51
|
Zhao Y, Wang D, Bais S, Wang H. Modulation of Pro-inflammatory Mediators by Eugenol in AlCl3 Induced Dementia in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.457.464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
52
|
Subaraja M, Janardhanam Vanisree A. Aberrant neurotransmissional mRNAs in cerebral ganglions of rotenone-exposed Lumbricus terrestris exhibiting motor dysfunction and altered cognitive behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14461-14472. [PMID: 30868461 DOI: 10.1007/s11356-019-04740-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Rotenone (ROT) was shown to affect cerebral ganglions (CGs) of Lumbricus terrestris as a pioneering observation in our earlier investigation. Though ROT is a well-known neurotoxin causing neurodegeneration (ND), the precipitation of movement dysfunction remains largely unknown. We have designed the current study to analyze motor abnormalities in worms by exposing them to different concentrations (0.0-0.4 ppm) of ROT for 7 days. GABA, cholinergic receptor, serotonin transporter (SERT), acetylcholine esterase (AchE), and dopamine-β-hydroxylase that are well known for their involvement in neuromuscular junctions were investigated by qRT-PCR. Further, neuronal mitochondrial genes (cytochrome C oxidase-2, NADH deydrogenase-1, cytochrome-b) and actin-1 that are essential for regeneration and calreticulin (phagocytosis) were investigated. The levels of neurotransmitters, lipids, ATPase, neuronal behavior analyses, and fluorescence analysis (lipid droplets) were performed in CGs which showed significant variations at 0.3 ppm. Ultrastructural changes in lipid droplet and neuromelatonin were prominent in 0.3 ppm. Dose-dependent effect of ROT on behavior alteration and expression of m-RNAs studied suggested that at 0.3 ppm, it could deteriorate motor and cognitive functions. We predict that perhaps, by virtue of its effect on cerebral ganglionic genes and their neurotransmitting potential, ROT may cause morbidities that resemble features characteristic of hemiparkinsonic degeneration.
Collapse
Affiliation(s)
- Mamangam Subaraja
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | | |
Collapse
|
53
|
Chiaradia E, Renzone G, Scaloni A, Caputo M, Costanzi E, Gambelunghe A, Muzi G, Avellini L, Emiliani C, Buratta S. Protein carbonylation in dopaminergic cells exposed to rotenone. Toxicol Lett 2019; 309:20-32. [PMID: 30951809 DOI: 10.1016/j.toxlet.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic neurons and the most common features of Parkinson's disease in animal models. It acts as a mitochondrial complex I inhibitor that impairs cellular respiration, with consequent increase of reactive oxygen species and oxidative stress. This study evaluates the rotenone-induced oxidative damage in PC12 cells, focusing particularly on protein oxidation. The identification of specific carbonylated proteins highlighted putative alterations of important cellular processes possibly associated with Parkinson's disease. Carbonylation of ATP synthase and of enzymes acting in pyruvate and glucose metabolism suggested a failure of mechanisms ensuring cellular energy supply. Concomitant oxidation of cytoskeletal proteins and of enzymes involved in the synthesis of neuroactive molecules indicated alterations of the neurotransmission system. Carbonylation of chaperon proteins as well as of proteins acting in the autophagy-lysosome pathway and the ubiquitin-proteasome system suggested the possible formation of cytosolic unfolded protein inclusions as result of defective processes assisting recovery/degradation of damaged molecules. In conclusion, this study originally evidences specific protein targets of rotenone-induced oxidative damage, suggesting some possible molecular mechanisms involved in rotenone toxicity.
Collapse
Affiliation(s)
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Mara Caputo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Giacomo Muzi
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
54
|
Differential Effects of Yeast NADH Dehydrogenase (Ndi1) Expression on Mitochondrial Function and Inclusion Formation in a Cell Culture Model of Sporadic Parkinson's Disease. Biomolecules 2019; 9:biom9040119. [PMID: 30934776 PMCID: PMC6523508 DOI: 10.3390/biom9040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that exhibits aberrant protein aggregation and mitochondrial dysfunction. Ndi1, the yeast mitochondrial NADH dehydrogenase (complex I) enzyme, is a single subunit, internal matrix-facing protein. Previous studies have shown that Ndi1 expression leads to improved mitochondrial function in models of complex I-mediated mitochondrial dysfunction. The trans-mitochondrial cybrid cell model of PD was created by fusing mitochondrial DNA-depleted SH-SY5Y cells with platelets from a sporadic PD patient. PD cybrid cells reproduce the mitochondrial dysfunction observed in a patient's brain and periphery and form intracellular, cybrid Lewy bodies comparable to Lewy bodies in PD brain. To improve mitochondrial function and alter the formation of protein aggregates, Ndi1 was expressed in PD cybrid cells and parent SH-SY5Y cells. We observed a dramatic increase in mitochondrial respiration, increased mitochondrial gene expression, and increased PGC-1α gene expression in PD cybrid cells expressing Ndi1. Total cellular aggregated protein content was decreased but Ndi1 expression was insufficient to prevent cybrid Lewy body formation. Ndi1 expression leads to improved mitochondrial function and biogenesis signaling, both processes that could improve neuron survival during disease. However, other aspects of PD pathology such as cybrid Lewy body formation were not reduced. Consequently, resolution of mitochondrial dysfunction alone may not be sufficient to overcome other aspects of PD-related cellular pathology.
Collapse
|
55
|
Simon JM, Paranjape SR, Wolter JM, Salazar G, Zylka MJ. High-throughput screening and classification of chemicals and their effects on neuronal gene expression using RASL-seq. Sci Rep 2019; 9:4529. [PMID: 30872602 PMCID: PMC6418307 DOI: 10.1038/s41598-019-39016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
We previously used RNA-seq to identify chemicals whose effects on neuronal gene expression mimicked transcriptional signatures of autism, aging, and neurodegeneration. However, this approach was costly and time consuming, which limited our study to testing a single chemical concentration on mixed sex cortical neuron cultures. Here, we adapted a targeted transcriptomic method (RASL-seq, similar to TempO-seq) to interrogate changes in expression of a set of 56 signature genes in response to a library of 350 chemicals and chemical mixtures at four concentrations in male and female mouse neuronal cultures. This enabled us to replicate and expand our previous classifications, and show that transcriptional responses were largely equivalent between sexes. Overall, we found that RASL-seq can be used to accelerate the pace at which chemicals and mixtures that transcriptionally mimic autism and other neuropsychiatric diseases can be identified, and provides a cost-effective way to quantify gene expression with a panel of marker genes.
