51
|
Colombo MG, Kirchberger I, Amann U, Dinser L, Meisinger C. Association of serum potassium concentration with mortality and ventricular arrhythmias in patients with acute myocardial infarction: A systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25:576-595. [DOI: 10.1177/2047487318759694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Challenging clinical practice guidelines that recommend serum potassium concentration between 4.0–5.0 mEq/L or ≥4.5 mEq/L in patients with acute myocardial infarction, recent studies found increased mortality risks in patients with a serum potassium concentration of ≥4.5 mEq/L. Studies investigating consequences of hypokalemia after acute myocardial infarction revealed conflicting results. Therefore, the aim of this systematic review and meta-analysis was to combine evidence from previous studies on the association of serum potassium concentration with both short and long-term mortality as well as the occurrence of ventricular arrhythmias. Design Systematic review and meta-analysis. Methods A structured search of MEDLINE and EMBASE databases yielded 23 articles published between 1990 and January 2017 that met the inclusion criteria. Study selection, data extraction and quality assessment were carried out by three reviewers. Random effects models were used to pool estimates across the included studies and sensitivity analyses were performed when possible. Results Twelve studies were included in the meta-analysis. Both pooled results from six studies investigating short-term mortality and from five studies examining long-term mortality revealed significantly increased risks in patients with serum potassium concentrations of <3.5 mEq/L, 4.5–<5.0 mEq/L and ≥5.0 mEq/L after acute myocardial infarction. In addition, a serum potassium concentration of <3.5 mEq/L was significantly associated with the occurrence of ventricular arrhythmias. Conclusions Mortality, both short and long term, and the occurrence of ventricular arrhythmias in patients with acute myocardial infarction seem to be negatively associated with hypokalemic serum potassium concentration. There is evidence for adverse consequences of serum potassium concentrations of ≥4.5 mEq/L. Due to the heterogeneity among existing studies, further research is necessary to confirm the need to change clinical practice guidelines.
Collapse
Affiliation(s)
- Miriam Giovanna Colombo
- MONICA/KORA Myocardial Infarction Registry, Central Hospital of Augsburg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
| | - Inge Kirchberger
- MONICA/KORA Myocardial Infarction Registry, Central Hospital of Augsburg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
- Chair of Epidemiology, UNIKA-T, Ludwig-Maximilians-Universität München, Germany
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERcv), Spain
| | - Ute Amann
- MONICA/KORA Myocardial Infarction Registry, Central Hospital of Augsburg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
- Chair of Epidemiology, UNIKA-T, Ludwig-Maximilians-Universität München, Germany
| | - Lisa Dinser
- MONICA/KORA Myocardial Infarction Registry, Central Hospital of Augsburg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
| | - Christa Meisinger
- MONICA/KORA Myocardial Infarction Registry, Central Hospital of Augsburg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
- Chair of Epidemiology, UNIKA-T, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
52
|
Amirnovin R, Lieu P, Imperial-Perez F, Taketomo C, Markovitz BP, Moromisato DY. Safety, Efficacy, and Timeliness of Intravenous Potassium Chloride Replacement Protocols in a Pediatric Cardiothoracic Intensive Care Unit. J Intensive Care Med 2018; 35:371-377. [PMID: 29357785 DOI: 10.1177/0885066617752659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Hypokalemia in children following cardiac surgery occurs frequently, placing them at risk of life-threatening arrhythmias. However, renal insufficiency after cardiopulmonary bypass warrants careful administration of potassium (K+). Two different nurse-driven protocols (high dose and tiered dosing) were implemented to identify an optimal K+ replacement regimen, compared to an historical low-dose protocol. Our objective was to evaluate the safety, efficacy, and timeliness of these protocols. DESIGN A retrospective cohort review of pediatric patients placed on intravenous K+ replacement protocols over 1 year was used to determine efficacy and safety of the protocols. A prospective single-blinded review of K+ repletion was used to determine timeliness. PATIENTS Pediatric patients with congenital or acquired cardiac disease. SETTING Twenty-four-bed cardiothoracic intensive care unit in a tertiary children's hospital. INTERVENTIONS Efficacy was defined as fewer supplemental potassium chloride (KCl) doses, as well as a higher protocol to total doses ratio per patient. Safety was defined as a lower percentage of serum K+ levels ≥4.8 mEq/L after a dose of KCl. Between-group differences were assessed by nonparametric univariate analysis. RESULTS There were 138 patients with a median age of 3.0 (interquartile range: 0.23-10.0) months. The incidence of K+ levels ≥4.8 mEq/L after a protocol dose was higher in the high-dose protocol versus the tiered-dosing protocol but not different between the low-dose and tiered-dosing protocols (high dose = 2.2% vs tiered dosing = 0.5%, P = .05). The ratio of protocol doses to total doses per patient was lower in the low-dose protocol compared to the tiered-dosing protocol (P < .05). Protocol doses were administered 45 minutes faster (P < .001). CONCLUSION The tiered-dosed, nurse-driven K+ replacement protocol was associated with decreased supplemental K+ doses without increased risk of hyperkalemia, administering doses faster than individually ordered doses; the protocol was effective, safe, and timely in the treatment of hypokalemia in pediatric patients after cardiac surgery.
