51
|
Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie M. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab 2006; 290:E731-8. [PMID: 16263770 DOI: 10.1152/ajpendo.00415.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We hypothesized a differential activation of the anabolic signaling proteins protein kinase B (PKB) and p70 S6 kinase (p70(S6K)) and subsequent differential stimulation of human muscle protein synthesis (MPS) after dynamic shortening or lengthening exercise. Eight healthy men [25 +/- 5 yr, BMI 26 +/- 3 kg/m(-2) (means +/- SD)] were studied before and after 12 min of repeated stepping up to knee height, and down again, while carrying 25% of their body weight, i.e., shortening exercise with the "up" leg and lengthening exercise with contralateral "down" leg. Quadriceps biopsies were taken before and 3, 6, and 24 h after exercise. After exercise, over 2 h before the biopsies, the subjects ingested 500 ml of water containing 45 g of essential amino acids and 135 g of sucrose. Rates of muscle protein synthesis were determined via incorporation over time of [1-(13)C]leucine (<or=6 h after exercise) or [1-(13)C]valine (21-24 h after exercise) and phosphorylation of signaling proteins by Western analysis. PKB and p70(S6K) phosphorylation increased approximately 3-fold after 3 h and remained elevated at 6 and 24 h. After exercise, rates of myofibrillar and sarcoplasmic protein synthesis were unchanged over the period including exercise and 3 h of recovery but had increased significantly at 6 (approximately 3.0- and 2.4-fold, respectively) and 24 h (approximately 3.2- and 2.0-fold, respectively), independently of the mode of exercise. Short-term dynamic exercise in either shortening or lengthening mode increases MPS at least as much as resistance exercise and is associated with long-term activation of PKB and p70(S6K).
Collapse
|
52
|
Kirton RS, Taberner AJ, Nielsen PMF, Young AA, Loiselle DS. Strain softening behaviour in nonviable rat right-ventricular trabeculae, in the presence and the absence of butanedione monoxime. Exp Physiol 2004; 89:593-604. [PMID: 15258118 DOI: 10.1113/expphysiol.2004.027623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strain softening is commonly reported during mechanical testing of passive whole hearts. It is typically manifested as a stiffer force-extension relationship in the first deformation cycle relative to subsequent cycles and is distinguished from viscoelasticity by a lack of recovery of stiffness, even after several hours of rest. The cause of this behaviour is presently unknown. In order to investigate its origins, we have subjected trabeculae to physiologically realistic extensions (5-15% of muscle length at 26 degrees C and 0.5 mm Ca(2+)), while measuring passive force and dynamic stiffness. While we did not observe strain softening in viable trabeculae, we found that it was readily apparent in nonviable (electrically inexcitable) trabeculae undergoing the same extensions. This result was obtained in both the presence and absence of 2,3-butanedione monoxime (BDM). Furthermore, BDM had no effect on the passive compliance of viable specimens, while its presence partly inhibited, but could not prevent, stiffening of nonviable specimens. Loss of viability was accompanied by a uniform increase of dynamic stiffness over all frequencies examined (0.2-100 Hz). The presence of strain softening during length extensions of nonviable tissue resulted in a comparable uniform decrease of dynamic stiffness. It is therefore concluded that strain softening is neither intrinsic to viable rat right ventricular trabeculae nor influenced by BDM but, rather, reflects irreversible damage of tissue in partial, or full, rigor.
Collapse
Affiliation(s)
- R S Kirton
- Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
53
|
Agarkova I, Ehler E, Lange S, Schoenauer R, Perriard JC. M-band: a safeguard for sarcomere stability? J Muscle Res Cell Motil 2004; 24:191-203. [PMID: 14609030 DOI: 10.1023/a:1026094924677] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The sarcomere of striated muscle is a very efficient machine transforming chemical energy into movement. However, a wrong distribution of the generated forces may lead to self-destruction of the engine itself. A well-known example for this is eccentric contraction (elongation of the sarcomere in the activated state), which damages sarcomeric structure and leads to a reduced muscle performance. The goal of this review is to discuss the involvement of different cytoskeletal systems, in particular the M-band filaments, in the mechanisms that provide stability during sarcomeric contraction. The M-band is the transverse structure in the center of the sarcomeric A-band, which is responsible both for the regular packing of thick filaments and for the uniform distribution of the tension over the myosin filament lattice in the activated sarcomere. Although some proteins from the Ig-superfamily, like myomesin and M-protein, are the major candidates for the role of M-band bridges, the exact molecular organisation of the M-band is not clear. However, the protein composition of the M-band seems to modulate the mechanical characteristics of the thick filament lattice, in particular its stiffness, adjusting it to the specific demands in different muscle types. The special M-band design in slow fibers might be part of structural adaptations, favouring sarcomere stability for a continuous contractile activity over a broad working range. In conclusion, we discuss why the interference with M-band structure might have fatal consequences for the integrity of the working sarcomere.