Collapse
Affiliation(s)
- Jeremy M Simon
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Smita R Paranjape
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Justin M Wolter
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
56
|
Archer WR, Hall BA, Thompson TN, Wadsworth OJ, Schulz MD. Polymer sequestrants for biological and environmental applications. POLYM INT 2019. [DOI: 10.1002/pi.5774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- William R Archer
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - Brady A Hall
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - Tiffany N Thompson
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - Ophelia J Wadsworth
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - Michael D Schulz
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| |
Collapse
|
57
|
Tuttle AH, Salazar G, Cooper EM, Stapleton HM, Zylka MJ. Choice of vehicle affects pyraclostrobin toxicity in mice. CHEMOSPHERE 2019; 218:501-506. [PMID: 30497033 PMCID: PMC6338344 DOI: 10.1016/j.chemosphere.2018.11.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 05/31/2023]
Abstract
Pyraclostrobin is a strobilurin fungicide that inhibits mitochondrial complex III of fungal and mammalian cells. In toxicity studies that were used to estimate the safety factor, pyraclostrobin was added to animal feed or to aqueous vehicles. However, foods containing residues of pyraclostrobin and other strobilurin fungicides (azoxystrobin, trifloxystrobin, fluoxastrobin) are frequently prepared in vegetable oil prior to human consumption. The primary objective of this study was to determine if pyraclostrobin dissolved in an oil-based vehicle had adverse health outcomes in mice when compared to aqueous-based vehicles. We found that pyraclostrobin does not fully dissolve in aqueous methyl cellulose (MC) or carboxymethyl cellulose (CMC), two vehicles used in industry-sponsored toxicity studies, but does fully dissolve in corn oil. Moreover, C57BL/6 mice receiving pyraclostrobin in corn oil displayed adverse health outcomes, including loss of body weight, hypothermia and diarrhea at lower doses than when added to feed or to aqueous vehicles. Our data suggest that previous studies underestimated the true toxicity of pyraclostrobin in mammals. Additional toxicity tests using oil-based vehicles are recommended to verify current safety recommendations for strobilurin fungicides.
Collapse
Affiliation(s)
- Alexander H Tuttle
- Department of Cell Biology and Physiology, and UNC Neuroscience Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology, and UNC Neuroscience Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | | - Mark J Zylka
- Department of Cell Biology and Physiology, and UNC Neuroscience Center, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
58
|
Thellung S, Corsaro A, Nizzari M, Barbieri F, Florio T. Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. Int J Mol Sci 2019; 20:ijms20040901. [PMID: 30791416 PMCID: PMC6412775 DOI: 10.3390/ijms20040901] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense” equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers’ clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Mario Nizzari
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
59
|
Drosophila Models of Sporadic Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19113343. [PMID: 30373150 PMCID: PMC6275057 DOI: 10.3390/ijms19113343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common cause of movement disorders and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. It is increasingly recognized as a complex group of disorders presenting widely heterogeneous symptoms and pathology. With the exception of the rare monogenic forms, the majority of PD cases result from an interaction between multiple genetic and environmental risk factors. The search for these risk factors and the development of preclinical animal models are in progress, aiming to provide mechanistic insights into the pathogenesis of PD. This review summarizes the studies that capitalize on modeling sporadic (i.e., nonfamilial) PD using Drosophilamelanogaster and discusses their methodologies, new findings, and future perspectives.
Collapse
|
60
|
Medvedev A, Moeser M, Medvedeva L, Martsen E, Granick A, Raines L, Zeng M, Makarov S, Houck KA, Makarov SS. Evaluating biological activity of compounds by transcription factor activity profiling. SCIENCE ADVANCES 2018; 4:eaar4666. [PMID: 30263952 PMCID: PMC6157966 DOI: 10.1126/sciadv.aar4666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/21/2018] [Indexed: 05/30/2023]
Abstract
Assessing the biological activity of compounds is an essential objective of biomedical research. We show that one can infer the bioactivity of compounds by assessing the activity of transcription factors (TFs) that regulate gene expression. Using a multiplex reporter system, the FACTORIAL, we characterized cell response to a compound by a quantitative signature, the TF activity profile (TFAP). We found that perturbagens of biological pathways elicited distinct TFAP signatures in human cells. Unexpectedly, perturbagens of the same pathway all produced identical TFAPs, regardless of where or how they interfered. We found invariant TFAPs for mitochondrial, histone deacetylase, and ubiquitin/proteasome pathway inhibitors; cytoskeleton disruptors; and DNA-damaging agents. Using these invariant signatures permitted straightforward identification of compounds with specified bioactivities among uncharacterized chemicals. Furthermore, this approach allowed us to assess the multiple bioactivities of polypharmacological drugs. Thus, TF activity profiling affords straightforward assessment of the bioactivity of compounds through the identification of perturbed biological pathways.
Collapse
Affiliation(s)
| | - Matt Moeser
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Liubov Medvedeva
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Elena Martsen
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Alexander Granick
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Lydia Raines
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Ming Zeng
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Sergei Makarov
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Keith A. Houck
- U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, D343-03, Research Triangle Park, NC 27711, USA
| | - Sergei S. Makarov
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| |
Collapse
|
61
|
Yenkoyan K, Harutyunyan H, Harutyunyan A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic Biol Med 2018; 123:85-95. [PMID: 29782990 DOI: 10.1016/j.freeradbiomed.2018.05.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
Abstract
The real impact of reactive oxygen species, antioxidant enzymes, mitochondrial dysfunction and chronic inflammation on the development of autism spectrum disorders (ASD) remains unclear, and even controversial. In this study we compared the plasma levels of antioxidant enzymes and their cofactors, markers of oxidative damage, and the respiratory burst in peripheral blood polymorphonuclear leucocytes (PMNL) as surrogate marker of chronic inflammation obtained from 10 children (4-10 year old) who met DSM-5 criteria and their siblings. We demonstrated diminished superoxide dismutase (SOD) and enhanced catalase (CAT) activities resulting in a markedly decreased SOD/CAT ratio and enhanced carbonyl content in the plasma of ASD patients. A strong correlation was present between SOD and CAT activities in the control group, which was not noted in ASD patients. Moreover, in autistic patients, we observed negative correlation between SOD activity on one side, and carbonyl content in plasma, 8-Hydroxy-2-deoxyguanosin content in urine, and respiratory burst intensity in PMNL on the other side. At the same time, low SOD level in autistic children was positively correlated with the magnesium content in the packed RBCs, which might indicate the involvement of the mitochondrial MnSOD in ASD pathogenesis, and therefore the consequent partaking of mitochondrial dysfunction in the development of ASD. Altogether, these results indicate that decreased antioxidant capacity and increased oxidative stress in ASD patients may have functional consequence in terms of increased superoxide leakage, oxidative protein damage, chronic inflammatory response, and, finally, neuronal cell abnormal functioning or death.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Department of Biochemistry, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia; Laboratory of Biochemical and Biophysical Investigations, Scientific-Research Centre, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia.