Collapse
Affiliation(s)
- Rambod Amirnovin
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Cardiothoracic Intensive Care Unit, Heart Institute, Los Angeles, CA, USA
| | - Phuong Lieu
- Pharmacy Department, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Carol Taketomo
- Pharmacy Department, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Barry P Markovitz
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Cardiothoracic Intensive Care Unit, Heart Institute, Los Angeles, CA, USA
| | - David Y Moromisato
- Department of Pediatrics, Cardon Children's Medical Center, Mesa, AZ, USA
| |
Collapse
|
53
|
Wang SSY, Tang GWG, Williams G. Pulsus trigeminy and electrolyte derangements: a forgotten primary care presentation. J Prim Health Care 2018; 10:348-351. [DOI: 10.1071/hc18052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
54
|
Greer-Short A, Hund TJ. Editorial commentary: Mathematical modeling as a tool to elucidate fundamental principles in cardiac electrophysiology. Trends Cardiovasc Med 2017; 28:243-245. [PMID: 29269287 DOI: 10.1016/j.tcm.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH.
| |
Collapse
|
55
|
Cook BM, Carter DM, Dell'Orfano H, Matta L. Potassium Chloride Sustained Release Dosing Pathway in an Academic Medical Center. Crit Pathw Cardiol 2017; 16:158-160. [PMID: 29135624 DOI: 10.1097/hpc.0000000000000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Potassium supplementation can be administered intravenously or orally with either immediate release or sustained release formulations. Sustained release potassium chloride allows for delayed absorption and peak effects. In the inpatient setting, it is important to monitor and prevent both hypokalemia and hyperkalemia. Our tertiary-care academic hospital created a clinical pathway for sustained release potassium chloride supplementation in the inpatient population. Our clinical pathway for sustained release potassium chloride creates dosing restrictions designed to prevent hyperkalemia, while allowing exceptions for patients with high requirements.
Collapse
Affiliation(s)
- Bryan M Cook
- From the Department of Pharmacy, Brigham and Women's Hospital, Boston, MA
| | | | | | | |
Collapse
|
56
|
Shinde SD, Sabnis GR, Lanjewar CP, Kerkar PG. A rare endocrine cause of electrical storm - a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2017; 1:ytx008. [PMID: 31020067 PMCID: PMC6176984 DOI: 10.1093/ehjcr/ytx008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Abstract
Sheehan’s syndrome, also called Simmond’s syndrome, postpartum apoplexy, postpartum pituitary necrosis, and postpartum panhypopituitary syndrome, is the name given to postpartum hypopituitarism. The syndrome is caused by an infarction in the adenohypophysis, usually precipitated by massive uterine haemorrhage and hypovolemic shock during or after childbirth. Extensive destruction of pituitary cells results in varying degree of hypopituitarism. Acute loss of adenohypophysis function can be fatal without glucocorticoid and thyroid replacement therapy and survivors will require life time hormonal replacement therapy. Most cases present in the postpartum period with lactation failure or after months to years after the delivery. In many affected women, anterior pituitary dysfunction is not diagnosed for many years. Dyselectrolytemia is one of a common presentation in Sheehan’s syndrome. Herein, we report a case of a 35-year old female with a history of obstetric hysterectomy 2 years ago in view of severe postpartum haemorrhage with history of failure of lactation and three episodes of syncope since last 1½ years and now presented with polymorphic ventricular tachycardia which required DC cardioversion. She was referred as a case of long QT syndrome. On investigating further, she had hypokalaemia secondary to hypopituitarism due to Sheehan’s syndrome.
Collapse
Affiliation(s)
- Sunny D Shinde
- Department of Cardiology, Seth G S Medical College and King Edward VII Memorial Medical College, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Girish R Sabnis
- Department of Cardiology, Seth G S Medical College and King Edward VII Memorial Medical College, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Charan P Lanjewar
- Department of Cardiology, Seth G S Medical College and King Edward VII Memorial Medical College, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Prafulla G Kerkar
- Department of Cardiology, Seth G S Medical College and King Edward VII Memorial Medical College, Acharya Donde Marg, Parel, Mumbai 400012, India
| |
Collapse
|
57
|
Cahoon WD, Figueroa SA, Wavra T, Guanci MM, Mathiesen C, Hamilton LA. Clinical Q & A: Translating Therapeutic Temperature Management from Theory to Practice. Ther Hypothermia Temp Manag 2017; 7:111-115. [PMID: 28617214 DOI: 10.1089/ther.2017.29027.mkb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William D Cahoon
- 2 Coronary and Cardiothoracic Intensive Care , VCU Health System, Richmond, Virginia
| | - Stephen A Figueroa
- 3 Division of Neurocritical Care, The University of Texas Southwestern Medical Center , Dallas, Texas
| | - Teresa Wavra
- 4 Cardiovascular CNS, Mission Hospital , Mission Viejo, California
| | - Mary McKenna Guanci
- 5 Neurointensive Care, Massachusetts General Hospital , Boston, Massachusetts
| | | | - Leslie A Hamilton
- 7 University of Tennessee Health Science Center , College of Pharmacy, Knoxville, Tennessee
| |
Collapse
|
58
|