Collapse
Affiliation(s)
- Irina Agarkova
- Institute of Cell Biology, ETH-Zurich Hoenggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
54
|
Kirton RS, Taberner AJ, Young AA, Nielsen PMF, Loiselle DS. Strain softening is not present during axial extensions of rat intact right ventricular trabeculae in the presence or absence of 2,3-butanedione monoxime. Am J Physiol Heart Circ Physiol 2004; 286:H708-15. [PMID: 14551051 DOI: 10.1152/ajpheart.00580.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies of passive myocardial mechanics have shown that strain softening behavior is present during both inflation of isolated whole rat hearts and shearing of tissue blocks taken from the left ventricular free wall in pigs. Strain softening is typically manifested by a stiffer forceextension relation in the first deformation cycle relative to subsequent cycles and is distinguished from viscoelasticity by a lack of recovery of stiffness, even after several hours of rest. The causes of this behaviour are unknown. We investigated whether strain softening is observed in uniaxial extensions of intact, viable, rat right ventricular (RV) cardiac trabeculae. Stretch and release cycles of 5%, 10%, and 15% muscle length were applied at a constant velocity at 26°C. Muscles were tested in random order in the presence and absence of 50 mM 2,3-butanedione monoxime (BDM). Whereas strain softening was displayed by nonviable trabeculae, it was not observed in viable preparations undergoing physiologically relevant extensions whether in the presence or absence of BDM. BDM also had no effect on passive compliance. There was a reversible increase of muscle compliance between the first and subsequent cycles, with recovery after 30 s of rest, independent of the presence of BDM. We conclude that strain softening is neither intrinsic to viable rat RV trabeculae nor influenced by BDM and that passive trabeculae compliance is not altered by the addition of BDM.
Collapse
Affiliation(s)
- R S Kirton
- Bioengineering Institute, Department of Engineering Science, The University of Auckland, 70 Symonds St., Auckland 1001, New Zealand.
| | | | | | | | | |
Collapse
|
55
|
Abstract
Computational models of the electrical and mechanical function of the heart are reviewed. These models attempt to explain the integrated function of the heart in terms of ventricular anatomy, the structure and material properties of myocardial tissue, the membrane ion channels, and calcium handling and myofilament mechanics of cardiac myocytes. The models have established the computational framework for linking the structure and function of cardiac cells and tissue to the integrated behavior of the intact heart, but many more aspects of physiological function, including metabolic and signal transduction pathways, need to be included before significant progress can be made in understanding many disease processes.
Collapse
Affiliation(s)
- Peter J Hunter
- Bioengineering Institute, University of Auckland, New Zealand.
| | | | | |
Collapse
|
56
|
Ward ML, Pope AJ, Loiselle DS, Cannell MB. Reduced contraction strength with increased intracellular [Ca2+] in left ventricular trabeculae from failing rat hearts. J Physiol 2003; 546:537-50. [PMID: 12527740 PMCID: PMC2342526 DOI: 10.1113/jphysiol.2002.029132] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intracellular calcium ([Ca2+](i)) and isometric force were measured in left ventricular (LV) trabeculae from spontaneously hypertensive rats (SHR) with failing hearts and normotensive Wistar-Kyoto (WKY) controls. At a physiological stimulation frequency (5 Hz), and at 37 degrees C, the peak stress of SHR trabeculae was significantly (P < or = 0.05) reduced compared to WKY (8 +/- 1 mN mm(-2) (n = 8) vs. 21 +/- 5 mN mm(-2) (n = 8), respectively). No differences between strains in either the time-to-peak stress, or the time from peak to 50 % relaxation were detected. Measurements using fura-2 showed that in the SHR both the peak of the Ca2+ transient and the resting [Ca2+](i) were increased compared to WKY (peak: 0.69 +/- 0.08 vs. 0.51 +/- 0.08 microM(P < or = 0.1) and resting: 0.19 +/- 0.02 vs. 0.09 +/- 0.02 microM(P < or = 0.05), SHR vs. WKY, respectively). The decay of the Ca2+ transient was prolonged in SHR, with time constants of: 0.063 +/- 0.002 vs. 0.052 +/- 0.003 s (SHR vs. WKY, respectively). Similar results were obtained at 1 Hz stimulation, and for [Ca2+ ](o) between 0.5 and 5 mM. The decay of the caffeine-evoked Ca2+ transient was slower in SHR (9.8 +/- 0.7 s (n = 8) vs. 7.7 +/- 0.2 s (n = 8) in WKY), but this difference was removed by use of the SL Ca2+ -ATPase inhibitor carboxyeosin. Histological examination of transverse sections showed that the fractional content of perimysial collagen was increased in SHR compared to WKY (18.0 +/- 4.6 % (n = 10) vs. 2.9 +/- 0.9 % (n = 11) SHR vs. WKY, respectively). Our results show that differences in the amplitude and the time course of the Ca2+ transient between SHR and WKY do not explain the reduced contractile performance of SHR myocardium per se. Rather, we suggest that, in this animal model of heart failure, contractile function is compromised by increased collagen, and its three-dimensional organisation, and not by reduced availability of intracellular Ca2+.