| | - Hayk Harutyunyan
- Laboratory of Biochemical and Biophysical Investigations, Scientific-Research Centre, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Aida Harutyunyan
- Department of Biochemistry, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| |
Collapse
|
62
|
. K, . Y, Bais S. Neuroprotective Effect of Protocatechuic Acid Through MAO-B Inhibition in Aluminium Chloride Induced Dementia of Alzheimer’s Type in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.879.888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
63
|
Harris G, Eschment M, Orozco SP, McCaffery JM, Maclennan R, Severin D, Leist M, Kleensang A, Pamies D, Maertens A, Hogberg HT, Freeman D, Kirkwood A, Hartung T, Smirnova L. Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol 2018; 92:2587-2606. [PMID: 29955902 PMCID: PMC6063347 DOI: 10.1007/s00204-018-2250-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
To date, most in vitro toxicity testing has focused on acute effects of compounds at high concentrations. This testing strategy does not reflect real-life exposures, which might contribute to long-term disease outcome. We used a 3D-human dopaminergic in vitro LUHMES cell line model to determine whether effects of short-term rotenone exposure (100 nM, 24 h) are permanent or reversible. A decrease in complex I activity, ATP, mitochondrial diameter, and neurite outgrowth were observed acutely. After compound removal, complex I activity was still inhibited; however, ATP levels were increased, cells were electrically active and aggregates restored neurite outgrowth integrity and mitochondrial morphology. We identified significant transcriptomic changes after 24 h which were not present 7 days after wash-out. Our results suggest that testing short-term exposures in vitro may capture many acute effects which cells can overcome, missing adaptive processes, and long-term mechanisms. In addition, to study cellular resilience, cells were re-exposed to rotenone after wash-out and recovery period. Pre-exposed cells maintained higher metabolic activity than controls and presented a different expression pattern in genes previously shown to be altered by rotenone. NEF2L2, ATF4, and EAAC1 were downregulated upon single hit on day 14, but unchanged in pre-exposed aggregates. DAT and CASP3 were only altered after re-exposure to rotenone, while TYMS and MLF1IP were downregulated in both single-exposed and pre-exposed aggregates. In summary, our study shows that a human cell-based 3D model can be used to assess cellular adaptation, resilience, and long-term mechanisms relevant to neurodegenerative research.
Collapse
Affiliation(s)
- Georgina Harris
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Melanie Eschment
- Center for Alternatives to Animal Testing (CAAT) Europe, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sebastian Perez Orozco
- The Integrated Imaging Center, Department of Biology, Engineering in Oncology Center and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - J Michael McCaffery
- The Integrated Imaging Center, Department of Biology, Engineering in Oncology Center and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Daniel Severin
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Center for Alternatives to Animal Testing (CAAT) Europe, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andre Kleensang
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexandra Maertens
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Center for Alternatives to Animal Testing (CAAT) Europe, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
64
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
65
|
Swimming Exercise and Transient Food Deprivation in Caenorhabditis elegans Promote Mitochondrial Maintenance and Protect Against Chemical-Induced Mitotoxicity. Sci Rep 2018; 8:8359. [PMID: 29844465 PMCID: PMC5974391 DOI: 10.1038/s41598-018-26552-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Exercise and caloric restriction improve health, including reducing risk of cardiovascular disease, neurological disease, and cancer. However, molecular mechanisms underlying these protections are poorly understood, partly due to the cost and time investment of mammalian long-term diet and exercise intervention studies. We subjected Caenorhabditis elegans nematodes to a 6-day, twice daily swimming exercise regimen, during which time the animals also experienced brief, transient food deprivation. Accordingly, we included a non-exercise group with the same transient food deprivation, a non-exercise control with ad libitum access to food, and a group that exercised in food-containing medium. Following these regimens, we assessed mitochondrial health and sensitivity to mitochondrial toxicants. Exercise protected against age-related decline in mitochondrial morphology in body-wall muscle. Food deprivation increased organismal basal respiration; however, exercise was the sole intervention that increased spare respiratory capacity and proton leak. We observed increased lifespan in exercised animals compared to both control and transiently food-deprived nematodes. Finally, exercised animals (and to a lesser extent, transiently food-deprived animals) were markedly protected against lethality from acute exposures to the mitotoxicants rotenone and arsenic. Thus, swimming exercise and brief food deprivation provide effective intervention in C. elegans, protecting from age-associated mitochondrial decline and providing resistance to mitotoxicant exposures.
Collapse
|
66
|
Ammal Kaidery N, Thomas B. Current perspective of mitochondrial biology in Parkinson's disease. Neurochem Int 2018; 117:91-113. [PMID: 29550604 DOI: 10.1016/j.neuint.2018.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorder characterized by preferential loss of dopaminergic neurons of the substantia nigra pars compacta and the presence of Lewy bodies containing α-synuclein. Although the cause of PD remains elusive, remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. An explosion of discoveries during the past two decades has led to the identification of several autosomal dominant and recessive genes that cause familial forms of PD. The investigations of these familial PD gene products have shed considerable insights into the molecular pathogenesis of the more common sporadic PD. A growing body of evidence suggests that the etiology of PD is multifactorial and involves a complex interplay between genetic and environmental factors. Substantial evidence from human tissues, genetic and toxin-induced animal and cellular models indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Deficits in mitochondrial functions due to bioenergetics defects, alterations in the mitochondrial DNA, generation of reactive oxygen species, aberrant calcium homeostasis, and anomalies in mitochondrial dynamics and quality control are implicated in the underlying mechanisms of neuronal cell death in PD. In this review, we discuss how familial PD-linked genes and environmental factors interface the pathways regulating mitochondrial functions and thereby potentially converge both familial and sporadic PD at the level of mitochondrial integrity. We also provide an overview of the status of therapeutic strategies targeting mitochondrial dysfunction in PD. Unraveling potential pathways that influence mitochondrial homeostasis in PD may hold the key to therapeutic intervention for this debilitating neurodegenerative movement disorder.
Collapse
Affiliation(s)
| | - Bobby Thomas
- Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States; Neurology Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Innovations in agriculture and medicine as well as industrial and domestic technologies are essential for the growing and aging global population. These advances generally require the use of novel natural or synthetic chemical agents with the potential to affect human health. Here, we attempt to highlight environmental chemicals and select drugs with the potential to exacerbate aging by directly affecting molecular aging cascades focusing particular attention on the brain. Finally, we call attention to some potential fruitful areas of research, particularly with advanced molecular profiling that could aid in prevention or mitigation of environmental chemical toxic influences in the periphery and the brain. RECENT FINDINGS We briefly summarize new research and highlight a recent study designed to prospectively identify agrochemicals with the potential to induce neurological diseases and place these discoveries into the already rich neurodegeneration and aging literature. Collectively, the research reviewed briefly here highlight chemicals with the true potential to accelerate aging, particularly in the brain, by eliciting elevated free radical stress and mitochondrial dysfunction. We make general recommendations about improved methodological approaches toward identification and regulation of chemicals that are gerontogenic to the brain.