Kuusela J, Larsson K, Shah D, Prajapati C, Aalto-Setälä K. Low extracellular potassium prolongs repolarization and evokes early afterdepolarization in human induced pluripotent stem cell-derived cardiomyocytes. Biol Open 2017; 6:777-784. [PMID: 28619993 PMCID: PMC5483019 DOI: 10.1242/bio.024216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long QT syndrome (LQTS) is characterized by a prolonged QT-interval on electrocardiogram and by increased risk of sudden death. One of the most common and potentially life-threatening electrolyte disturbances is hypokalemia, characterized by low concentrations of K+. Using a multielectrode array platform and current clamp technique, we investigated the effect of low extracellular K+ concentration ([K+]Ex) on the electrophysiological properties of hiPSC-derived cardiomyocytes (CMs) generated from a healthy control subject (WT) and from two symptomatic patients with type 1 of LQTS carrying G589D (LQT1A) or IVS7-2A>G mutation (LQT1B) in KCNQ1. The baseline prolongations of field potential durations (FPDs) and action potential durations (APDs) were longer in LQT1-CMs than in WT-CMs. Exposure to low [K+]Ex prolonged FPDs and APDs in a concentration-dependent fashion. LQT1-CMs were found to be more sensitive to low [K+]Ex compared to WT-CMs. At baseline, LQT1A-CMs had more prolonged APDs than LQT1B-CMs, but low [K+]Ex caused more pronounced APD prolongation in LQT1B-CMs. Early afterdepolarizations in the action potentials were observed in a subset of LQT1A-CMs with further prolonged baseline APDs and triangular phase 2 profiles. This work demonstrates that the hiPSC-derived CMs are sensitive to low [K+]Ex and provide a platform to study acquired LQTS. Summary: This is the first study showing the effects of low extracellular potassium on the electrophysiological properties of human induced pluripotent stem cell-derived long QT cardiomyocytes at single and multicellular level.
Collapse
Affiliation(s)
- Jukka Kuusela
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.,BioMediTech, Tampere, Finland
| | - Kim Larsson
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.,BioMediTech, Tampere, Finland
| | - Disheet Shah
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.,BioMediTech, Tampere, Finland
| | - Chandra Prajapati
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.,BioMediTech, Tampere, Finland
| | - Katriina Aalto-Setälä
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland .,BioMediTech, Tampere, Finland.,School of Medicine, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
59
|
Tse G, Wong ST, Tse V, Yeo JM. Monophasic action potential recordings: which is the recording electrode? J Basic Clin Physiol Pharmacol 2017; 27:457-62. [PMID: 27135622 DOI: 10.1515/jbcpp-2016-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022]
Abstract
The aim of this article is to provide an overview of current debate on the monophasic action potential (MAP) recording technique, specifically whether the depolarizing or the reference electrode is responsible for recording the MAP waveform. A literature search was made using key words including monophasic action potential, MAP, electrophysiological basis, recording electrode, depolarizing electrode, contact electrode, indifferent electrode, and reference electrode. References from articles were screened for additional relevant papers. Articles published by the different experimental groups claim that depolarizing electrode, but not reference electrode, records MAPs from the myocardium. This can be more accurately described when considering biophysical theory, which states that MAP is a bipolar signal with contributions from not only the depolarizing electrode but also remote activation at the reference electrode. It is not meaningful to claim that one is the recording electrode because potential differences must be measured between two points in space. Nevertheless, the MAP technique is useful for assessing the local electrical activity of the myocardium in contact with the depolarizing electrode. It is important to have the recording electrode in close proximity with the reference electrode to minimize contamination from far-field signals.
Collapse
|
60
|
Lee S, Kang E, Yoo KD, Choi Y, Kim DK, Joo KW, Yang SH, Kim YL, Kang SW, Yang CW, Kim NH, Kim YS, Lee H. Lower serum potassium associated with increased mortality in dialysis patients: A nationwide prospective observational cohort study in Korea. PLoS One 2017; 12:e0171842. [PMID: 28264031 PMCID: PMC5338775 DOI: 10.1371/journal.pone.0171842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Abnormal serum potassium concentration has been suggested as a risk factor for mortality in patients undergoing dialysis patients. We investigated the impact of serum potassium levels on survival according to dialysis modality. Methods A nationwide, prospective, observational cohort study for end stage renal disease patients has been ongoing in Korea since August 2008. Our analysis included patients whose records contained data regarding serum potassium levels. The relationship between serum potassium and mortality was analyzed using competing risk regression. Results A total of 3,230 patients undergoing hemodialysis (HD, 64.3%) or peritoneal dialysis (PD, 35.7%) were included. The serum potassium level was significantly lower (P < 0.001) in PD (median, 4.5 mmol/L; interquartile range, 4.0–4.9 mmol/L) than in HD patients (median, 4.9 mmol/L; interquartile range, 4.5–5.4 mmol/L). During 4.4 ± 1.7 years of follow-up, 751 patients (23.3%) died, mainly from cardiovascular events (n = 179) and infection (n = 120). In overall, lower serum potassium level less than 4.5 mmol/L was an independent risk factor for mortality after adjusting for age, comorbidities, and nutritional status (sub-distribution hazard ratio, 1.30; 95% confidence interval 1.10–1.53; P = 0.002). HD patients showed a U-shaped survival pattern, suggesting that both lower and higher potassium levels were deleterious, although insignificant. However, in PD patients, only lower serum potassium level (<4.5 mmol/L) was an independent predictor of mortality (sub-distribution hazard ratio, 1.35; 95% confidence interval 1.00–1.80; P = 0.048). Conclusion Lower serum potassium levels (<4.5 mmol/L) occur more commonly in PD than in HD patients. It represents an independent predictor of survival in overall dialysis, especially in PD patients. Therefore, management of dialysis patients should focus especially on reducing the risk of hypokalemia, not only that of hyperkalemia.