Collapse
Affiliation(s)
- Marie-Louise Ward
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
57
|
Abstract
We examined the shear properties of passive ventricular myocardium in six pig hearts. Samples (3 x 3 x 3 mm) were cut from adjacent regions of the lateral left ventricular midwall, with sides aligned with the principal material axes. Four cycles of sinusoidal simple shear (maximum shear displacements of 0.1-0.5) were applied separately to each specimen in two orthogonal directions. Resulting forces along the three axes were measured. Three specimens from each heart were tested in different orientations to cover all six modes of simple shear deformation. Passive myocardium has nonlinear viscoelastic shear properties with reproducible, directionally dependent softening as strain is increased. Shear properties were clearly anisotropic with respect to the three principal material directions: passive ventricular myocardium is least resistant to simple shear displacements imposed in the plane of the myocardial layers and most resistant to shear deformations that produce extension of the myocyte axis. Comparison of results for the six different shear modes suggests that simple shear deformation is resisted by elastic elements aligned with the microstructural axes of the tissue.
Collapse
Affiliation(s)
- Socrates Dokos
- Department of Physiology, School of Medicine, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
58
|
Stuyvers BD, McCulloch AD, Guo J, Duff HJ, ter Keurs HEDJ. Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle. J Physiol 2002; 544:817-30. [PMID: 12411526 PMCID: PMC2290620 DOI: 10.1113/jphysiol.2002.024430] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The relations between stress, stimulation rate and sarcomere length (SL) were investigated in 24 cardiac trabeculae isolated from right ventricles of mice (CF-1 males, 25-30 g) and superfused with Hepes solution ([Ca(2+)](o) = 1 mM, pH 7.4, 25 degrees C). Stress and SL were measured by a strain gauge transducer and laser diffraction technique, respectively. Stress versus stimulation frequency formed a biphasic relation (25 degrees C, [Ca(2+)](o) = 2 mM) with a minimum at 0.7-1 Hz (~15 mN mm(-2)), a 150 % decrease from 0.1 to 1 Hz (descending limb) and a 75 % increase from 1 to 5 Hz (ascending limb). Ryanodine (0.1 microM) inhibited specifically the descending limb, while nifedipine (0.1 microM) affected specifically the ascending limb. This result suggests two separate sources of Ca(2+) for stress development: (1) net Ca(2+) influx during action potentials (AP); and (2) Ca(2+) entry into the cytosol from the extracellular space during diastolic intervals; Ca(2+) from both (1) and (2) is sequestered by the SR between beats. Raising the temperature to 37 degrees C lowered the stress-frequency relation (SFR) by approximately 0-15 mN mm(-2) at each frequency. Because the amount of Ca(2+) carried by I(Ca,L) showed a approximately 3-fold increase under the same conditions, we conclude that reduced Ca(2+) loading of the SR was probably responsible for this temperature effect. A simple model of Ca(2+) fluxes addressed the mechanisms underlying the SFR. Simulation of the effect of inorganic phosphates (P(i)) on force production was incorporated into the model. The results suggested that O(2) diffusion limits force production at stimulation rates >3 Hz. The stress-SL relations from slack length (approximately 1.75 microm) to 2.25 microm showed that the passive stress-SL curve of mouse cardiac trabeculae is exponential with a steep increase at SL >2.1 microm. Active stress (at 1 Hz) increased with SL, following a curved relation with convexity toward the abscissa at [Ca(2+)] = 2 mM. At [Ca(2+)] from 4 to 12 mM, the stress-SL curves superimposed and the relation became linear, which revealed a saturation step in the activation of force production. EC coupling in mouse cardiac muscle is similar to that observed previously in the rat, although important differences exist in the Ca(2+) dependence of force development. These results may suggest a lower capacity of the SR for buffering Ca(2+), which makes the generation of force in mouse cardiac ventricle more dependent on Ca(2+) entering during action potentials, particularly at high heart rate.