Collapse
Affiliation(s)
- Brandon L Pearson
- DZNE, German Center for Neurodegenerative Diseases, Sigmund-Freud Str 27, 53127, Bonn, Germany.
| | - Dan Ehninger
- DZNE, German Center for Neurodegenerative Diseases, Sigmund-Freud Str 27, 53127, Bonn, Germany
| |
Collapse
|
68
|
Tozzi A, Tantucci M, Marchi S, Mazzocchetti P, Morari M, Pinton P, Mancini A, Calabresi P. Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's disease. Cell Death Dis 2018; 9:204. [PMID: 29434188 PMCID: PMC5833812 DOI: 10.1038/s41419-017-0221-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in which genetic and environmental factors synergistically lead to loss of midbrain dopamine (DA) neurons. Mutation of leucine-rich repeated kinase2 (Lrrk2) genes is responsible for the majority of inherited familial cases of PD and can also be found in sporadic cases. The pathophysiological role of this kinase has to be fully understood yet. Hyperactivation of Lrrk2 kinase domain might represent a predisposing factor for both enhanced striatal glutamatergic release and mitochondrial vulnerability to environmental factors that are observed in PD. To investigate possible alterations of striatal susceptibility to mitochondrial dysfunction, we performed electrophysiological recordings from the nucleus striatum of a G2019S Lrrk2 mouse model of PD, as well as molecular and morphological analyses of G2019S Lrrk2-expressing SH-SY5Y neuroblastoma cells. In G2019S mice, we found reduced striatal DA levels, according to the hypothesis of alteration of dopaminergic transmission, and increased loss of field potential induced by the mitochondrial complex I inhibitor rotenone. This detrimental effect is reversed by the D2 DA receptor agonist quinpirole via the inhibition of the cAMP/PKA intracellular pathway. Analysis of mitochondrial functions in G2019S Lrrk2-expressing SH-SY5Y cells revealed strong rotenone-induced oxidative stress characterized by reduced Ca2+ buffering capability and ATP synthesis, production of reactive oxygen species, and increased mitochondrial fragmentation. Importantly, quinpirole was able to prevent all these changes. We suggest that the G2019S-Lrrk2 mutation is a predisposing factor for enhanced striatal susceptibility to mitochondrial dysfunction induced by exposure to mitochondrial environmental toxins and that the D2 receptor stimulation is neuroprotective on mitochondrial function, via the inhibition of cAMP/PKA intracellular pathway. We suggest new possible neuroprotective strategies for patients carrying this genetic alteration based on drugs specifically targeting Lrrk2 kinase domain and mitochondrial functionality.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Michela Tantucci
- Neurological clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Petra Mazzocchetti
- Neurological clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Michele Morari
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Andrea Mancini
- Neurological clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Santa Lucia Foundation IRCCS, Rome, Italy.
- Neurological clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
69
|
Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18122507. [PMID: 29168786 PMCID: PMC5751110 DOI: 10.3390/ijms18122507] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Zhengqing Wan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Yongyi Zou
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Henok Kessete Afewerky
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Tongmei Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
70
|
Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. NPJ PARKINSONS DISEASE 2017; 3:30. [PMID: 29057315 PMCID: PMC5645400 DOI: 10.1038/s41531-017-0032-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. Oxidative stress and mitochondrial dysfunction are key pathophysiological processes of many chronic neurodegenerative diseases, including Parkinson’s disease (PD). However, the inter-relationship between mitochondrial defects and neuroinflammation is not well understood. In the present study, we show that impaired mitochondrial function can augment the NLRP3 inflammasome-driven proinflammatory cascade in microglia. Primary mouse microglia treated with the common inflammogen LPS increased NLRP3 and pro-IL-1β expression. Interestingly, exposure of LPS-primed microglial cells to the mitochondrial complex-I inhibitory pesticides rotenone and tebufenpyrad specifically potentiated the NLRP3 induction, ASC speck formation and pro-IL-1β processing to IL-1β in a dose-dependent manner, indicating that mitochondrial impairment heightened the NLRP3 inflammasome-mediated proinflammatory response in microglia. The neurotoxic pesticide-induced NLRP3 inflammasome activation was accompanied by bioenergetic defects and lysosomal dysfunction in microglia. Furthermore, the pesticides enhanced mitochondrial ROS generation in primary microglia, while amelioration of mitochondria-derived ROS by the mitochondria-targeted antioxidant mito-apocynin completely abolished IL-1β release, indicating mitochondrial ROS drives potentiation of the NLRP3 inflammasome in microglia. Exposure to conditioned media obtained from mitochondrial inhibitor-treated, LPS-primed microglial cells, but not unprimed cells, induced dopaminergic neurodegeneration in cultured primary mesencephalic and human dopaminergic neuronal cells (LUHMES). Notably, our in vivo results with chronic rotenone rodent models of PD further support the activation of proinflammatory NLRP3 inflammasome signaling due to mitochondrial dysfunction. Collectively, our results demonstrate that mitochondrial impairment in microglia can amplify NLRP3 inflammasome signaling, which augments the dopaminergic neurodegenerative process. A team of American researchers demonstrate that disruption of mitochondria in microglia contributes to inflammation and neurodegeneration. Anumantha G. Kanthasamy at Iowa State University in Ames, IA and colleagues examined the effect of pesticides known to impair mitochondrial function on proinflammatory signaling pathways in microglia, the brain’s immune cells. They found that both rotenone and tebufenpyrad specifically stimulated the NLRP3 inflammasome, a multi-protein complex implicated in neuroinflammatory processes. The pesticide-treated microglia were able to cause more damage to neuronal cells than the untreated ones, indicating that mitochondrial dysfunction in microglia augments neurodegeneration. The authors also show that in rodents chronically exposed to rotenone, which causes many of the features of Parkinson’s disease (PD), the NLRP3 inflammasome is activated. These findings contribute to better understand the mechanisms driving chronic neuroinflammation in PD.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA
| | - Emir Malovic
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA
| | - Dilshan S Harishchandra
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA.,Present Address: Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, 642 BRB II/III, Philadelphia, PA 19104 USA
| | - Shivani Ghaisas
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA.,Present Address: Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, 642 BRB II/III, Philadelphia, PA 19104 USA
| | - Nikhil Panicker
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA.,Present Address: Institute for Cell Engineering, The Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD 21210 USA
| | - Adhithiya Charli
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA
| | | | - Dharmin Rokad
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA
| | - Huajun Jin
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA
| | | | - Arthi Kanthasamy
- Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA
| | | |
Collapse
|
71
|
Wong S, Giulivi C. Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2017; 15:614-23. [PMID: 27071785 DOI: 10.2174/1871527315666160413122624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/29/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a growing concern with more than 1 in every 68 children affected in the United States by age 8. Limited scientific advances have been made regarding the etiology of autism, with general agreement that both genetic and environmental factors contribute to this disorder. OBJECTIVE To explore the link between exposure to PBDE, mitochondrial dysfunction and autism risk. RESULTS Perinatal exposures to PBDEs may contribute to the etiology or morbidity of ASD including mitochondrial dysfunction based on (i) their increased environmental abundance and human exposures, (ii) their activity towards implicated in neuronal development and synaptic plasticity including mitochondria, and (iii) their bioaccumulation in mitochondria. CONCLUSION In this review, we propose that PBDE, and possibly other environmental exposures, during child development can induce or compound mitochondrial dysfunction, which in conjunction with a dysregulated antioxidant response, increase a child's susceptibility of autism.
