51
|
Rommelfanger KS, Mitrano DA, Smith Y, Weinshenker D. Light and electron microscopic localization of alpha-1 adrenergic receptor immunoreactivity in the rat striatum and ventral midbrain. Neuroscience 2009; 158:1530-40. [PMID: 19068224 PMCID: PMC2692639 DOI: 10.1016/j.neuroscience.2008.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
Electrophysiological and pharmacological studies have demonstrated that alpha-1 adrenergic receptor (alpha1AR) activation facilitates dopamine (DA) transmission in the striatum and ventral midbrain. However, because little is known about the localization of alpha1ARs in dopaminergic regions, the substrate(s) and mechanism(s) underlying this facilitation of DA signaling are poorly understood. To address this issue, we used light and electron microscopy immunoperoxidase labeling to examine the cellular and ultrastructural distribution of alpha1ARs in the caudate putamen, nucleus accumbens, ventral tegmental area, and substantia nigra in the rat. Analysis at the light microscopic level revealed alpha1AR immunoreactivity mainly in neuropil, with occasional staining in cell bodies. At the electron microscopic level, alpha1AR immunoreactivity was found primarily in presynaptic elements, with scarce postsynaptic labeling. Unmyelinated axons and about 30-50% terminals forming asymmetric synapses contained the majority of presynaptic labeling in the striatum and midbrain, while in the midbrain a subset of terminals forming symmetric synapses also displayed immunoreactivity. Postsynaptic labeling was scarce in both striatal and ventral midbrain regions. On the other hand, only 3-6% of spines displayed alpha1AR immunoreactivity in the caudate putamen and nucleus accumbens. These data suggest that the facilitation of dopaminergic transmission by alpha1ARs in the mesostriatal system is probably achieved primarily by pre-synaptic regulation of glutamate and GABA release.
Collapse
Affiliation(s)
| | | | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
- Department of Neurology, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
52
|
Ruffoli R, Giambelluca MA, Scavuzzo MC, Pasquali L, Giannessi F, Fornai F. MPTP-induced Parkinsonism is associated with damage to Leydig cells and testosterone loss. Brain Res 2008; 1229:218-23. [DOI: 10.1016/j.brainres.2008.06.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 11/27/2022]
|
53
|
Nakajima K, Minematsu M, Miyamoto Y. Inhibition of the outgrowth and elongation of neurites from pheochromocytoma cells by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and preventive effects of dimethylsulfoniopropionate in the presence of nerve growth factor. J Nutr Sci Vitaminol (Tokyo) 2008; 54:176-80. [PMID: 18490849 DOI: 10.3177/jnsv.54.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The combined effects of dimethylsulfoniopropionate (DMSP) (10(-3), 10(-4) and 10(-5) M) with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (5 ng/mL) and the nerve growth factor (NGF) (5 ng/mL) on the outgrowth and elongation of neurites from pheochromocytoma (PC12) cells were examined on RPMI medium containing fetal bovine serum and horse serum with penicillin and streptomycin in collagen-coated dishes for 5 d. The growth was higher in increasing order of the DMSP (10(-3) M), MPTP and NGF, the DMSP (10(-5) M), MPTP and NGF, the MPTP and NGF group and the control group up to 3 d, but not in the NGF and the DMSP (10(-4) M), MPTP and NGF groups. The growth in all the experimental groups showed plateaus from days 4 to 5. The appearance of neurites from the cells in all the groups showed maxima on the 3rd day. The administration of NGF significantly stimulated the outgrowth of neurites from the cells, while the supplementation of MPTP noticeably inhibited the appearance of neurites even in the presence of NGF up to 5 d. However, the addition of DMSP (10(-3 )and 10(-4) M) to the latter group completely prevented the inhibition of the MPTP. These facts were significantly supported by the photographs of neurite-bearing cells on the 3rd day and also by the photometric analyses examining the reaction of MPTP to DMSP, NGF or Collagen IV.
