microcystis aeruginosa to high (29 °C) temperature in addition to a 26 °C control condition. An effective in vitro antioxidant activity was observed for [D-Leu1]MC-LR against hydrosoluble radicals. As far as we know, this is the first in vitro record of the role of MC as antioxidant. In addition, a significant increase in cellular biomass was observed under 26 °C in cultures with [D-Leu1]MC-LR supplementation in coincidence with a significant decrease of reactive species. For cultures at 29 °C, the antioxidant role of toxins was inconclusive probably due to the presence of different reactive species generated during the experiment. Thus, MC could scavenge certain reactive species associated with the antioxidant role of CAT or the OH content by SOD activity (not measured) and then CAT activity could be lower in the presence of MC. Reinforcing our hypothesis, the [D-Leu1]MC-LR consumption after 7 days was significantly higher in cells with [D-Leu1]MC-LR supplementation in both 26 °C and 29 °C.When the production of reactive species was controlled by the scavenger activity of antioxidants plus MC, cells avoided the potential oxidative damage and started with exponential growth.
Collapse
Affiliation(s)
- G Malanga
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina
| | - L Giannuzzi
- CONICET, Godoy Cruz 2290, Buenos Aires, Argentina; Área de Toxicología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - M Hernando
- Departamento Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
| |
Collapse
|
80
|
Xu Q, Ma H, Fan J, Yan H, Zhang H, Yin C, Liu X, Liu Y, Wang H. Cloning and Expression of Genes for Biodegrading Nodularin by Sphingopyxis sp. USTB-05. Toxins (Basel) 2019; 11:E549. [PMID: 31547007 PMCID: PMC6832836 DOI: 10.3390/toxins11100549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Biodegradation is efficient for removing cyanobacterial toxins, such as microcystins (MCs) and nodularin (NOD). However, not all the microbial strains with the microcystin-biodegrading enzymes MlrA and MlrC could biodegrade NOD. Studies on genes and enzymes for biodegrading NOD can reveal the function and the biodegradation pathway of NOD. Based on successful cloning and expression of the USTB-05-A and USTB-05-C genes from Sphingopyxis sp. USTB-05, which are responsible for the biodegradation of MCs, the pathway for biodegrading NOD by these two enzymes was investigated in this study. The findings showed that the enzyme USTB-05-A converted cyclic NOD (m/z 825.4516) into its linear type as the first product by hydrolyzing the arginine and Adda peptide bond, and that USTB-05-C cut off the Adda and glutamic acid peptide bond of linearized NOD (m/z 843.4616) and produced dimeric Adda (m/z 663.4377) as the second product. Further, based on the homology modeling of enzyme USTB-05-A, site-directed mutants of USTB-05-A were constructed and seven crucial sites for enzyme USTB-05-A activity were found. A complete enzymatic mechanism for NOD biodegradation by USTB-05-A in the first step was proposed: glutamic acid 172 and histidine 205 activate a water molecule facilitating a nucleophilic attack on the arginine and Adda peptide bond of NOD; tryptophan 176 and tryptophan 201 contact the carboxylate side chain of glutamic acid 172 and accelerate the reaction rates; and histidine 260 and asparagine 264 function as an oxyanion hole to stabilize the transition states.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongfei Ma
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jinhui Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haiyang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chunhua Yin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huasheng Wang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| |
Collapse
|
81
|
Liu D, Chen YQ, Xiao XW, Zhong RT, Yang CF, Liu B, Zhao C. Nutrient Properties and Nuclear Magnetic Resonance-Based Metabonomic Analysis of Macrofungi. Foods 2019; 8:E397. [PMID: 31500248 PMCID: PMC6769546 DOI: 10.3390/foods8090397] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Many delicious and nutritional macrofungi are widely distributed and used in East Asian regions, considered as edible and medicinal foods. In this study, 11 species of dried and fresh, edible and medicinal macrofungi, Ganoderma amboinense, Agaricus subrufescens, Dictyophora indusiata, Pleurotus sajor-caju, Pleurotus ostreatus, Pleurotus geesteranu, Hericium erinaceus, Stropharia rugosoannulata, Pleurotus sapidus, Antrodia camphorata, and Lentinus edodes (Berk.) Sing, were investigated to determine the content of their nutritional components, including proteins, fat, carbohydrates, trace minerals, coarse cellulose, vitamins, and amino acids. The amino acid patterns and similarity of macrofungi were distinguished through principal component analysis and hierarchical cluster analyses, respectively. A total of 103 metabolic small molecules of macrofungi were identified by nuclear magnetic resonance spectroscopy and were aggregated by heatmap. Moreover, the macrofungi were classified by principal component analysis based on these metabolites. The results show that carbohydrates and proteins are two main components, as well as the nutritional ingredients, that differ among various species and varied between fresh and dried macrofungi. The amino acid patterns in L. edodes and A. subrufescens were different compared with that of the other tested mushrooms.