Collapse
Affiliation(s)
- Sunhwa Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Don Yoo
- Department of Internal Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Republic of Korea
| | - Yunhee Choi
- Seoul National University Hospital, Medical Research Collaborating Center, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hee Yang
- Seoul National University Kidney Research Institute, Seoul, Republic of Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Woo Yang
- Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Nam Ho Kim
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Seoul National University Kidney Research Institute, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
61
|
Tse G, Chan YWF, Keung W, Yan BP. Electrophysiological mechanisms of long and short QT syndromes. IJC HEART & VASCULATURE 2017; 14:8-13. [PMID: 28382321 PMCID: PMC5368285 DOI: 10.1016/j.ijcha.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 12/21/2022]
Abstract
The QT interval on the human electrocardiogram is normally in the order of 450 ms, and reflects the summated durations of action potential (AP) depolarization and repolarization of ventricular myocytes. Both prolongation and shortening in the QT interval have been associated with ventricular tachy-arrhythmias, which predispose affected individuals to sudden cardiac death. In this article, the molecular determinants of the AP duration and the causes of long and short QT syndromes (LQTS and SQTS) are explored. This is followed by a review of the recent advances on their arrhythmogenic mechanisms involving reentry and/or triggered activity based on experiments conducted in mouse models. Established and novel clinical risk markers based on the QT interval for the prediction of arrhythmic risk and cardiovascular mortality are presented here. It is concluded by a discussion on strategies for the future rational design of anti-arrhythmic agents.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Yin Wah Fiona Chan
- Department of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, PR China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
62
|
Kirthi Priya P, Reddy MR. Study of factors affecting the progression and termination of drug induced Torsade de pointes in two dimensional cardiac tissue. J Electrocardiol 2017; 50:332-341. [PMID: 28202194 DOI: 10.1016/j.jelectrocard.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION To study the conditions leading to the initiation and termination of drug induced Torsade de pointes (TdP) along with QT prolongation. METHODS A 2D anisotropic transmural section of the ventricular myocardium is modeled using the TP06 equations and the cells are interconnected with gap junction conductances (GJC). The tissue is remodeled by reducing the repolarization reserve (by increasing calcium current (ICaL)) of all cells thus making them vulnerable to development of early after depolarizations (EADs). RESULTS Clinical risk conditions like decreased potassium current (IKr), bradycardia, hypokalemia and short-long-short (SLS) triggering sequences are included in the tissue. A pseudo-electrocardiogram is created to realize the intensity of remodeling required in presence of risk factors to initiate TdP. On initiating TdP, the effect of increasing GJC and decreasing ICaL is shown to terminate a non-self-limiting TdP. CONCLUSION Without the inclusion of underlying increase in ICaL along with risk factors, TdP cannot be initiated.
Collapse
Affiliation(s)
- Ponnuraj Kirthi Priya
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.
| | - M Ramasubba Reddy
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
63
|
Foss F, Pro B, Miles Prince H, Sokol L, Caballero D, Horwitz S, Coiffier B. Responses to romidepsin by line of therapy in patients with relapsed or refractory peripheral T-cell lymphoma. Cancer Med 2017; 6:36-44. [PMID: 27981793 PMCID: PMC5269566 DOI: 10.1002/cam4.939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/23/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of aggressive non-Hodgkin lymphomas typically associated with poor prognosis. Most patients with PTCL receive chemotherapy as first-line treatment, but many experience rapid relapse. For patients with relapsed/refractory PTCL, responses to treatment and long-term outcomes tend to worsen with increasing lines of therapy. Romidepsin is a potent class I histone deacetylase inhibitor approved by the US Food and Drug Administration for the treatment of PTCL in patients who have received ≥1 prior therapy. A pivotal phase 2 trial of romidepsin in patients with relapsed/refractory PTCL demonstrated an objective response rate of 25% (33/130), including 15% with confirmed/unconfirmed complete response, and a median duration of response of 28 months. In the analysis presented herein, romidepsin was shown to have similar responses and long-term outcomes in patients with 1, 2, and ≥3 prior lines of treatment, including in patients with disease refractory to the last prior therapy. Although adverse events increased with increasing lines of treatment, the rate of dose modifications and discontinuations due to adverse events was not significantly different. These data support the use of romidepsin as salvage treatment for PTCL irrespective of the number of prior therapies.