Collapse
Affiliation(s)
- Kenji Nakajima
- Department of Nutrition, Koshien University, Takarazuka, Hyogo, Japan
| | | | | |
Collapse
|
54
|
Weinshenker D, Ferrucci M, Busceti CL, Biagioni F, Lazzeri G, Liles LC, Lenzi P, Murri L, Paparelli A, Fornai F. Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioral, and neurotoxic effects of methamphetamine. J Neurochem 2008; 105:471-83. [PMID: 18042179 PMCID: PMC2610530 DOI: 10.1111/j.1471-4159.2007.05145.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) lesions of the locus coeruleus, the major brain noradrenergic nucleus, exacerbate the damage to nigrostriatal dopamine (DA) terminals caused by the psychostimulant methamphetamine (METH). However, because noradrenergic terminals contain other neuromodulators and the noradrenaline (NA) transporter, which may act as a neuroprotective buffer, it was unclear whether this enhancement of METH neurotoxicity was caused by the loss of noradrenergic innervation or the loss of NA itself. We addressed the specific role of NA by comparing the effects of METH in mice with noradrenergic lesions (DSP-4) and those with intact noradrenergic terminals but specifically lacking NA (genetic or acute pharmacological blockade of the NA biosynthetic enzyme dopamine beta-hydroxylase; DBH). We found that genetic deletion of DBH (DBH-/- mice) and acute treatment of wild-type mice with a DBH inhibitor (fusaric acid) recapitulated the effects of DSP-4 lesions on METH responses. All three methods of NA depletion enhanced striatal DA release, extracellular oxidative stress (as measured by in vivo microdialysis of DA and 2,3-dihydroxybenzoic acid), and behavioral stereotypies following repeated METH administration. These effects accompanied a worsening of the striatal DA neuron terminal damage and ultrastructural changes to medium spiny neurons. We conclude that NA itself is neuroprotective and plays a fundamental role in the sensitivity of striatal DA terminals to the neurochemical, behavioral, and neurotoxic effects of METH.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Michela Ferrucci
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
| | | | | | - Gloria Lazzeri
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
| | - L. Cameron Liles
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Paola Lenzi
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
| | - Luigi Murri
- Department of Neurosciences, Section of Neurology, University of Pisa, Italy
| | - Antonio Paparelli
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
| | - Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Italy
- I.R.C.C.S, Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
55
|
Bakuchiol analogs inhibit monoamine transporters and regulate monoaminergic functions. Biochem Pharmacol 2008; 75:1835-47. [PMID: 18329002 DOI: 10.1016/j.bcp.2008.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
Abstract
Monoamine transporters play key roles in controlling monoamine levels and modulating monoamine reuptake. The objective of the present study was to identify monoamine transporter inhibitors from herbal sources. We discovered that bakuchiol analogs isolated from Fructus Psoraleae inhibited monoamine transporter uptake to differing degrees. The bakuchiol analog, Delta3,2-hydroxybakuchiol was the most potent and efficacious reuptake blocker and was thus selected as the candidate target. Monoamine transporter inhibition by Delta3,2-hydroxybakuchiol was more selective for the dopamine transporter (DAT) (IC50=0.58+/-0.1 microM) and norepinephrine transporter (NET) (IC50=0.69+/-0.12 microM) than for the serotonin transporter (SERT) (IC50=312.02+/-56.69 microM). Delta3,2-Hydroxybakuchiol exhibited greater potency (pEC50 for DAT and NET) than bupropion and exhibited similar efficacy (E(max) for DAT and/or NET) to bupropion and GBR12,935. Pharmacokinetically, Delta3,2-hydroxybakuchiol competitively inhibited DAT and NET with partial reversibility and occupied cocaine binding sites. Moreover, Delta3,2-hydroxybakuchiol counteracted 1-methyl-4-phenylpyridinium-induced toxicity in cells expressing DAT with similar efficacy to GBR12,935. In vivo studies showed that Delta3,2-hydroxybakuchiol increased the activity of intact mice and improved the decreased activity of reserpinized mice. In the conditioned place preference test, preference scores in intact mice were unaffected by Delta3,2-hydroxybakuchiol treatment. Bakuchiol analogs, especially Delta3,2-hydroxybakuchiol, are monoamine transporter inhibitors involved in regulating dopaminergic and noradrenergic neurotransmission and may have represented potential pharmacotherapies for disorders such as Parkinson's disease, depression, and cocaine addiction.