Collapse
Affiliation(s)
| | - Cecilia Giulivi
- University of California, Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., 3009 VetMed3B, Davis, CA 95616, USA.
| |
Collapse
|
72
|
PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 2017; 8:79046-79060. [PMID: 29108286 PMCID: PMC5668019 DOI: 10.18632/oncotarget.20893] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in the gene encoding Ca2+-independent phospholipase A2 group 6 (PLA2G6) cause the recessive familial type 14 of Parkinson’s disease (PARK14). Mitochondrial dysfunction is involved in the pathogenesis of Parkinson’s disease (PD). PLA2G6 is believed to be required for maintaining mitochondrial function. In the present study, rotenone-induced cellular model of PD was used to investigate possible molecular pathogenic mechanism of PARK14 mutant PLA2G6-induced PD. Overexpression of wild-type (WT) PLA2G6 ameliorated rotenone-induced apoptotic death of SH-SY5Y dopaminergic cells. PARK14 mutant (D331Y), (G517C), (T572I), (R632W), (N659S) or (R741Q) PLA2G6 failed to prevent rotenone-induced activation of mitochondrial apoptotic pathway and exert a neuroprotective effect. WT PLA2G6, but not PARK14 mutant PLA2G6, prevented rotenone-induced mitophagy impairment. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 was ineffective in attenuating rotenone-induced decrease in mitochondrial membrane potential and increase in the level of mitochondrial superoxide. WT PLA2G6, but not PARK14 PLA2G6 mutants, restored enzyme activity of mitochondrial complex I and cellular ATP content in rotenone-treated SH-SY5Y dopaminergic cells. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 failed to prevent rotenone-induced mitochondrial lipid peroxidation and cytochrome c release. These results suggest that PARK14 PLA2G6 mutants lose their ability to maintain mitochondrial function and are defective inpreventing mitochondrial dysfunction, ROS production and activation of mitochondrial apoptotic pathway in rotenone-induced cellular model of PD.
Collapse
|
73
|
Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017; 391:90-99. [PMID: 28757096 DOI: 10.1016/j.tox.2017.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability. Primary disorders of mitochondrial bioenergetics, or Primary Mitochondrial Diseases (PMD) are due to inherited genetic defects in the nuclear or mitochondrial genomes that result in defective oxidative phosphorylation capacity and cellular energy production. Secondary mitochondrial dysfunction is observed in a wide range of diseases such as Alzheimer's and Parkinson's disease. Several lines of evidence suggest that environmental exposures cause substantial mitochondrial dysfunction. Whereby literature from experimental and human studies on exposures associated with Alzheimer's and Parkinson's diseases exist, the significance of exposures as potential triggers in Primary Mitochondrial Disease (PMD) is an emerging clinical question that has not been systematically studied.
Collapse
|
74
|
Frye RE, Rose S, Wynne R, Bennuri SC, Blossom S, Gilbert KM, Heilbrun L, Palmer RF. Oxidative Stress Challenge Uncovers Trichloroacetaldehyde Hydrate-Induced Mitoplasticity in Autistic and Control Lymphoblastoid Cell Lines. Sci Rep 2017; 7:4478. [PMID: 28667285 PMCID: PMC5493637 DOI: 10.1038/s41598-017-04821-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Mitoplasticity occurs when mitochondria adapt to tolerate stressors. Previously we hypothesized that a subset of lymphoblastoid cell lines (LCLs) from children with autistic disorder (AD) show mitoplasticity (AD-A), presumably due to previous environmental exposures; another subset of AD LCLs demonstrated normal mitochondrial activity (AD-N). To better understand mitoplasticity in the AD-A LCLs we examined changes in mitochondrial function using the Seahorse XF96 analyzer in AD and Control LCLs after exposure to trichloroacetaldehyde hydrate (TCAH), an in vivo metabolite of the environmental toxicant and common environmental pollutant trichloroethylene. To better understand the role of reactive oxygen species (ROS) in mitoplasticity, TCAH exposure was followed by acute exposure to 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases ROS. TCAH exposure by itself resulted in a decline in mitochondrial respiration in all LCL groups. This effect was mitigated when TCAH was followed by acute DMNQ exposure but this varied across LCL groups. DMNQ did not affect AD-N LCLs, while it neutralized the detrimental effect of TCAH in Control LCLs and resulted in a increase in mitochondrial respiration in AD-A LCLs. These data suggest that acute increases in ROS can activate mitochondrial protective pathways and that AD-A LCLs are better able to activate these protective pathways.
Collapse
Affiliation(s)
- Richard Eugene Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rebecca Wynne
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sirish C Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah Blossom
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kathleen M Gilbert
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lynne Heilbrun
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
75
|
Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases. Front Mol Biosci 2016; 3:43. [PMID: 27597947 PMCID: PMC4992684 DOI: 10.3389/fmolb.2016.00043] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Serena Pantalone
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | | |
Collapse
|
76
|
Biernacka JM, Chung SJ, Armasu SM, Anderson KS, Lill CM, Bertram L, Ahlskog JE, Brighina L, Frigerio R, Maraganore DM. Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson's disease. Parkinsonism Relat Disord 2016; 32:25-30. [PMID: 27545685 DOI: 10.1016/j.parkreldis.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Genetic factors and environmental exposures, including pesticides, contribute to the risk of Parkinson's disease (PD). There have been few studies of gene and pesticide exposure interactions in PD, and all of the prior studies used a candidate gene approach. METHODS We performed the first genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson's disease. Analyses were performed using data on >700,000 single nucleotide polymorphisms (SNPs) in 364 discordant sibling pairs. In addition to testing for SNP-pesticide interaction effects, we also performed exploratory analyses of gene-pesticide interactions at the gene level. RESULTS None of the gene-environment interaction results were significant after genome-wide correction for multiple testing (α = 1.5E-07 for SNP-level tests; α = 2.1E-06 for gene-level tests). Top results in the SNP-level tests provided suggestive evidence (P < 5.0E-06) that the effect of pesticide exposure on PD risk may be modified by SNPs in the ERCC6L2 gene (P = 2.4E-06), which was also supported by suggestive evidence in the gene-level analysis (P = 4.7E-05). None of the candidate genes assessed in prior studies of gene-pesticide interactions reached statistical support in this genome-wide screen. CONCLUSION Although no significant interactions were identified, several of the genes with suggestive evidence of gene-environment interaction effects have biological plausibility for PD risk. Further investigation of the role of those genes in PD risk, particularly in the context of pesticide exposure, in large and carefully recruited samples is warranted.
Collapse
Affiliation(s)
- Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Kari S Anderson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Christina M Lill
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
| | - Lars Bertram
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany; School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology, and Medicine, London, UK
| | - J E Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Laura Brighina
- Department of Neurology, San Gerardo Hospital, Milan Center for Neuroscience, Monza, Italy
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|
77
|
Javed H, Azimullah S, Haque ME, Ojha SK. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease. Front Neurosci 2016; 10:321. [PMID: 27531971 PMCID: PMC4969295 DOI: 10.3389/fnins.2016.00321] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023] Open
Abstract
The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP. The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.