Collapse
Affiliation(s)
- Dan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Qing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao-Wei Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ru-Ting Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Cheng-Feng Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- China National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
82
|
Huang Y, Pan H, Liu H, Xi Y, Ren D. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values. Toxicon 2019; 169:103-108. [PMID: 31494204 DOI: 10.1016/j.toxicon.2019.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Here, Microcystis aeruginosa (M. aeruginosa) was studied to analyze the effects of 0.5 mg L-1 naphthalene and 0.05 mg L-1 phenanthrene on profiles of cell growth, chlorophyll-a content and Microcystin-LR (MC-LR) production at different pH values. The results indicated that for both the naphthalene and phenanthrene treatments, the specific growth rates were higher in pH 10.0 than in either pH 7.0 or pH 5.0. In the presence of low concentrations of naphthalene or phenanthrene, chlorophyll-a in medium increased significantly more in pH 10.0 than pH 5.0. chlorophyll-a in cell was significantly lowered when exposed to naphthalene in both pH 10.0 and pH 7.0, and was higher when exposed to phenanthrene in pH 10.0 than pH 5.0. HPLC analysis revealed that the extracellular MC-LR concentrations in M. aeruginosa exposed to either naphthalene or phenanthrene were lower than in control M. aeruginosa at pH 5.0. The intracellular MC-LR levels in toxic M. aeruginosa cells exposed to naphthalene or phenanthrene were higher than in the controls at pH 10.0. Our study suggests that the MC-LR production of M. aeruginosa was affected by the pH value when low concentrations of either naphthalene or phenanthrene were present in the water. These results indicate that the pH value should not be ignored when evaluating the risk of chemicals that promote MC-LR production in eutrophic waters.
Collapse
Affiliation(s)
- Yingping Huang
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, PR China; Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University, Yichang, 443002, Hubei, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei, Yichang, 443002, PR China.
| | - Hongyu Pan
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, PR China; Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University, Yichang, 443002, Hubei, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei, Yichang, 443002, PR China
| | - Huigang Liu
- Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University, Yichang, 443002, Hubei, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei, Yichang, 443002, PR China.
| | - Ying Xi
- Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University, Yichang, 443002, Hubei, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei, Yichang, 443002, PR China
| | - Dong Ren
- Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University, Yichang, 443002, Hubei, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei, Yichang, 443002, PR China
| |
Collapse
|
83
|
Liu X, Gao S, Li X, Wang H, Ji X, Zhang Z. Determination of microcystins in environmental water samples with ionic liquid magnetic graphene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:20-26. [PMID: 30947029 DOI: 10.1016/j.ecoenv.2019.03.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Microcystins is a class of monocyclic of heptapeptides with many different isomerides. It has become potential hazardous material in water environment for its toxic, distribution and stability. This project worked on a method for determination of trace microcystin (MC-LR and MC-RR) in environmental waters. The ionic liquid magnetic graphene (IL@MG) was prepared and applied to the concentration and determination of microcystins, based on magnetic solid phase extraction (MSPE), and coupled with ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The ionic liquid magnetic graphene was prepared by coprecipitatial synthesis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), specific surface area (BET), pore size distribution (BJH) and magnetic hysteresis loop. The experimental parameters of magnetic solid phase extraction, including amount of IL@MG, pH, extraction time and elution solvent were investigated by a univariate method and orthogonal screening. The method showed good linearity in the range of 0.01-10.0 g/L and 0.005-10.0 μg/L for MC-LR and MC-RR, when the pH of water samples was 4.00 and 10.0 mg adsorbents were used to extract targets for 18 min. The lowest detection limit was 0.414 ng/L and 0.216 ng/L for MC-LR and MC-RR respectively. The recoveries of the microcystins were in the range of 83.6-100.9%, and the relative standard deviation was less than 7.59%. The trace amount of MC-LR (0.020 μg/L) and MC-RR (0.003 μg/L and 0.021 μg/L) was detected in actural water samples. Attributed to its simple operator, low detection limit and high sensitivity, this method could be used for the detection of trace microcystins in water samples.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Xinyue Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Hui Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China
| | - Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, 210093, PR China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, PR China.