Collapse
|
56
|
Hamill CE, Caudle WM, Richardson JR, Yuan H, Pennell KD, Greene JG, Miller GW, Traynelis SF. Exacerbation of dopaminergic terminal damage in a mouse model of Parkinson's disease by the G-protein-coupled receptor protease-activated receptor 1. Mol Pharmacol 2007; 72:653-64. [PMID: 17596374 DOI: 10.1124/mol.107.038158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) is a G-protein-coupled receptor activated by serine proteases and expressed in astrocytes, microglia, and specific neuronal populations. We examined the effects of genetic deletion and pharmacologic blockade of PAR1 in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease, a neurodegenerative disease characterized by nigrostriatal dopamine damage and gliosis. After MPTP injection, PAR1-/- mice showed significantly higher residual levels of dopamine, dopamine transporter, and tyrosine hydroxylase and diminished microgliosis compared with wild-type mice. Comparable levels of dopaminergic neuroprotection from MPTP-induced toxicity were obtained by infusion of the PAR1 antagonist, BMS-200261 into the right lateral cerebral ventricle. MPTP administration caused changes in the brain protease system, including increased levels of mRNA for two PAR1 activators, matrix metalloprotease-1 and Factor Xa, suggesting a mechanism by which MPTP administration could lead to overactivation of PAR1. We also report that PAR1 is expressed in human substantia nigra pars compacta glia as well as tyrosine hydroxylase-positive neurons. Together, these data suggest that PAR1 might be a target for therapeutic intervention in Parkinson's disease.
Collapse
Affiliation(s)
- Cecily E Hamill
- Department of Pharmacology, Emory University School of Medicine, 5025 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D. Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A 2007; 104:13804-9. [PMID: 17702867 PMCID: PMC1959463 DOI: 10.1073/pnas.0702753104] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Parkinson's disease (PD) is characterized primarily by loss of nigrostriatal dopaminergic neurons, there is a concomitant loss of norepinephrine (NE) neurons in the locus coeruleus. Dopaminergic lesions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are commonly used to model PD, and although MPTP effectively mimics the dopaminergic neuropathology of PD in mice, it fails to produce PD-like motor deficits. We hypothesized that MPTP is unable to recapitulate the motor abnormalities of PD either because the behavioral paradigms used to measure coordinated behavior in mice are not sensitive enough or because MPTP in the absence of NE loss is insufficient to impair motor control. We tested both possibilities by developing a battery of coordinated movement tests and examining motor deficits in dopamine beta-hydroxylase knockout (Dbh-/-) mice that lack NE altogether. We detected no motor abnormalities in MPTP-treated control mice, despite an 80% loss of striatal dopamine (DA) terminals. Dbh-/- mice, on the other hand, were impaired in most tests and also displayed spontaneous dyskinesias, despite their normal striatal DA content. A subset of these impairments was recapitulated in control mice with 80% NE lesions and reversed in Dbh-/- mice, either by restoration of NE or treatment with a DA agonist. MPTP did not exacerbate baseline motor deficits in Dbh-/- mice. Finally, striatal levels of phospho-ERK-1/2 and DeltaFosB/FosB, proteins which are associated with PD and dyskinesias, were elevated in Dbh-/- mice. These results suggest that loss of locus coeruleus neurons contributes to motor dysfunction in PD.
Collapse
Affiliation(s)
| | - G. L. Edwards
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - K. G. Freeman
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | - G. W. Miller
- Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322; and
| | - D. Weinshenker
- Departments of *Human Genetics and
- To whom correspondence should be addressed at:
Department of Human Genetics, Emory University, Whitehead 301, 615 Michael Street, Atlanta, GA 30322. E-mail:
| |
Collapse
|
58
|
Rommelfanger KS, Weinshenker D. Norepinephrine: The redheaded stepchild of Parkinson's disease. Biochem Pharmacol 2007; 74:177-90. [PMID: 17416354 DOI: 10.1016/j.bcp.2007.01.036] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/27/2007] [Accepted: 01/29/2007] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) affects approximately 1% of the world's aging population. Despite its prevalence and rigorous research in both humans and animal models, the etiology remains unknown. PD is most often characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), and models of PD generally attempt to mimic this deficit. However, PD is a true multisystem disorder marked by a profound but less appreciated loss of cells in the locus coeruleus (LC), which contains the major group of noradrenergic neurons in the brain. Historic and more recent experiments exploring the role of norepinephrine (NE) in PD will be analyzed in this review. First, we examine the evidence that NE is neuroprotective and that LC degeneration sensitizes DA neurons to damage. The second part of this review focuses on the potential contribution of NE loss to the behavioral symptoms associated with PD. We propose that LC loss represents a crucial turning point in PD progression and that pharmacotherapies aimed at restoring NE have important therapeutic potential.