Collapse
Affiliation(s)
| | - Barbara Pro
- Thomas Jefferson UniversityPhiladelphiaPennsylvania
| | - H. Miles Prince
- Peter MacCallum Cancer CentreUniversity of MelbourneMelbourne, VictoriaAustralia
| | | | | | | | | |
Collapse
|
64
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as key enzyme in many cardiac pathologies, especially heart failure (HF), myocardial infarction and cardiomyopathies, thus leading to contractile dysfunction and malignant arrhythmias. While many pathways leading to CaMKII activation have been elucidated in recent years, hardly any clinically viable compounds affecting CaMKII activity have progressed from basic in vitro science to in vivo studies. This review focuses on recent advances in anti-arrhythmic strategies involving CaMKII. Specifically, both inhibition of CaMKII itself to prevent arrhythmias, as well as anti-arrhythmic approaches affecting CaMKII activity via alterations in signaling cascades upstream and downstream of CaMKII will be discussed.
Collapse
Affiliation(s)
- Julian Mustroph
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Stefan Neef
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Lars S Maier
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany.
| |
Collapse
|
65
|
Tse G, Sun B, Wong ST, Tse V, Yeo JM. Anti-arrhythmic effects of hypercalcemia in hyperkalemic, Langendorff-perfused mouse hearts. Biomed Rep 2016; 5:301-310. [PMID: 27588173 PMCID: PMC4998139 DOI: 10.3892/br.2016.735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
The present study examined the ventricular arrhythmic and electrophysiological properties during hyperkalemia (6.3 mM [K+] vs. 4 mM in normokalemia) and anti-arrhythmic effects of hypercalcemia (2.2 mM [Ca2+]) in Langendorff-perfused mouse hearts. Monophasic action potential recordings were obtained from the left ventricle during right ventricular pacing. Hyperkalemia increased the proportion of hearts showing provoked ventricular tachycardia (VT) from 0 to 6 of 7 hearts during programmed electrical stimulation (Fisher's exact test, P<0.05). It shortened the epicardial action potential durations (APDx) at 90, 70, 50 and 30% repolarization and ventricular effective refractory periods (VERPs) (analysis of variance, P<0.05) without altering activation latencies. Endocardial APDx and VERPs were unaltered. Consequently, ∆APDx (endocardial APDx-epicardial APDx) was increased, VERP/latency ratio was decreased and critical intervals for reexcitation (APD90-VERP) were unchanged. Hypercalcemia treatment exerted anti-arrhythmic effects during hyperkalemia, reducing the proportion of hearts showing VT to 1 of 7 hearts. It increased epicardial VERPs without further altering the remaining parameters, returning VERP/latency ratio to normokalemic values and also decreased the critical intervals. In conclusion, hyperkalemia exerted pro-arrhythmic effects by shortening APDs and VERPs. Hypercalcemia exerted anti-arrhythmic effects by reversing VERP changes, which scaled the VERP/latency ratio and critical intervals.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Bing Sun
- Department of Cardiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, P.R. China
| | | | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
66
|
Tse G, Yeo JM, Chan YW, Lai ETHL, Yan BP. What Is the Arrhythmic Substrate in Viral Myocarditis? Insights from Clinical and Animal Studies. Front Physiol 2016; 7:308. [PMID: 27493633 PMCID: PMC4954848 DOI: 10.3389/fphys.2016.00308] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 01/25/2023] Open
Abstract
Sudden cardiac death (SCD) remains an unsolved problem in the twenty-first century. It is often due to rapid onset, ventricular arrhythmias caused by a number of different clinical conditions. A proportion of SCD patients have identifiable diseases such as cardiomyopathies, but for others, the causes are unknown. Viral myocarditis is becoming increasingly recognized as a contributor to unexplained mortality, and is thought to be a major cause of SCD in the first two decades of life. Myocardial inflammation, ion channel dysfunction, electrophysiological, and structural remodeling may play important roles in generating life-threatening arrhythmias. The aim of this review article is to examine the electrophysiology of action potential conduction and repolarization and the mechanisms by which their derangements lead to triggered and reentrant arrhythmogenesis. By synthesizing experimental evidence from pre-clinical and clinical studies, a framework of how host (inflammation), and viral (altered cellular signaling) factors can induce ion electrophysiological and structural remodeling is illustrated. Current pharmacological options are mainly supportive, which may be accompanied by mechanical circulatory support. Heart transplantation is the only curative option in the worst case scenario. Future strategies for the management of viral myocarditis are discussed.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Jie M. Yeo
- Faculty of Medicine, Imperial College LondonLondon, UK
| | - Yin Wah Chan
- Department of Psychology, School of Biological Sciences, University of CambridgeCambridge, UK
| | - Eric T. H. Lai Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
67
|
Romidepsin for the treatment of relapsed/refractory cutaneous T-cell lymphoma (mycosis fungoides/Sézary syndrome): Use in a community setting. Crit Rev Oncol Hematol 2016; 106:99-107. [PMID: 27637355 DOI: 10.1016/j.critrevonc.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/14/2016] [Accepted: 07/04/2016] [Indexed: 11/23/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of rare non-Hodgkin lymphomas that arise in the skin. In advanced stages, CTCL becomes systemic and is associated with poor prognosis. Diagnosis of CTCL and treatment of early-stage disease with topical therapies often occurs under the care of a dermatologist. Community oncologists see few patients with CTCL due to direct referrals from dermatologists to academic or lymphoma specialty centers. However, some patients will continue to be managed in a community setting. Currently there is no evidence-based stepwise algorithm for treatment of patients with CTCL, and guidelines suggest a wide range of systemic therapies, including biologics, targeted agents, and more traditional chemotherapies. To provide optimal care in a community setting, oncologists must become familiar with newer nonchemotherapeutic treatment options. This review highlights romidepsin, a histone deacetylase inhibitor approved for the treatment of patients with CTCL who have received ≥1 prior systemic therapy.