| |
Collapse
|
84
|
Bojadzija Savic G, Edwards C, Briand E, Lawton L, Wiegand C, Bormans M. Daphnia magna Exudates Impact Physiological and Metabolic Changes in Microcystis aeruginosa. Toxins (Basel) 2019; 11:toxins11070421. [PMID: 31330981 PMCID: PMC6669642 DOI: 10.3390/toxins11070421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/17/2022] Open
Abstract
While the intracellular function of many toxic and bioactive cyanobacterial metabolites is not yet known, microcystins have been suggested to have a protective role in the cyanobacterial metabolism, giving advantage to toxic over nontoxic strains under stress conditions. The zooplankton grazer Daphnia reduce cyanobacterial dominance until a certain density, which may be supported by Daphnia exudates, affecting the cyanobacterial physiological state and metabolites’ production. Therefore, we hypothesized that D. magna spent medium will impact the production of cyanobacterial bioactive metabolites and affect cyanobacterial photosynthetic activity in the nontoxic, but not the toxic strain. Microcystin (MC-LR and des-MC-LR) producing M. aeruginosa PCC7806 and its non-microcystin producing mutant were exposed to spent media of different D. magna densities and culture durations. D. magna spent medium of the highest density (200/L) cultivated for the shortest time (24 h) provoked the strongest effect. D.magna spent medium negatively impacted the photosynthetic activity of M. aeruginosa PCC7806, as well as the dynamics of intracellular and extracellular cyanobacterial metabolites, while its mutant was unaffected. In the presence of Daphnia medium, microcystin does not appear to have a protective role for the strain. On the contrary, extracellular cyanopeptolin A increased in M. aeruginosa PCC7806 although the potential anti-grazing role of this compound would require further studies.
Collapse
Affiliation(s)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Enora Briand
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | | | - Myriam Bormans
- Univ Rennes, CNRS, ECOBIO-UMR 6553, F-35000 Rennes, France
| |
Collapse
|
85
|
Qian ZY, Chen X, Zhu HT, Shi JZ, Gong TT, Xian QM. Study on the cyanobacterial toxin metabolism of Microcystis aeruginosa in nitrogen-starved conditions by a stable isotope labelling method. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:558-564. [PMID: 30952000 DOI: 10.1016/j.jhazmat.2019.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, the biosynthesis of microcystins (MCs) was investigated after long-term nitrogen-starved conditions in cyanobacterium Microcystis aeruginosa. The results demonstrated that the algal cells were able to survive in a non-growing state with nitrogen starvation for more than one month. The physiological properties of the algal cells were studied to elucidate the mechanisms of viability under nitrogen-deprivation conditions. After the state of nitrogen chlorosis, new toxins could be resynthesized and tracked using 15N-stable isotope-labelled nitrogen. Nitrogen starvation of nutritionally replete cells resulted in a significant increase of microcystin-LY (MC-LY), thereby suggesting that MC-LY may undergo catabolism to provide nitrogen or that MC-LY may be produced to play an important role in the cell in response to nitrogen deprivation. The rank order of different types of nitrogen in algal cells assimilation was N-ammonium > N-urea > N-nitrate > N-alanine. The relationship between the production of toxin variants and various environmental conditions is an interesting issue for future research and may help improve the understanding of the ecological role of cyanobacterial toxins.