Collapse
Affiliation(s)
- K S Rommelfanger
- Department of Human Genetics, Emory University, Atlanta, GA 30322, United States
| | | |
Collapse
|
59
|
Knaryan VH, Samantaray S, Varghese M, Srinivasan A, Galoyan AA, Mohanakumar KP. Synthetic bovine proline-rich-polypeptides generate hydroxyl radicals and fail to protect dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in mice. Neuropeptides 2006; 40:291-8. [PMID: 16712929 DOI: 10.1016/j.npep.2006.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 03/21/2006] [Accepted: 03/25/2006] [Indexed: 11/25/2022]
Abstract
Proline-rich-polypeptides (PRPs) isolated from bovine hypothalamus have been shown to render protection against neuronal injury of the brain and spinal cord. We examined two PRPs containing 15 and 10 amino acid residues (PRP-1 and PRP-4 synthetic polypeptide) for their effect, if any, on dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effects of these PRPs on hydroxyl radical ((*)OH) generation in a Fenton-like reaction as well as from isolated mitochondria were monitored, employing a sensitive salicylate hydroxylation procedure. Balb/c mice treated (i.p., twice, 16 h apart) with MPTP (30 mg/kg) or PRP-1 (1.6 mg/kg), but not PRP-4 (1.6 mg/kg) showed significant loss of striatal dopamine and norepinephrine as assayed by an HPLC-electrochemical procedure. Pretreatment with the PRPs, 30 min prior to the neurotoxin administration failed to attenuate MPTP-induced striatal dopamine or norepinephrine depletion, but significantly attenuated the MPTP-induced decrease in dopamine turnover. A significant increase in the generation of (*)OH by the PRPs in a Fenton-like reaction or from isolated mitochondria suggests their pro-oxidant action, and explains their failure to protect against MPTP-induced parkinsonism in mice.
Collapse
Affiliation(s)
- Varduhi H Knaryan
- Division of Clinical and Experimental Neuroscience, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700 032, West Bengal, India
| | | | | | | | | | | |
Collapse
|
60
|
Nakajima K, Minematsu M. Ameliorating effect of dimethylsulfoniopropionate on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease of mice. J Nutr Sci Vitaminol (Tokyo) 2006; 52:70-4. [PMID: 16637233 DOI: 10.3177/jnsv.52.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of dimethylsulfoniopropionate (DMSP) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease (PD) of mice was examined for 5 d. The distilled water (the control group) and the DMSP solution at 5 x 10(-4) M (the DMSP group) were supplemented ad libitum to six mice each in two groups for 2 wk. An appropriate amount of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) solution (20 mg/kg body wt) was then intraperitoneally injected into all the test mice once a day initially for 3 d, which definitely made the control mice similar to the PD-model mice. The moving ability (running power) of the mice in both groups was measured using an automatic Wheel Running Instrument. The immobility duration of the upside-down mice in both groups was estimated by a newly developed polygraph (RMP-6008M, Nihon Koden Co., Ltd., Japan). The results indicated that the mice in the DMSP group showed a stronger moving ability and a shorter immobility duration compared to the mice in the control group during the experimental period. Furthermore, the amounts of catecholamines (dopamine and norepinephrine) in the brains except for the cerebellums of all the test mice were estimated 2 d after the last MPTP injection, which demonstrated that the brains of the mice in the DMSP group accumulate larger amounts of catecholamines, especially dopamine, than them in the control group. Accordingly, the administration of low concentrations of DMSP proved to prevent and/or ameliorate the decreased mobility and the typical immobility (Akinesia) of the MPTP-induced PD-model mice probably due to increased amounts of dopamine in the brains of the DMSP group mice.