Collapse
|
68
|
Tse G, Lai ETH, Lee APW, Yan BP, Wong SH. Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart. Front Physiol 2016; 7:230. [PMID: 27378939 PMCID: PMC4906021 DOI: 10.3389/fphys.2016.00230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/30/2016] [Indexed: 01/09/2023] Open
Abstract
Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Eric T. H. Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong KongHong Kong, China
| | - Alex P. W. Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Sunny H. Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
69
|
Abstract
Heart disease produces substantial remodeling of K(+) channels that in general promotes arrhythmia occurrence. In the case of ventricular arrhythmias, K(+) channel remodeling contributes to the arrhythmic risk and increases vulnerability to torsades de pointes with K(+) channel inhibiting drugs. Atrial K(+) channel remodeling caused by atrial fibrillation promotes arrhythmia stability and presents opportunities for the development of new drugs targeting atrial inward rectifier K(+) currents. A better understanding of K(+) channel remodeling will help clinicians to appreciate arrhythmia mechanisms and determinants in a variety of clinical situations and to better manage arrhythmia therapy in patients with heart disease.
Collapse
Affiliation(s)
- Vincent Algalarrondo
- Department of Medicine, Research Center, Montreal Heart Institute, University of Montreal, 5000 Belanger Street East, Montreal, Quebec H1T 1C8, Canada; Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada; Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Stanley Nattel
- Department of Medicine, Research Center, Montreal Heart Institute, University of Montreal, 5000 Belanger Street East, Montreal, Quebec H1T 1C8, Canada; Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada; Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany.
| |
Collapse
|
70
|
Foss F, Horwitz S, Pro B, Prince HM, Sokol L, Balser B, Wolfson J, Coiffier B. Romidepsin for the treatment of relapsed/refractory peripheral T cell lymphoma: prolonged stable disease provides clinical benefits for patients in the pivotal trial. J Hematol Oncol 2016; 9:22. [PMID: 26965915 PMCID: PMC4785666 DOI: 10.1186/s13045-016-0243-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Achievement of durable responses in patients with relapsed/refractory peripheral T cell lymphoma (PTCL) is challenging with current therapies, and there are few data regarding the potential benefits of continuing treatment in patients with the best response of stable disease (SD). Histone deacetylase inhibitors are a novel class of drugs with activity in T cell malignancies. Romidepsin was approved by the US Food and Drug Administration for the treatment of relapsed/refractory PTCL based on a pivotal trial demonstrating an objective response rate of 25% (33/130), including 15% with confirmed/unconfirmed complete response and a median duration of response of 28 months. Our objective was to further study the clinical benefits of romidepsin in patients that had the best response of SD. METHODS Patients with PTCL relapsed/refractory to ≥1 prior therapy were treated with the approved dose of 14 mg/m(2) romidepsin on days 1, 8, and 15 of six 28-day cycles; patients with SD or response after cycle 6 were allowed to continue on study until progression. By protocol amendment, patients treated for ≥12 cycles could receive maintenance dosing twice per cycle; after cycle 24, dosing could be further reduced to once per cycle in those who had received maintenance dosing for ≥6 months. RESULTS Of the 32 patients (25%) with the best response of SD, 22 had SD for ≥90 days (SD90; cycle 4 response assessment). The longest SD was >3 years in a patient who received maintenance dosing of 14 mg/m(2) on days 1 and 15 beginning in cycle 13. Patients with the best response of SD90 or partial response achieved similar overall and progression-free survival. Prolonged dosing of romidepsin was well tolerated. CONCLUSIONS We concluded that patients who achieve SD may consider continuing treatment because the clinical benefits of romidepsin may extend beyond objective responses. TRIAL REGISTRATION NCT00426764.