Collapse
Affiliation(s)
- Bruno D Stuyvers
- University of Calgary, Health Sciences Center, Department of Medicine, Physiology & Biophysics, Alberta, Canada
| | | | | | | | | |
Collapse
|
59
|
|
60
|
Ray J, Noll F, Daut J, Hanley PJ. Long-chain fatty acids increase basal metabolism and depolarize mitochondria in cardiac muscle cells. Am J Physiol Heart Circ Physiol 2002; 282:H1495-501. [PMID: 11893587 DOI: 10.1152/ajpheart.00696.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of long-chain (LC) fatty acids on rate of heat production (heat rate) and mitochondrial membrane potential (DeltaPsi) of intact guinea pig cardiac muscle were investigated at 37 degrees C. Heat rate of ventricular trabeculae was measured with microcalorimetry, and DeltaPsi was monitored in isolated ventricular myocytes with either JC-1 or tetramethylrhodamine ethyl ester (TMRE). Methyl-beta-cyclodextrin was used as fatty acid carrier. Application of 400 microM oleate or linoleate increased resting heat rate by approximately 30% and approximately 25%, respectively. When LC fatty acid was supplied as sole metabolic substrate, resting heat rate was decreased by 3-mercaptopropionic acid. In TMRE-loaded myocytes, neither 40-80 microM oleate nor 40 microM linoleate affected DeltaPsi. At a higher concentration (400 microM) both oleate and linoleate increased TMRE fluorescence by approximately 20% of maximum, obtained using 2,4-dinitrophenol (100 microM), indicating a depolarization of the inner mitochondrial membrane. We conclude that LC fatty acids, at sufficiently high concentration, increase heat rate and decrease DeltaPsi in intact cardiac muscle, consistent with a protonophoric uncoupling action. These effects may contribute to the high metabolic rate after reperfusion of postischemic myocardium.
Collapse
Affiliation(s)
- John Ray
- Institut für Normale und Pathologische Physiologie, Universität Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
61
|
Arts T, Costa KD, Covell JW, McCulloch AD. Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol Heart Circ Physiol 2001; 280:H2222-9. [PMID: 11299225 DOI: 10.1152/ajpheart.2001.280.5.h2222] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac myofibers are organized into laminar sheets about four cells thick. Recently, it has been suggested that these layers coincide with the plane of maximum shear during systole. In general, there are two such planes, which are oriented at +/-45 degrees to the main principal strain axes. These planes do not necessarily contain the fiber axis. In the present study, we explicitly added the constraint that the sheet planes should also contain the muscle fiber axis. In a mathematical analysis of previously measured three-dimensional transmural systolic strain distributions in six dogs, we computed the planes of maximum shear, adding the latter constraint by using the also-measured muscle fiber axis. Generally, for such planes two solutions were found, suggesting that two populations of sheet orientation may exist. The angles at which the predicted sheets intersected transmural tissue slices, cut along left ventricular short- or long-axis planes, were strikingly similar to experimentally measured values. In conclusion, sheets coincide with planes of maximum systolic shear subject to the constraint that the muscle fiber axis is contained in this plane. Sheet orientation is not a unique function of the transmural location but occurs in two distinct populations.
Collapse
Affiliation(s)
- T Arts
- Cardiovascular Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 2000; 32:2151-62. [PMID: 11112991 DOI: 10.1006/jmcc.2000.1281] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small (N2B) and large (N2BA) cardiac titin isoforms are differentially expressed in a species-specific and heart location-specific manner. To understand how differential expression of titin isoforms may influence passive stiffness of cardiac muscle we investigated the mechanical properties of mouse left ventricular (MLV) wall muscle (expressing predominantly the small titin isoform), bovine left atrial (BLA) wall muscle (predominantly the large isoform), and bovine left ventricular (BLV) wall muscle (expressing small and large isoforms at similar levels). Results indicate that the overall passive muscle stiffness of the muscle types varies nearly ten-fold, with stiffness increasing in the following order: BLA, BLV and MLV. To investigate the basis of the variation in the overall muscle stiffness, the contributions of titin and collagen to muscle stiffness were determined. Results showed that increased muscle stiffness results from increases in both titin- and collagen-based passive stiffness, indicating that titin and collagen change in a co-ordinated fashion. The expression level of the small titin isoform correlates with titin's contribution to overall muscle stiffness, suggesting that differential expression of titin isoforms is an effective means to modulate the filling behavior of the heart.
Collapse
Affiliation(s)
- Y Wu
- Department of VCAPP, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
63
|
|