51
|
Shibistova O, Yohannes Y, Boy J, Richter A, Wild B, Watzka M, Guggenberger G. Rate of belowground carbon allocation differs with successional habit of two afromontane trees. PLoS One 2012; 7:e45540. [PMID: 23049813 PMCID: PMC3458901 DOI: 10.1371/journal.pone.0045540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO(2) efflux is crucial for addressing the carbon footprint of creeping degradation. METHODOLOGY We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (13)CO(2) pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO(2). Further, we quantified the overall losses of assimilated (13)C with soil CO(2) efflux. PRINCIPAL FINDINGS (13)C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO(2) efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO(2) efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. CONCLUSIONS Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Collapse
Affiliation(s)
- Olga Shibistova
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
52
|
Epron D, Laclau JP, Almeida JCR, Gonçalves JLM, Ponton S, Sette CR, Delgado-Rojas JS, Bouillet JP, Nouvellon Y. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? TREE PHYSIOLOGY 2012; 32:667-79. [PMID: 22021011 DOI: 10.1093/treephys/tpr107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO(2) efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (δ(13)C) of stem wood α-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P(W)) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P(W), but to a lesser extent compared with K fertilization. Neither K nor Na affected δ(13)C of stem wood α-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P(W) resulted from drastic changes in carbon allocation.
Collapse
Affiliation(s)
- Daniel Epron
- Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Warren JM, Iversen CM, Garten CT, Norby RJ, Childs J, Brice D, Evans RM, Gu L, Thornton P, Weston DJ. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. TREE PHYSIOLOGY 2012; 32:799-813. [PMID: 22210530 DOI: 10.1093/treephys/tpr129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine (Pinus taeda L.) trees to air enriched with (13)CO(2) and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth and soil CO(2) efflux rate (CER) were assessed for each tree over a 3-week period. The progression of the (13)C label was concurrently tracked from the atmosphere through foliage, phloem, roots and surface soil CO(2) efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Soil CER was strongly correlated with sap flow on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the HS treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CER, which was overwhelmingly driven by soil temperature and moisture. The (13)C label was immediately detected in foliage on label day (half-life = 0.5 day), progressed through phloem by Day 2 (half-life = 4.7 days), roots by Days 2-4, and subsequently was evident as respiratory release from soil which peaked between Days 3 and 6. The δ(13)C of soil CO(2) efflux was strongly correlated with phloem δ(13)C on the previous day, or 2 days earlier. While the (13)C label was readily tracked through the ecosystem, the fate of root C through respiratory, mycorrhizal or exudative release pathways was not assessed. These data detail the timing and relative magnitude of C flux through various components of a young pine stand in relation to environmental conditions.
Collapse
Affiliation(s)
- J M Warren
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Jensen KH, Liesche J, Bohr T, Schulz A. Universality of phloem transport in seed plants. PLANT, CELL & ENVIRONMENT 2012; 35:1065-76. [PMID: 22150791 DOI: 10.1111/j.1365-3040.2011.02472.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since Münch in the 1920s proposed that sugar transport in the phloem vascular system is driven by osmotic pressure gradients, his hypothesis has been strongly supported by evidence from herbaceous angiosperms. Experimental constraints made it difficult to test this proposal in large trees, where the distance between source and sink might prove incompatible with the hypothesis. Recently, the theoretical optimization of the Münch mechanism was shown to lead to surprisingly simple predictions for the dimensions of the phloem sieve elements in relation to that of fast growing angiosperms. These results can be obtained in a very transparent way using a simple coupled resistor model. To test the universality of the Münch mechanism, we compiled anatomical data for 32 angiosperm and 38 gymnosperm trees with heights spanning 0.1-50 m. The species studied showed a remarkable correlation with the scaling predictions. The compiled data allowed calculating stem sieve element conductivity and predicting phloem sap flow velocity. The central finding of this work is that all vascular plants seem to have evolved efficient osmotic pumping units, despite their huge disparity in size and morphology. This contribution extends the physical understanding of phloem transport, and will facilitate detailed comparison between theory and field experiments.