Collapse
Affiliation(s)
- Francine Foss
- />Yale Cancer Center, PO Box 208028, 333 Cedar St, TMP 3, New Haven, CT 06520-8028 USA
| | - Steven Horwitz
- />Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Barbara Pro
- />Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - H. Miles Prince
- />Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
71
|
Hronek J, Reed M. Nursing Roles in Cardiac Safety: Romidepsin in Patients With T-Cell Lymphoma. Oncol Nurs Forum 2016; 43:227-34. [DOI: 10.1188/16.onf.227-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
Tse G, Tse V, Yeo JM. Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep 2016; 4:313-324. [PMID: 26998268 PMCID: PMC4774402 DOI: 10.3892/br.2016.577] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Ventricular arrhythmic and electrophysiological properties were examined during normokalaemia (5.2 mM [K+]), hypokalaemia (3 mM [K+]) or hypokalaemia in the presence of 0.1 or 2 mM heptanol in Langendorff-perfused mouse hearts. Left ventricular epicardial or endocardial monophasic action potential recordings were obtained during right ventricular pacing. Hypokalaemia induced ventricular premature beats (VPBs) in 5 of 7 and ventricular tachycardia (VT) in 6 of 7 hearts (P<0.01), prolonged action potential durations (APD90) from 36.2±1.7 to 55.7±2.0 msec (P<0.01) and shortened ventricular effective refractory periods (VERPs) from 44.5±4.0 to 28.9±3.8 msec (P<0.01) without altering conduction velocities (CVs) (0.17±0.01 m/sec, P>0.05), reducing excitation wavelengths (λ, CV × VERP) from 7.9±1.1 to 5.1±0.3 mm (P<0.05) while increasing critical intervals (CI, APD90-VERP) from −8.3±4.3 to 26.9±2.0 msec (P>0.001). Heptanol (0.1 mM) prevented VT, restored effective refractory period (ERP) to 45.2±2.9 msec without altering CV or APD, returning λ to control values (P>0.05) and CI to 8.4±3.8 msec (P<0.05). Heptanol (2 mM) prevented VPBs and VT, increased ERP to 67.7±7.6 msec (P<0.05), and reduced CV to 0.11±0.1 m/sec (P<0.001) without altering APD (P>0.05), returning λ and CI to control values (P>0.05). Anti-arrhythmic effects of heptanol during hypokalaemia were explicable by ERP changes, scaling λ and CI.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec H3G 1YG, Canada
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
73
|
Chan YH, Tsai WC, Ko JS, Yin D, Chang PC, Rubart M, Weiss JN, Everett TH, Lin SF, Chen PS. Small-Conductance Calcium-Activated Potassium Current Is Activated During Hypokalemia and Masks Short-Term Cardiac Memory Induced by Ventricular Pacing. Circulation 2015; 132:1377-86. [PMID: 26362634 DOI: 10.1161/circulationaha.114.015125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/11/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hypokalemia increases the vulnerability to ventricular fibrillation. We hypothesize that the apamin-sensitive small-conductance calcium-activated potassium current (IKAS) is activated during hypokalemia and that IKAS blockade is proarrhythmic. METHODS AND RESULTS Optical mapping was performed in 23 Langendorff-perfused rabbit ventricles with atrioventricular block and either right or left ventricular pacing during normokalemia or hypokalemia. Apamin prolonged the action potential duration (APD) measured to 80% repolarization (APD80) by 26 milliseconds (95% confidence interval [CI], 14-37) during normokalemia and by 54 milliseconds (95% CI, 40-68) during hypokalemia (P=0.01) at a 1000-millisecond pacing cycle length. In hypokalemic ventricles, apamin increased the maximal slope of APD restitution, the pacing cycle length threshold of APD alternans, the pacing cycle length for wave-break induction, and the area of spatially discordant APD alternans. Apamin significantly facilitated the induction of sustained ventricular fibrillation (from 3 of 9 hearts to 9 of 9 hearts; P=0.009). Short-term cardiac memory was assessed by the slope of APD80 versus activation time. The slope increased from 0.01 (95% CI, -0.09 to 0.12) at baseline to 0.34 (95% CI, 0.23-0.44) after apamin (P<0.001) during right ventricular pacing and from 0.07 (95% CI, -0.05 to 0.20) to 0.54 (95% CI, 0.06-1.03) after apamin infusion (P=0.045) during left ventricular pacing. Patch-clamp studies confirmed increased IKAS in isolated rabbit ventricular myocytes during hypokalemia (P=0.038). CONCLUSIONS Hypokalemia activates IKAS to shorten APD and maintain repolarization reserve at late activation sites during ventricular pacing. IKAS blockade prominently lengthens the APD at late activation sites and facilitates ventricular fibrillation induction.
Collapse
Affiliation(s)
- Yi-Hsin Chan
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Wei-Chung Tsai
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Jum-Suk Ko
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Dechun Yin
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Po-Cheng Chang
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Michael Rubart
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - James N Weiss
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Thomas H Everett
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Shien-Fong Lin
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.)
| | - Peng-Sheng Chen
- From Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine (Y.-H.C., W.-C.T., P.-C.C., T.H.E., S.-F.L., P.-S.C.) and Wells Center for Pediatrics Research, Department of Pediatrics (M.R.), Indiana University School of Medicine, Indianapolis; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan (Y.-H.C., P.-C.C.); Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Taiwan (W.-C.T.); Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Jeonbuk, Republic of Korea (J.-S.K.); Department of Cardiology, First Affiliated Hospital of Harbin Medical University, China (D.Y.); Departments of Medicine (Cardiology) and Physiology, University of California, Los Angeles (J.N.W.); and Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan (S.-F.L.).
| |
Collapse
|
74
|
Faggioni M, Knollmann BC. Arrhythmia Protection in Hypokalemia: A Novel Role of Ca2+-Activated K+ Currents in the Ventricle. Circulation 2015; 132:1371-3. [PMID: 26362635 DOI: 10.1161/circulationaha.115.018874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Michela Faggioni
- From Division of Cardiovascular Medicine, Cardio-Thoracic and Vascular Department, University of Pisa, Italy (M.F.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN (B.C.K.)
| | - Björn C Knollmann
- From Division of Cardiovascular Medicine, Cardio-Thoracic and Vascular Department, University of Pisa, Italy (M.F.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN (B.C.K.).