Collapse
Affiliation(s)
- Zong-Yao Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - He-Te Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun-Zhe Shi
- Wuxi Environmental Monitoring Central Station, Wuxi, 214121, China
| | - Ting-Ting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qi-Ming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
86
|
Liu M, Ma J, Kang L, Wei Y, He Q, Hu X, Li H. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:613-622. [PMID: 30909039 DOI: 10.1016/j.scitotenv.2019.03.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Extreme natural events such as typhoons can amplify the effect of hydrodynamics on the lake ecosystems. Here we presented data on the effect of typhoons on algal cell size based on field observation. Then turbulence simulation systems were used to decipher the response of natural phytoplankton communities to a range of turbulence regimes (linked to typhoon-induced turbulence intensity) under laboratory conditions. Turbulence intensities of 6.17 × 10-3, 1.10 × 10-2 and 1.80 × 10-2 m2/s3 benefited algal growth and triggered abrupt switches from unicellular Chlorella dominated to colonial Microcystis dominance, and the abundance of colonial algae depended on the turbulence intensity. Under the influence of elevated turbulence, Microcystis dominated biomass increased by 2.60-6.58 times compared with that of Chlorella. At a given phytoplankton density and community composition, we observed a significant increase in extracellular microcystins (MCs) and a 47.5-fold increase in intracellular MCs with intensified turbulent mixing, suggesting that the damage of algal cells concomitantly the stimulation of toxin-producing Microcystis. Our results confirmed that the formation of large colonial algal cells, enhancement of the succession of algal species, and most importantly, the induction of toxin-producing Microcystis, were the active adaption strategy when phytoplankton were impacted by strong turbulence. The result implies that the ongoing climates changes and typhoon events are likely to contribute to undesirable outcomes concerning phytoplankton populations.
Collapse
Affiliation(s)
- Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Jianrong Ma
- CAS Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Li Kang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuebin Hu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
87
|
Sehnal L, Procházková T, Smutná M, Kohoutek J, Lepšová-Skácelová O, Hilscherová K. Widespread occurrence of retinoids in water bodies associated with cyanobacterial blooms dominated by diverse species. WATER RESEARCH 2019; 156:136-147. [PMID: 30909126 DOI: 10.1016/j.watres.2019.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms represent a worldwide problem in freshwater as well as marine ecosystems as producers of various toxic compounds. This study provides environmentally important information about the common presence of mixtures of retinoids in various water bodies associated with the occurrence of cyanobacterial blooms dominated by many different species. The study documents, for the first time, that retinoids are produced by environmental cyanobacterial blooms dominated by species belonging to different genera such as Microcystis, Dolichospermum, Planktothrix, Woronichinia, Pseudanabaena and others. Samples of biomass of cyanobacterial blooms and their surrounding water were collected from seventeen independent freshwater bodies across the Czech Republic during summer 2015. Retinoid-like activity was detected by an in vitro reporter gene bioassay in water samples from 8 out of 17 localities with a maximal activity of 263 ng all-trans retinoic acid equivalent (REQ)/L. In comparison, in vitro assessment of biomass extracts documented retinoid-like activity at 11 out of 17 localities with a maximal retinoid-like activity of 867 ng REQ/g dry mass (dm). Individual retinoids were detected by chemical analyses in all water samples and in 16 out of 17 biomass samples with 4keto-retinal and all-trans 5,6epoxy retinoic acid being detected in aquatic ecosystems for the first time. Further, all-trans 4keto retinoic acid and retinal were the most commonly detected compounds in both types of samples. With respect to retinoid-like activity, a large proportion was explained in some samples by contributions of individual detected retinoids calculated from their concentrations and relative potencies. However, results also indicate that other unknown compounds with a retinoic acid receptor-mediated mode of action were present. The revealed widespread production of retinoids by cyanobacterial blooms dominated by diverse species across various aquatic ecosystems and their common presence in both biomass and surrounding water raises concern namely because some retinoids belong to the most potent teratogens. These compounds need to be taken into consideration in the assessment of risks associated with massive cyanobacterial blooms.