Collapse
Affiliation(s)
- Kåre Hartvig Jensen
- Department of Physics, Center for Fluid Dynamics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
55
|
Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, Högberg P, Maillard P, Dannoura M, Gérant D, Buchmann N. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. TREE PHYSIOLOGY 2012; 32:776-98. [PMID: 22700544 DOI: 10.1093/treephys/tps057] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics. Based on data from 47 studies, the rate of transfer differs between broadleaved and coniferous species and decreases as temperature and soil water content decrease. Labelled C is rapidly transferred belowground-within a few days or less-and this transfer is slowed down by drought. Half-lives of labelled C in phloem sap (transfer pool) and in mature leaves (source organs) are short, while those of sink organs (growing tissues, seasonal storage) are longer. (13)C measurements in respiratory efflux at high temporal resolution provide the best estimate of the mean residence times of C in respiratory substrate pools, and the best basis for compartmental modelling. Seasonal C dynamics and allocation patterns indicate that sink strength variations are important drivers for C fluxes. We propose a conceptual model for temperate and boreal trees, which considers the use of recently assimilated C versus stored C. We recommend best practices for designing and analysing pulse-labelling experiments, and identify several topics which we consider of prime importance for future research on C allocation in trees: (i) whole-tree C source-sink relations, (ii) C allocation to secondary metabolism, (iii) responses to environmental change, (iv) effects of seasonality versus phenology in and across biomes, and (v) carbon-nitrogen interactions. Substantial progress is expected from emerging technologies, but the largest challenge remains to carry out in situ whole-tree labelling experiments on mature trees to improve our understanding of the environmental and physiological controls on C allocation.
Collapse
Affiliation(s)
- Daniel Epron
- Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Martin JG, Phillips CL, Schmidt A, Irvine J, Law BE. High-frequency analysis of the complex linkage between soil CO(2) fluxes, photosynthesis and environmental variables. TREE PHYSIOLOGY 2012; 32:49-64. [PMID: 22228815 DOI: 10.1093/treephys/tpr134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
High-frequency soil CO(2) flux data are valuable for providing new insights into the processes of soil CO(2) production. A record of hourly soil CO(2) fluxes from a semi-arid ponderosa pine stand was spatially and temporally deconstructed in attempts to determine if variation could be explained by logical drivers using (i) CO(2) production depths, (ii) relationships and lags between fluxes and soil temperatures, or (iii) the role of canopy assimilation in soil CO(2) flux variation. Relationships between temperature and soil fluxes were difficult to establish at the hourly scale because diel cycles of soil fluxes varied seasonally, with the peak of flux rates occurring later in the day as soil water content decreased. Using a simple heat transport/gas diffusion model to estimate the time and depth of CO(2) flux production, we determined that the variation in diel soil CO(2) flux patterns could not be explained by changes in diffusion rates or production from deeper soil profiles. We tested for the effect of gross ecosystem productivity (GEP) by minimizing soil flux covariance with temperature and moisture using only data from discrete bins of environmental conditions (±1 °C soil temperature at multiple depths, precipitation-free periods and stable soil moisture). Gross ecosystem productivity was identified as a possible driver of variability at the hourly scale during the growing season, with multiple lags between ~5, 15 and 23 days. Additionally, the chamber-specific lags between GEP and soil CO(2) fluxes appeared to relate to combined path length for carbon flow (top of tree to chamber center). In this sparse and heterogeneous forested system, the potential link between CO(2) assimilation and soil CO(2) flux may be quite variable both temporally and spatially. For model applications, it is important to note that soil CO(2) fluxes are influenced by many biophysical factors, which may confound or obscure relationships with logical environmental drivers and act at multiple temporal and spatial scales; therefore, caution is needed when attributing soil CO(2) fluxes to covariates like temperature, moisture and GEP.
Collapse
Affiliation(s)
- Jonathan G Martin
- Oregon State University, Department of Forest Ecosystems and Society, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
57
|
Barthel M, Hammerle A, Sturm P, Baur T, Gentsch L, Knohl A. The diel imprint of leaf metabolism on the δ13 C signal of soil respiration under control and drought conditions. THE NEW PHYTOLOGIST 2011; 192:925-938. [PMID: 21851360 DOI: 10.1111/j.1469-8137.2011.03848.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent (13) CO(2) canopy pulse chase labeling studies revealed that photosynthesis influences the carbon isotopic composition of soil respired CO(2) (δ(13) C(SR)) even on a diel timescale. However, the driving mechanisms underlying these short-term responses remain unclear, in particular under drought conditions. The gas exchange of CO(2) isotopes of canopy and soil was monitored in drought/nondrought-stressed beech (Fagus sylvatica) saplings after (13) CO(2) canopy pulse labeling. A combined canopy/soil chamber system with gas-tight separated soil and canopy compartments was coupled to a laser spectrometer measuring mixing ratios and isotopic composition of CO(2) in air at high temporal resolution. The measured δ(13) C(SR) signal was then explained and substantiated by a mechanistic carbon allocation model. Leaf metabolism had a strong imprint on diel cycles in control plants, as a result of an alternating substrate supply switching between sugar and transient starch. By contrast, diel cycles in drought-stressed plants were determined by the relative contributions of autotrophic and heterotrophic respiration throughout the day. Drought reduced the speed of the link between photosynthesis and soil respiration by a factor of c. 2.5, depending on the photosynthetic rate. Drought slows the coupling between photosynthesis and soil respiration and alters the underlying mechanism causing diel variations of δ(13) C(SR).