Collapse
Affiliation(s)
- Hayate Javed
- Departments of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - M Emdadul Haque
- Departments of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| |
Collapse
|
78
|
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2016; 54:4432-4451. [PMID: 27349436 DOI: 10.1007/s12035-016-0004-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Andre Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (Imas12), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia. .,Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
| |
Collapse
|
79
|
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016; 2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Collapse
|
80
|
Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 2016; 7:11173. [PMID: 27029645 PMCID: PMC4821887 DOI: 10.1038/ncomms11173] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. This study presents gene expression responses of cultured brain cells to hundreds of chemicals found in the environment and in food. The authors identified chemicals that induce transcriptomic profiles that overlap those seen in human brains affected with autism, aging, and neurodegeneration.
Collapse
Affiliation(s)
- Brandon L Pearson
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| | - Jeremy M Simon
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| | - Eric S McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Giulia Fragola
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| |
Collapse
|
81
|
Kakish J, Lee D, Lee JS. Drugs That Bind to α-Synuclein: Neuroprotective or Neurotoxic? ACS Chem Neurosci 2015; 6:1930-40. [PMID: 26378986 DOI: 10.1021/acschemneuro.5b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Drugs that bind to α-synuclein and form a loop structure between the N- and C-terminus tend to be neuroprotective, whereas others that cause a more compact structure tend to be neurotoxic. The binding of several natural products and other drugs that are involved in dopamine metabolism were investigated by nanopore analysis and isothermal titration calorimetry. The antinausea drugs, cinnarizine and metoclopramide, do not bind to α-synuclein, whereas amphetamine and the herbicides, paraquat and rotenone, bind tightly and cause α-synuclein to adopt a more compact conformation. The recreational drug, cocaine, binds to α-synuclein, whereas heroin and methadone do not. Metformin, which is prescribed for diabetes and is neuroprotective, binds well without causing α-synuclein to adopt a more compact conformation. Methylphenidate (ritalin) binds to sites in both the N- and C-terminus and causes α-synuclein to adopt a loop conformation. In contrast, amphetamine only binds to the N-terminus. Except for cinnarizine and metoclopramide, there is a good correlation between the mode of binding to α-synuclein and whether a drug is neuroprotective or neurotoxic.
Collapse
Affiliation(s)
- Joe Kakish
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| | - Dongsoo Lee
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| | - Jeremy S. Lee
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| |
Collapse
|
82
|
Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:626028. [PMID: 26664453 PMCID: PMC4664805 DOI: 10.1155/2015/626028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5–200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5–200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD.
Collapse
|
83
|
Charli A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology 2015; 53:302-313. [PMID: 26141520 DOI: 10.1016/j.neuro.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/09/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an early neurotoxicological high-throughput index for assessing the risk that pesticides pose to the dopaminergic neuronal system.
Collapse
Affiliation(s)
- Adhithiya Charli
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
84
|
Abstract
BACKGROUND Parkinson's disease (PD) was previously described as the prototypical sporadic disease; however, rapid advances in population and molecular genetics have revealed the existence of a significant number genetic risk factors, prompting its redefinition as a primarily genetic disorder. SOURCES OF DATA Data for this review have been gathered from the published literature. AREAS OF AGREEMENT Multiple haplotypes conveying variable but quantifiable genetic risk, acting concurrently and possibly interacting with one another, provide the basis for a new model of PD. The beginning of this revolution in our understanding came from the clinical observation of parkinsonism with a Mendelian pattern of inheritance in a number of families. The functional work that followed elucidated multiple disease pathways leading to the degeneration of the substantia nigra that characterizes PD. It is however only in recent years, with the emergence of large cohort genome-wide association studies (GWAS), that the relevance of these pathways to so-called sporadic PD has become apparent. AREAS OF CONTROVERSY A substantial portion of the presumed genetic inheritance of PD remains at present undefined. Although it is likely that so-called intermediate risk genetic risk factors are the principal component of this 'missing heritability', this is yet to be proved. GROWING POINTS Although the picture is by now means complete, the beginnings of rational basis for genetic screening of PD risk have begun to emerge. Equally, this enhanced understanding of the various genetic and in turn biochemical pathways shows promising signs of producing fruitful therapeutic strategies. Technological advances promise to reduce the costs associated with and further increase our capability to understand the complex influence of genetics on the pathogenesis of PD. AREAS TIMELY FOR DEVELOPING RESEARCH The coming years will require the enhancement of current techniques and the development of new ones to define PD's missing heritability. It will also require functional work to define better and in turn potentially reverse the mechanisms that contribute with large effect sizes to the risk of sporadic PD.
Collapse
Affiliation(s)
- Stephen Mullin
- Leonard Wolfson Clinical Research Fellow, UCL, Institute of Neurology, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| | - Anthony Schapira
- Department of Clinical Neurosciences, UCL, Institute of Neurology, Hampstead, London, UK
| |
Collapse
|
85
|
Wills LP, Beeson GC, Hoover DB, Schnellmann RG, Beeson CC. Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay. Toxicol Sci 2015; 146:226-34. [PMID: 25926417 DOI: 10.1093/toxsci/kfv085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents.
Collapse
Affiliation(s)
| | - Gyda C Beeson
- *MitoHealth Inc., Charleston, South Carolina, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Douglas B Hoover
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina
| | - Craig C Beeson
- *MitoHealth Inc., Charleston, South Carolina, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
86
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
87
|
Increased susceptibility to ethylmercury-induced mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines. J Toxicol 2015; 2015:573701. [PMID: 25688267 PMCID: PMC4320799 DOI: 10.1155/2015/573701] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022] Open
Abstract
The association of autism spectrum disorders with oxidative stress, redox imbalance, and mitochondrial dysfunction has become increasingly recognized. In this study, extracellular flux analysis was used to compare mitochondrial respiration in lymphoblastoid cell lines (LCLs) from individuals with autism and unaffected controls exposed to ethylmercury, an environmental toxin known to deplete glutathione and induce oxidative stress and mitochondrial dysfunction. We also tested whether pretreating the autism LCLs with N-acetyl cysteine (NAC) to increase glutathione concentrations conferred protection from ethylmercury. Examination of 16 autism/control LCL pairs revealed that a subgroup (31%) of autism LCLs exhibited a greater reduction in ATP-linked respiration, maximal respiratory capacity, and reserve capacity when exposed to ethylmercury, compared to control LCLs. These respiratory parameters were significantly elevated at baseline in the ethylmercury-sensitive autism subgroup as compared to control LCLs. NAC pretreatment of the sensitive subgroup reduced (normalized) baseline respiratory parameters and blunted the exaggerated ethylmercury-induced reserve capacity depletion. These findings suggest that the epidemiological link between environmental mercury exposure and an increased risk of developing autism may be mediated through mitochondrial dysfunction and support the notion that a subset of individuals with autism may be vulnerable to environmental influences with detrimental effects on development through mitochondrial dysfunction.