Collapse
Affiliation(s)
- Luděk Sehnal
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tereza Procházková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marie Smutná
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiří Kohoutek
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Klára Hilscherová
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
88
|
Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology. J Microbiol 2019; 57:450-460. [DOI: 10.1007/s12275-019-8349-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/13/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
|
89
|
Yang M, Wang X. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different nitrogen levels. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:132-141. [PMID: 30776596 DOI: 10.1016/j.jhazmat.2019.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Microcystis aeruginosa is known as a main contributor of cyanobacterial bloom. However, factors that drive its formation and dispersion remain poorly understood. The cellular-level responses to nutrient drivers of eutrophication were investigated. The results showed that growth rate of M. aeruginosa was significantly enhanced with the increasing bisphenol A (BPA) and nitrogen (N) level. Stress of BPA significantly inhibited cellular density, chlorophyll-a content across all the nutrient conditions, while Fv/Fm and rETRmax value were promoted by BPA. Responses of reactive oxygen species (ROS) value, superoxide dismutase (SOD) activity and malodialdehyde (MDA) content indicated that nitrogen deficiency and BPA caused oxidative stress to M. aeruginosa. Besides, nitrogen and BPA regulated the production and release of microcystins (MCs). M. aeruginosa exposed to BPA caused 95 up-regulated proteins, which was primarily associated with photosynthesis, nitrogen metabolism, glycolysis/glyconeogenesis and carbon fixation in photosynthetic organisms. The 91 down-regulated proteins were related to quorum sensing, longevity regulating and cell cycle-caulobacter, confirming that the driving force of regulating the change of cellular density and genes expression weakened. These findings provide important clues to elucidate the combined regulatory mechanisms of cyanobacterial blooms triggered by endocrine-disrupting compounds and environmental factors and help to effectively prevent and reduce cyanobacterial blooms.
Collapse
Affiliation(s)
- Meng Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
90
|
Janssen EML. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. WATER RESEARCH 2019; 151:488-499. [PMID: 30641464 DOI: 10.1016/j.watres.2018.12.048] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 05/28/2023]
Abstract
Cyanobacterial bloom events that produce natural toxins occur in freshwaters across the globe, yet the potential risk of many cyanobacterial metabolites remains mostly unknown. Only microcystins, one class of cyanopeptides, have been studied intensively and the wealth of evidence regarding exposure concentrations and toxicity led to their inclusion in risk management frameworks for water quality. However, cyanobacteria produce an incredible diversity of hundreds of cyanopeptides beyond the class of microcystins. The question arises, whether the other cyanopeptides are in fact of no human and ecological concern or whether these compounds merely received (too) little attention thus far. Current observations suggest that an assessment of their (eco)toxicological risk is indeed relevant: First, other cyanopeptides, including cyanopeptolins and anabaenopeptins, can occur just as frequently and at similar nanomolar concentrations as microcystins in surface waters. Second, cyanopeptolins, anabaenopeptins, aeruginosins and microginins inhibit proteases in the nanomolar range, in contrast to protein phosphatase inhibition by microcystins. Cyanopeptolins, aeruginosins, and aerucyclamide also show toxicity against grazers in the micromolar range comparable to microcystins. The key challenge for a comprehensive risk assessment of cyanopeptides remains their large structural diversity, lack of reference standards, and high analytical requirements for identification and quantification. One way forward would be a prevalence study to identify the priority candidates of tentatively abundant, persistent, and toxic cyanopeptides to make comprehensive risk assessments more manageable.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600, Switzerland.