Collapse
Affiliation(s)
- Matthias Barthel
- Institute of Agricultural Sciences, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Albin Hammerle
- Institute of Agricultural Sciences, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Patrick Sturm
- Institute of Agricultural Sciences, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Thomas Baur
- Institute of Agricultural Sciences, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Lydia Gentsch
- Institute of Agricultural Sciences, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Alexander Knohl
- Institute of Agricultural Sciences, ETH Zurich, Universitätsstrasse 2, 8092 Zürich, Switzerland
- Büsgen-Insitute, Chair of Bioclimatology, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
58
|
Barthel M, Sturm P, Knohl A. Soil matrix tracer contamination and canopy recycling did not impair ¹³CO₂ plant-soil pulse labelling experiments. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2011; 47:359-371. [PMID: 21756196 DOI: 10.1080/10256016.2011.587610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
When conducting (13)CO(2) plant-soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ(13)C measurements of soil respiration (δ(13)C(SR)) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, (13)CO(2) is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix (13)CO(2) contamination and canopy recycling on soil (13)CO(2) efflux during (13)CO(2) plant-soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of (13)C tracer into the soil chamber during a (13)CO(2) canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO(2) isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ(13)C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, (13)CO(2) was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ(13)C(SR) fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ(13)C(SR) decay of physical (13)CO(2) back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ(13)C(SR) of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that (13)CO(2) recycling at canopy level had no effect on δ(13)C(SR) dynamics.
Collapse
|
59
|
Abstract
Forest canopies exchange a large part of the mass and energy between the earth and the atmosphere. The processes that regulate these exchanges have been of interest to scientists from a diverse range of disciplines for a long time. The International Union of Forest Research Organizations (IUFRO) Canopy Processes Working Group provides a forum for these scientists to explore canopy processes at scales ranging from the leaf to the ecosystem. Given the changes in climate that are being experienced in response to rising [CO(2)], there is a need to understand how forest canopy processes respond to altered environments. Globally, native and managed forests represent the largest terrestrial biome and, in wood and soils, the largest terrestrial stores of carbon. Changing climates have significant implications for carbon storage in forests, as well as their water use, species diversity and management. In order to address these issues, the Canopy Processes Working Group held a travelling workshop in south-east Australia during October 2010 to examine the impact of changing climates on forest canopies, highlighting knowledge gaps and developing new research directions.
Collapse
|
60
|
Vargas R, Baldocchi DD, Bahn M, Hanson PJ, Hosman KP, Kulmala L, Pumpanen J, Yang B. On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations. THE NEW PHYTOLOGIST 2011; 191:1006-1017. [PMID: 21609333 DOI: 10.1111/j.1469-8137.2011.03771.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although there is increasing evidence of the temporal correlation between photosynthesis and soil CO(2) efflux, no study has so far tested its generality across the growing season at multiple study sites and across several time scales. Here, we used continuous (hourly) data and applied time series analysis (wavelet coherence analysis) to identify temporal correlations and time lags between photosynthesis and soil CO(2) efflux for three forests from different climates and a grassland. Results showed the existence of multi-temporal correlations at time periods that varied between 1 and 16 d during the growing seasons at all study sites. Temporal correlations were strongest at the 1 d time period, with longer time lags for forests relative to the grassland. The multi-temporal correlations were not continuous throughout the growing season, and were weakened when the effect of variations in soil temperature and CO(2) diffusivity on soil CO(2) efflux was taken into account. Multi-temporal correlations between photosynthesis and soil CO(2) efflux exist, and suggest that multiple biophysical drivers (i.e. photosynthesis, soil CO(2) diffusion, temperature) are likely to coexist for the regulation of allocation and transport speed of carbon during a growing season. Future studies should consider the multi-temporal influence of these biophysical drivers to investigate their effect on the transport of carbon through the soil-plant-atmosphere continuum.
Collapse
Affiliation(s)
- Rodrigo Vargas
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, Mexico
| | - Dennis D Baldocchi
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA, USA
| | - Michael Bahn
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Paul J Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kevin P Hosman
- Department of Forestry, University of Missouri, Columbia, MO, USA
| | - Liisa Kulmala
- Department of Forest Science, University of Helsinki, Helsinki, Finland
| | - Jukka Pumpanen
- Department of Forest Science, University of Helsinki, Helsinki, Finland
| | - Bai Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|