Collapse
Affiliation(s)
- Kenji Nakajima
- Laboratory of Biochemistry, Faculty of Nutrition, Koshien University, Hyogo, Japan.
| | | |
Collapse
|
61
|
Traver S, Salthun-Lassalle B, Marien M, Hirsch EC, Colpaert F, Michel PP. The neurotransmitter noradrenaline rescues septal cholinergic neurons in culture from degeneration caused by low-level oxidative stress. Mol Pharmacol 2005; 67:1882-91. [PMID: 15784847 DOI: 10.1124/mol.104.007864] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have developed a model system in which rat basal forebrain cholinergic neurons degenerate progressively when maintained in culture conditions that make them susceptible to low-level oxidative stress. In this study, we showed that cholinergic neurons identified by acetylcholinesterase cytochemistry or choline acetyl transferase immunocytochemistry are rescued efficiently by the neurotransmitter noradrenaline (NA). The effect of NA required neither adrenoceptor activation nor intracellular accumulation. NA operated via a mechanism that precluded activation of a cell death pathway in which reactive oxygen species (ROS) and proapoptotic caspases were crucially involved. It is noteworthy that NA remained protective even when applied late in the degenerative process but before intracellular ROS began to increase. The high efficacy of iron chelators and catalase in preventing the death of cholinergic neurons in this model suggested that NA neutralized the effects of hydroxyl radicals produced through a Fenton-type reaction. Pyrocatechol [the diphenolic moiety of NA] was sufficient in itself to prevent ROS production and cholinergic cell demise, indicating that the catechol structure was instrumental for the neuroprotective function of NA. Therefore, the noncatecholic neurotransmitter GABA failed to prevent neurodegeneration. Nerve growth factor and brain derived neurotrophic factor, two trophic peptides for septal cholinergic neurons, did not afford protection by themselves and did not improve neuroprotection provided by NA. However, in the presence of NA, they both retained their efficacy to stimulate cholinergic parameters. These data indicate that NA-based therapeutic strategies may be of interest in such neurodegenerative conditions as Alzheimer's disease, where progressive cholinergic deficits occur.
Collapse
Affiliation(s)
- Sabine Traver
- INSERM U679, Bātiment Pharmacie, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
62
|
Alttoa A, Kõiv K, Eller M, Uustare A, Rinken A, Harro J. Effects of low dose N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine administration on exploratory and amphetamine-induced behavior and dopamine D2 receptor function in rats with high or low exploratory activity. Neuroscience 2005; 132:979-90. [PMID: 15857703 DOI: 10.1016/j.neuroscience.2005.01.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/16/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Individual differences in behavioral traits are associated with sensitivity to various neurochemical and psychopharmacological manipulations. In this study exploratory and amphetamine-induced behavior in rats with persistently high or low exploratory activity (HE and LE, respectively) was examined before and after a partial denervation of the locus coeruleus (LC) projections with the selective neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; 10 mg/kg). Partial LC denervation prevented the increase in exploratory activity over repeated test sessions in the LE animals, but had no effect in HE-rats. Amphetamine- (0.5 mg/kg) induced locomotor activity was attenuated by DSP-4 pretreatment only in HE-rats. These results suggest differential involvement of LC noradrenergic transmission in novelty- and amphetamine-induced behavior in animals with persistent differences in novelty-related behavior. In addition to partial noradrenaline depletion in the frontal cortex and hippocampus, which occurred in both HE- and LE-rats, DSP-4 treatment also decreased the content of dopamine and its metabolites in the nucleus accumbens, and the metabolite levels in striatum, but only in the LE-animals. 5-HIAA levels were also reduced in the nucleus accumbens and striatum in LE-rats by the neurotoxin. D(2) receptor function, as determined by dopamine-stimulated [(35)S]GTPgammaS binding, was increased by DSP-4 treatment in the striatum of LE-rats, but reduced in HE-rats. No effect of partial LC denervation was found on dopamine-stimulated [(35)S]GTPgammaS binding in the nucleus accumbens. Together these findings suggest that LC noradrenergic neurotransmission is differently involved in dopaminergic mechanisms which mediate novelty-related vs amphetamine-induced behavior.
Collapse
Affiliation(s)
- A Alttoa
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | | | | | | | | | | |
Collapse
|