| |
Collapse
|
91
|
Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J. Recent trends in determination of neurotoxins in aquatic environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
92
|
Biessy L, Smith KF, Harwood DT, Boundy MJ, Hawes I, Wood SA. Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand. Toxicon X 2019; 2:100008. [PMID: 32550565 PMCID: PMC7286059 DOI: 10.1016/j.toxcx.2019.100008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications globally. Despite its potency and widespread occurrence in taxonomically diverse species, the primary source of TTX remains uncertain. Paphies australis, an endemic clam found in New Zealand, has been found to contain TTX in several locations. However, it is unknown if this represents endogenous production or accumulation from an external source. To address this question, the concentrations of TTX in whole P. australis and dissected organs (siphons, foot, digestive gland and the ‘rest’) from thirteen sites around New Zealand were determined using liquid chromatography-tandem quadrupole mass spectrometry analysis (LC-MS/MS). Depuration rate of TTX was also investigated by harvesting and measuring concentrations in P. australis maintained in captivity on a toxin-free diet every three to 15 days for 150 days. The LC-MS/MS analyses of the spatial samples showed that TTX was present in P. australis from all regions tested, with significantly (p < 0.001) higher concentrations (15–50 μg kg−1) observed at lower latitudes of the North Island compared with trace levels (0.5–3 μg kg−1) in the South Island of New Zealand. Tetrodotoxin was detected in all the dissected organs but the siphons contained the highest concentrations of TTX at all sites analysed. A linear model of the depuration data identified a significant (p < 0.001) decline in total TTX concentrations in P. australis over the study period. The siphons maintained the highest amount of TTX across the entire depuration study. The digestive glands contained low concentrations at the start of the experiment, but this depurated rapidly and only traces remained after 21 days. These results provide evidence to suggest that P. australis does not produce TTX endogenously but obtains the neurotoxin from an exogenous source (e.g., diet) with the source more prevalent in warmer northern waters. The association of higher TTX concentrations in shellfish with warmer environments raises concerns that this toxin's distribution and abundance could become an increasing human health issue with global warming. TTX-containing Paphies australis were maintained in captivity for 150 days and significantly depurated the toxin. Thirteen populations of Paphies australis from around New Zealand were collected and tested for TTX. All populations tested contained TTX but a significant latitudinal gradient was observed. This study provides further evidence of an exogenous source of TTX in marine bivalves.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
- New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand
- Corresponding author. Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| | - Kirsty F. Smith
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
- New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand
| | | | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Susanna A. Wood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| |
Collapse
|
93
|
Pancrace C, Ishida K, Briand E, Pichi DG, Weiz AR, Guljamow A, Scalvenzi T, Sassoon N, Hertweck C, Dittmann E, Gugger M. Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines. ACS Chem Biol 2019; 14:67-75. [PMID: 30556994 DOI: 10.1021/acschembio.8b00918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive.
Collapse
Affiliation(s)
- Claire Pancrace
- Collection des Cyanobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
- UMR UPMC 113, CNRS 7618, IRD 242, INRA 1392, PARIS 7 113, UPEC, IEES Paris, 4 Place Jussieu, 75005 Paris, France
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Enora Briand
- Laboratoire Phycotoxines, Ifremer, rue de l’Ile d’Yeu, 44311 Nantes, France
| | - Douglas Gatte Pichi
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany
| | - Annika R. Weiz
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany
| | - Arthur Guljamow
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany
| | - Thibault Scalvenzi
- Collection des Cyanobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Sassoon
- Collection des Cyanobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Elke Dittmann
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
94
|
Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem Toxicol 2018; 125:106-132. [PMID: 30597222 DOI: 10.1016/j.fct.2018.12.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