Collapse
|
88
|
Smirnova L, Hogberg HT, Leist M, Hartung T. Developmental neurotoxicity - challenges in the 21st century and in vitro opportunities. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2015; 31:129-56. [PMID: 24687333 DOI: 10.14573/altex.1403271] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/23/2022]
Abstract
In recent years neurodevelopmental problems in children have increased at a rate that suggests lifestyle factors and chemical exposures as likely contributors. When environmental chemicals contribute to neurodevelopmental disorders developmental neurotoxicity (DNT) becomes an enormous concern. But how can it be tackled? Current animal test- based guidelines are prohibitively expensive, at $ 1.4 million per substance, while their predictivity for human health effects may be limited, and mechanistic data that would help species extrapolation are not available. A broader screening for substances of concern requires a reliable testing strategy, applicable to larger numbers of substances, and sufficiently predictive to warrant further testing. This review discusses the evidence for possible contributions of environmental chemicals to DNT, limitations of the current test paradigm, emerging concepts and technologies pertinent to in vitro DNT testing and assay evaluation, as well as the prospect of a paradigm shift based on 21st century technologies.
Collapse
Affiliation(s)
- Lena Smirnova
- Centers for Alternatives to Animal Testing (CAAT) at Johns Hopkins Bloomberg School of Public Health, USA
| | | | | | | |
Collapse
|
89
|
JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 2014; 328:75-81. [PMID: 25496994 DOI: 10.1016/j.tox.2014.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/27/2014] [Accepted: 12/06/2014] [Indexed: 02/06/2023]
Abstract
Treatment with rotenone, both in vitro and in vivo, is widely used to model dopamine neuron death in Parkinson's disease upon exposure to environmental neurotoxicants and pesticides. Mechanisms underlying rotenone neurotoxicity are still being defined. Our recent studies suggest that rotenone-induced dopamine neuron death involves microtubule destabilization, which leads to accumulation of cytosolic dopamine and consequently reactive oxygen species (ROS). Furthermore, the c-Jun N-terminal protein kinase (JNK) is required for rotenone-induced dopamine neuron death. Here we report that the neural specific JNK3 isoform of the JNKs, but not JNK1 or JNK2, is responsible for this neuron death in primary cultured dopamine neurons. Treatment with taxol, a microtubule stabilizing agent, attenuates rotenone-induced phosphorylation and presumably activation of JNK. This suggests that JNK is activated by microtubule destabilization upon rotenone exposure. Moreover, rotenone inhibits VMAT2 activity but not VMAT2 protein levels. Significantly, treatment with SP600125, a pharmacological inhibitor of JNKs, attenuates rotenone inhibition of VMAT2. Furthermore, decreased VMAT2 activity following in vitro incubation of recombinant JNK3 protein with purified mesencephalic synaptic vesicles suggests that JNK3 can inhibit VMAT2 activity. Together with our previous findings, these results suggest that rotenone induces dopamine neuron death through a series of sequential events including microtubule destabilization, JNK3 activation, VMAT2 inhibition, accumulation of cytosolic dopamine, and generation of ROS. Our data identify JNK3 as a novel regulator of VMAT2 activity.
Collapse
|
90
|
Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? J Bioenerg Biomembr 2014; 47:111-8. [PMID: 25262284 DOI: 10.1007/s10863-014-9571-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Ubiquinone, commonly called coenzyme Q10 (CoQ), is a lipophilic electron carrier and endogenous antioxidant found in all cellular membranes. In the mitochondrial inner membrane it transfers electrons to complex III of the electron transport chain. The short chain CoQ analogue idebenone is in clinical trials for a number of diseases that exhibit a mitochondrial etiology. Nevertheless, evidence that idebenone ameliorates neurological symptoms in human disease is inconsistent. Although championed as an antioxidant, idebenone can also act as a pro-oxidant by forming an unstable semiquinone at complex I. The antioxidant function of idebenone is critically dependent on two-electron reduction to idebenol without the creation of unstable intermediates. Recently, cytoplasmic NAD(P)H quinone oxidoreductase 1 (NQO1) was identified as a major enzyme catalyzing idebenone reduction. While reduction allows idebenone to act as an antioxidant, evidence also suggests that NQO1 enables idebenone to shuttle reducing equivalents from cytoplasmic NAD(P)H to mitochondrial complex III, bypassing any upstream damage to the electron transport chain. In this mini-review we discuss how idebenone can influence mitochondrial function within the context of cytoprotection. Importantly, in the brain NQO1 is expressed primarily by glia rather than neurons. As NQO1 is an inducible enzyme regulated by oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, optimizing NQO1 expression in appropriate cell types within a specific disease context may be key to delivering on idebenone's therapeutic potential.
Collapse
Affiliation(s)
- Sausan Jaber
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 5-34, Baltimore, MD, 21201, USA
| | | |
Collapse
|
91
|
Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease. Mol Neurobiol 2014; 51:209-19. [PMID: 24946750 DOI: 10.1007/s12035-014-8769-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation contributes to the Parkinson's disease (PD) pathology in multiple ways-the two most important being the activation of neuroinflammation and mitochondrial dysfunction. Our recent studies have shown the beneficial effects of a heat shock protein (HSP) inducer, carbenoxolone (Cbx), in reducing the aggregation of α-synuclein in a rotenone-based rat model of PD. The present study was designed to explore its ability to attenuate the α-synuclein-mediated alterations in neuroinflammation and mitochondrial functions. The PD model was generated by the rotenone administration (2 mg/kg b.wt.) to the male SD rats for a period of 5 weeks. Cbx (20 mg/kg b.wt.) co-administration was seen to reduce the activation of astrocytes incited by rotenone. Subsequently, the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited. Further, the expression level of various inflammatory mediators such as COX-2, iNOS, and NF-κB was also reduced following Cbx co-treatment. Cbx was also shown to reduce the rotenone-induced decline in activity of mitochondrial complexes-I, -II, and -IV. Protection of mitochondrial functions and reduction in neuroinflammation lead to the lesser production of ROS and subsequently reduced oxidative stress. This was reflected by the increase in both the cytosolic and mitochondrial GSH levels as well as SOD activity during Cbx co-treatment. Thus, Cbx reduces the inflammatory response and improves the mitochondrial dysfunctions by reducing α-synuclein aggregation. In addition, it also reduces the associated oxidative stress. Due to its ability to target the multiple pathways implicated in the PD, Cbx can serve as a highly beneficial prophylactic agent.
Collapse
|
92
|
Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 2014; 142:206-30. [PMID: 24333264 PMCID: PMC3959583 DOI: 10.1016/j.pharmthera.2013.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Fang Wang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Maciej Skotak
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Namas Chandra
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
93
|
Camilleri A, Vassallo N. The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease. CNS Neurosci Ther 2014; 20:591-602. [PMID: 24703487 DOI: 10.1111/cns.12264] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder leading to progressive motor impairment and for which there is no cure. From the first postmortem account describing a lack of mitochondrial complex I in the substantia nigra of PD sufferers, the direct association between mitochondrial dysfunction and death of dopaminergic neurons has ever since been consistently corroborated. In this review, we outline common pathways shared by both sporadic and familial PD that remarkably and consistently converge at the level of mitochondrial integrity. Furthermore, such knowledge has incontrovertibly established mitochondria as a valid therapeutic target in neurodegeneration. We discuss several mitochondria-directed therapies that promote the preservation, rescue, or restoration of dopaminergic neurons and which have been identified in the laboratory and in preclinical studies. Some of these have progressed to clinical trials, albeit the identification of an unequivocal disease-modifying neurotherapeutic is still elusive. The challenge is therefore to improve further, not least by more research on the molecular mechanisms and pathophysiological consequences of mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| | | |
Collapse
|
94
|
Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines. Transl Psychiatry 2014; 4:e377. [PMID: 24690598 PMCID: PMC4012280 DOI: 10.1038/tp.2014.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/31/2014] [Accepted: 02/02/2014] [Indexed: 11/10/2022] Open
Abstract
There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.