The occurrence of cyanobacterial toxins is being increasingly reported. This is a reason for concern as they can induce toxic effects both in humans and in the environment. Among them, microcystins (MCs) are the best described and most diverse group of cyanobacterial toxins, and MC-LR and MC-RR are the congeners most widely investigated. However, the number of MC variants has also increased in recent years. Some of these minority variants have been shown to have a different toxicokinetic and toxicodynamic profile, but research focused on them is still limited. Moreover, in some water bodies these minority variants can be the predominant toxins. Nonetheless, MC-LR is the only one used for risk evaluation purposes at present. In order to contribute to more realistic risk assessments in the future, the aim of this review was to compile the available information in the scientific literature regarding the occurrence and concentration of minority MCs in water and food samples, and their toxic effects. The data retrieved demonstrate the congener-specific toxicity of MCs, as well as many data gaps in relation to analytical or mechanistic aspects, among others. Therefore, further research is needed to improve the toxicological characterization of these toxins and the exposure scenarios.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| |
Collapse
|
95
|
Coffey R, Paul M, Stamp J, Hamilton A, Johnson T. A REVIEW OF WATER QUALITY RESPONSES TO AIR TEMPERATURE AND PRECIPITATION CHANGES 2: NUTRIENTS, ALGAL BLOOMS, SEDIMENT, PATHOGENS. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 2018; 55:844-868. [PMID: 33867785 PMCID: PMC8048137 DOI: 10.1111/1752-1688.12711] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/07/2018] [Indexed: 05/21/2023]
Abstract
In this paper we review the published, scientific literature addressing the response of nutrients, sediment, pathogens and cyanobacterial blooms to historical and potential future changes in air temperature and precipitation. The goal is to document how different attributes of water quality are sensitive to these drivers, to characterize future risk, to inform management responses and to identify research needs to fill gaps in our understanding. Results suggest that anticipated future changes present a risk of water quality and ecosystem degradation in many U.S. locations. Understanding responses is, however, complicated by inherent high spatial and temporal variability, interactions with land use and water management, and dependence on uncertain changes in hydrology in response to future climate. Effects on pollutant loading in different watershed settings generally correlate with projected changes in precipitation and runoff. In all regions, increased heavy precipitation events are likely to drive more episodic pollutant loading to water bodies. The risk of algal blooms could increase due to an expanded seasonal window of warm water temperatures and the potential for episodic increases in nutrient loading. Increased air and water temperatures are also likely to affect the survival of waterborne pathogens. Responding to these challenges requires understanding of vulnerabilities, and management strategies to reduce risk.
Collapse
Affiliation(s)
- Rory Coffey
- Office of Research and Development U.S. Environmental Protection Agency, Washington D.C., USA
| | - Michael Paul
- Center for Ecological Sciences, Tetra Tech, Inc., Research Triangle Park, North Carolina, USA
| | - Jen Stamp
- Center for Ecological Sciences, Tetra Tech, Inc., Montpelier, Vermont, USA
| | - Anna Hamilton
- Center for Ecological Sciences, Tetra Tech, Inc., Research Triangle Park, North Carolina, USA
| | - Thomas Johnson
- Office of Research and Development U.S. Environmental Protection Agency, Washington D.C., USA
| |
Collapse
|
96
|
Maerz JC, Wilde SB, Terrell VK, Haram B, Trimmer RC, Nunez C, Cork E, Pessier A, Lannoo S, Lannoo MJ, Diamond SL. Seasonal and plant specific vulnerability of amphibian tadpoles to the invasion of a novel cyanobacteria. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1861-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
97
|
Savadova K, Mazur-Marzec H, Karosienė J, Kasperovičienė J, Vitonytė I, Toruńska-Sitarz A, Koreivienė J. Effect of Increased Temperature on Native and Alien Nuisance Cyanobacteria from Temperate Lakes: An Experimental Approach. Toxins (Basel) 2018; 10:E445. [PMID: 30380769 PMCID: PMC6265895 DOI: 10.3390/toxins10110445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 11/17/2022] Open
Abstract
In response to global warming, an increase in cyanobacterial blooms is expected. In this work, the response of two native species of Planktothrix agardhii and Aphanizomenon gracile, as well as the response of two species alien to Europe-Chrysosporum bergii and Sphaerospermopsis aphanizomenoides-to gradual temperature increase was tested. The northernmost point of alien species distribution in the European continent was recorded. The tested strains of native species were favoured at 20⁻28 °C. Alien species acted differently along temperature gradient and their growth rate was higher than native species. Temperature range of optimal growth rate for S. aphanizomenoides was similar to native species, while C. bergii was favoured at 26⁻30 °C but sensitive at 18⁻20 °C. Under all tested temperatures, non-toxic strains of the native cyanobacteria species prevailed over the toxic ones. In P. agardhii, the decrease in concentration of microcystins and other oligopeptides with the increasing temperature was related to higher growth rate. However, changes in saxitoxin concentration in A. gracile under different temperatures were not detected. Accommodating climate change perspectives, the current work showed a high necessity of further studies of temperature effect on distribution and toxicity of both native and alien cyanobacterial species.