Collapse
|
95
|
Rose S, Frye RE, Slattery J, Wynne R, Tippett M, Pavliv O, Melnyk S, James SJ. Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS One 2014; 9:e85436. [PMID: 24416410 PMCID: PMC3885720 DOI: 10.1371/journal.pone.0085436] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/26/2013] [Indexed: 01/26/2023] Open
Abstract
There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases intracellular reactive oxygen species (ROS). Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32%) of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxicants. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Richard E. Frye
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
- * E-mail:
| | - John Slattery
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Rebecca Wynne
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Marie Tippett
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Oleksandra Pavliv
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Stepan Melnyk
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - S. Jill James
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| |
Collapse
|
96
|
Currie HN, Vrana JA, Han AA, Scardoni G, Boggs N, Boyd JW. An approach to investigate intracellular protein network responses. Chem Res Toxicol 2014; 27:17-26. [PMID: 24359296 DOI: 10.1021/tx400247g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Modern toxicological evaluations have evolved to consider toxicity as a perturbation of biological pathways or networks. As such, toxicity testing approaches are shifting from common end point evaluations to pathway based approaches, where the degree of perturbation of select biological pathways is monitored. These new approaches are greatly increasing the data available to toxicologists, but methods of analyses to determine the inter-relationships between potentially affected pathways are needed to fully understand the consequences of exposure. An approach to construct dose-response curves that use graph theory to describe network perturbations among three disparate mitogen-activated protein kinase (MAPK) pathways is presented. Mitochondrial stress was induced in human hepatocytes (HepG2) by exposing the cells to increasing doses of the complex I inhibitor, deguelin. The relative phosphorylation responses of proteins involved in the regulation of the stress response were measured. Graph theory was applied to the phosphorylation data to obtain parameters describing the network perturbations at each individual dose tested. The graph theory results depicted the dynamic nature of the relationship between p38, JNK, and ERK1/2 under conditions of mitochondrial stress and revealed shifts in the relationships between these MAPK pathways at low doses. The inter-relationship, or crosstalk, among these 3 traditionally linear MAPK cascades was further probed by coexposing cells to deguelin plus SB202190 (JNK and p38 inhibitor) or deguelin plus SB202474 (JNK inhibitor). The cells exposed to deguelin plus SB202474 resulted in significantly decreased viability, which could be visualized and attributed to the decrease of ERK1/2 network centrality. The approach presented here allows for the construction and visualization of dose-response curves that describe network perturbations induced by chemical stress, which provides an informative and sensitive means of assessing toxicological effects on biological systems.
Collapse
Affiliation(s)
- Holly N Currie
- Department of Chemistry, West Virginia University , 217 Clark Hall, Prospect Street, Morgantown, West Virginia 26506, United States
| | | | | | | | | | | |
Collapse
|
97
|
Goldani AAS, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychiatry 2014; 5:100. [PMID: 25161627 PMCID: PMC4129499 DOI: 10.3389/fpsyt.2014.00100] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body's metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.
Collapse
Affiliation(s)
| | - Susan R Downs
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Felicia Widjaja
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Brittany Lawton
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Robert L Hendren
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| |
Collapse
|
98
|
Choi BS, Kim H, Lee HJ, Sapkota K, Park SE, Kim S, Kim SJ. Celastrol from 'Thunder God Vine' protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson's disease. Neurochem Res 2013; 39:84-96. [PMID: 24214023 DOI: 10.1007/s11064-013-1193-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Celastrol, a potent natural triterpene and one of the most promising medicinal molecules, is known to possess a broad range of biological activity. Rotenone, a pesticide and complex I inhibitor, is commonly used to produce experimental models of Parkinson's disease both in vivo and in vitro. The present study was designed to examine the effects of celastrol on cell injury induced by rotenone in the human dopaminergic cells and to elucidate the possible mechanistic clues in its neuroprotective action. We demonstrate that celastrol protects SH-SY5Y cells from rotenone-induced cellular injury and apoptotic cell death. Celastrol also prevented the increased generation of reactive oxygen species and mitochondrial membrane potential (ΔΨm) loss induced by rotenone. Similarly, celastrol treatment inhibited cytochrome c release, Bax/Bcl-2 ratio changes, and caspase-9/3 activation. Celastrol specifically inhibited rotenone-evoked p38 mitogen-activated protein kinase activation in SH-SY5Y cells. These data suggest that celastrol may serve as a potent agent for prevention of neurotoxin-induced neurodegeneration through multiple mechanisms and thus has therapeutic potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bong-Suk Choi
- Department of Biotechnology, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
99
|
The effects of pyridaben pesticide on the histomorphometric, hormonal alternations and reproductive functions of BALB/c mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:1055-64. [PMID: 24379962 PMCID: PMC3874091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE(S) The adverse effects of pyridaben on reproductive system in male animals are not well established. This study was designed to elucidate how pyridaben can effects the histomorphometric, hormonal alternations and reproductive functions of BALB/c mice. Materials and Methods : For this study, 80 adult and apparently healthy male BALB/c mice were divided into three groups Viz, control, test group 1 and test group 2. Test groups 1 and 2 were received the toxin at doses of 53 mg/kg. BW, and 212 mg/kg. BW, respectively. The experiment period for both groups was 10, 25 and 45 days. Results : The levels of FSH, LH and testosterone were significantly (P<0.05) decreased on the dose and time dependant means. The levels of the ROS and NOS were significantly (P<0.05) increased in all test groups. The percent body weight gains significantly (P<0.05) reduced, whereas weights significantly (P<0.05) increased in test groups in a dose and time dependant manner. The histomorphometric and stereologic findings, including diameters of somniferous tubules, thickness of somniferous tubules epithelium, the leydig's cell distribution, TDI, SI, RI revealed that, all these parameters are also significantly (P<0.05) reduces in test groups in a dose and time dependant manner. C onclusion : Pyridaben causes histomorphometric and stereologic changes in testis, as well as hormonal and reproductive functional alternations in BALB/c mice.
Collapse
|
100
|
Marella M, Patki G, Matsuno-Yagi A, Yagi T. Complex I inhibition in the visual pathway induces disorganization of the node of Ranvier. Neurobiol Dis 2013; 58:281-8. [PMID: 23816754 PMCID: PMC3767286 DOI: 10.1016/j.nbd.2013.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/10/2013] [Accepted: 06/15/2013] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depend on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surfaces and need to be associated to be able to anchor their myelin counterpart. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal.
Collapse
Affiliation(s)
- Mathieu Marella
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|