Collapse
Affiliation(s)
- Ksenija Savadova
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland.
| | - Jūratė Karosienė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | | | - Irma Vitonytė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | - Anna Toruńska-Sitarz
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland.
| | - Judita Koreivienė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
98
|
White RA, Gavelis G, Soles SA, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress. Front Microbiol 2018; 9:2180. [PMID: 30374333 PMCID: PMC6196244 DOI: 10.3389/fmicb.2018.02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, β-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Research Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Bay Area Environmental Research Institute, Petaluma, CA, United States
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
99
|
Relationship between Photosynthetic Capacity and Microcystin Production in Toxic Microcystis Aeruginosa under Different Iron Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091954. [PMID: 30205471 PMCID: PMC6163392 DOI: 10.3390/ijerph15091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Blooms of harmful cyanobacteria have been observed in various water bodies across the world and some of them can produce intracellular toxins, such as microcystins (MCs), which negatively impact aquatic organisms and human health. Iron participates significantly in cyanobacterial photosynthesis and is proposed to be linked to MC production. Here, the cyanobacteria Microcystis aeruginosa was cultivated under different iron regimes to investigate the relationship between photosynthetic capacity and MC production. The results showed that iron addition increased cell density, cellular protein concentration and the Chl-a (chlorophyll-a) content. Similarly, it can also up⁻regulate photosynthetic capacity and promote MC⁻leucine⁻arginine (MC⁻LR) production, but not in a dose⁻dependent manner. Moreover, a significant positive correlation between photosynthetic capacity and MC production was observed, and electron transport parameters were the most important parameters contributing to the variation of intracellular MC⁻LR concentration revealed by Generalized Additive Model analysis. As the electron transport chain was affected by iron variation, adenosine triphosphate production was inhibited, leading to the alteration of MC synthetase gene expression. Therefore, it is demonstrated that MC production greatly relies on redox status and energy metabolism of photosynthesis in M. aeruginosa. In consequence, more attention should be paid to the involvement of photosynthesis in the regulation of MC production by iron variation in the future.
Collapse
|
100
|
Yang Z, Buley RP, Fernandez-Figueroa EG, Barros MUG, Rajendran S, Wilson AE. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:590-598. [PMID: 29763862 DOI: 10.1016/j.envpol.2018.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 05/28/2023]
Abstract
Controlling blooms of toxigenic phytoplankton, including cyanobacteria, is a high priority for managers of aquatic systems that are used for drinking water, recreation, and aquaculture production. Although a variety of treatment approaches exist, hydrogen peroxide (H2O2) has the potential to be an effective and ecofriendly algaecide given that this compound may select against cyanobacteria while not producing harmful residues. To broadly evaluate the effectiveness of H2O2 on toxigenic phytoplankton, we tested multiple concentrations of H2O2 on (1) four cyanobacterial cultures, including filamentous Anabaena, Cylindrospermopsis, and Planktothrix, and unicellular Microcystis, in a 5-day laboratory experiment and (2) a dense cyanobacterial bloom in a 7-day field experiment conducted in a nutrient-rich aquaculture pond. In the laboratory experiment, half-maximal effective concentrations (EC50) were similar for Anabaena, Cylindrospermopsis, and Planktothrix (average EC50 = 0.41 mg L-1) but were ∼10x lower than observed for Microcystis (EC50 = 5.06 mg L-1). Results from a field experiment in an aquaculture pond showed that ≥1.3 and ≥ 6.7 mg L-1 of H2O2 effectively eliminated Planktothrix and Microcystis, respectively. Moreover, 6.7 mg L-1 of H2O2 reduced microcystin and enhanced phytoplankton diversity, while causing relatively small negative effects on zooplankton abundance. In contrast, 20 mg L-1 of H2O2 showed the greatest negative effect on zooplankton. Our results demonstrate that H2O2 can be an effective, rapid algaecide for controlling toxigenic cyanobacteria when properly dosed.
Collapse
Affiliation(s)
- Zhen Yang
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL 36849, USA; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Riley P Buley
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL 36849, USA
| | | | - Mario U G Barros
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL 36849, USA
| | - Soorya Rajendran
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL 36849, USA
| | - Alan E Wilson
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL 36849, USA.
| |
Collapse
|