| |
Collapse
|
75
|
Pezhouman A, Singh N, Song Z, Nivala M, Eskandari A, Cao H, Bapat A, Ko CY, Nguyen T, Qu Z, Karagueuzian HS, Weiss JN. Molecular Basis of Hypokalemia-Induced Ventricular Fibrillation. Circulation 2015; 132:1528-1537. [PMID: 26269574 DOI: 10.1161/circulationaha.115.016217] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/05/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypokalemia is known to promote ventricular arrhythmias, especially in combination with class III antiarrhythmic drugs like dofetilide. Here, we evaluated the underlying molecular mechanisms. METHODS AND RESULTS Arrhythmias were recorded in isolated rabbit and rat hearts or patch-clamped ventricular myocytes exposed to hypokalemia (1.0-3.5 mmol/L) in the absence or presence of dofetilide (1 μmol/L). Spontaneous early afterdepolarizations (EADs) and ventricular tachycardia/fibrillation occurred in 50% of hearts at 2.7 mmol/L [K] in the absence of dofetilide and 3.3 mmol/L [K] in its presence. Pretreatment with the Ca-calmodulin kinase II (CaMKII) inhibitor KN-93, but not its inactive analogue KN-92, abolished EADs and hypokalemia-induced ventricular tachycardia/fibrillation, as did the selective late Na current (INa) blocker GS-967. In intact hearts, moderate hypokalemia (2.7 mmol/L) significantly increased tissue CaMKII activity. Computer modeling revealed that EAD generation by hypokalemia (with or without dofetilide) required Na-K pump inhibition to induce intracellular Na and Ca overload with consequent CaMKII activation enhancing late INa and the L-type Ca current. K current suppression by hypokalemia and dofetilide alone in the absence of CaMKII activation were ineffective at causing EADs. CONCLUSIONS We conclude that Na-K pump inhibition by even moderate hypokalemia plays a critical role in promoting EAD-mediated arrhythmias by inducing a positive feedback cycle activating CaMKII and enhancing late INa. Class III antiarrhythmic drugs like dofetilide sensitize the heart to this positive feedback loop.
Collapse
Affiliation(s)
- Arash Pezhouman
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Neha Singh
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Zhen Song
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michael Nivala
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anahita Eskandari
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hong Cao
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aneesh Bapat
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Christopher Y Ko
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Thao Nguyen
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Zhilin Qu
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hrayr S Karagueuzian
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
76
|
Su GY, Wang J, Xu ZX, Qiao XJ, Zhong JQ, Zhang Y. Effects of rotigaptide (ZP123) on connexin43 remodeling in canine ventricular fibrillation. Mol Med Rep 2015; 12:5746-52. [PMID: 26252617 PMCID: PMC4581824 DOI: 10.3892/mmr.2015.4193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 04/22/2015] [Indexed: 11/14/2022] Open
Abstract
The present study investigated the effects of rotigaptide (ZP123) on the expression, distribution and phosphorylation of connexin43 (Cx43) in myocardial cell membranes in cardioversion of ventricular fibrillation (VF). A model of prolonged VF (8, 12 and 30 min) was established in mongrel dogs (n=8/group), following treatment with ZP123 or normal saline (NS control). A sham control was included. Cardiopulmonary resuscitation was begun at the start of VF followed by defibrillation. Animals received a maximum of three defibrillations of increasing energy (70, 100 and 150 J biphasic shock) as required. The average defibrillation energy, defibrillation success rate, return of spontaneous circulation and survival rate were recorded. Cx43 and phosphorylated (p-) Cx43 expression in cardiomyocyte membranes was detected by western blot and immunofluorescence analyses. Compared with the NS-treated control groups, the success defibrillation rate in the 8-min and 12-min ZP123 groups was significantly higher (P<0.05), while the average defibrillation energy was significantly lower (P<0.05). Cx43 expression in the VF groups was significantly lower than that in the sham control group (P<0.05). Cx43 expression was higher in the 12-min and 30-min ZP123 groups than that in the NS control group (P<0.05), while p-Cx43 expression decreased, although the levels were significantly higher than those in the control groups (P<0.05). Cx43 expression was positively correlated with the defibrillation success rate (r=0.91; P<0.01) and negatively with the mean defibrillation energy (r=−0.854; P<0.01), while p-Cx43 expression was positively correlated with the success rate of the previous three defibrillations (r=0.926; P<0.01). In conclusion, ZP123 reduced Cx43 remodeling through regulating the expression, distribution and phosphorylation of Cx43, thereby reducing the defibrillation energy required for successful cardioversion.
Collapse
Affiliation(s)
- Guo-Ying Su
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhen-Xing Xu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Jun Qiao
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing-Quan Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
77
|
Wang AYM, Brimble KS, Brunier G, Holt SG, Jha V, Johnson DW, Kang SW, Kooman JP, Lambie M, McIntyre C, Mehrotra R, Pecoits-Filho R. ISPD Cardiovascular and Metabolic Guidelines in Adult Peritoneal Dialysis Patients Part I - Assessment and Management of Various Cardiovascular Risk Factors. Perit Dial Int 2015; 35:379-87. [PMID: 26228782 PMCID: PMC4520720 DOI: 10.3747/pdi.2014.00279] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/31/2015] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease contributes significantly to the adverse clinical outcomes of peritoneal dialysis (PD) patients. Numerous cardiovascular risk factors play important roles in the development of various cardiovascular complications. Of these, loss of residual renal function is regarded as one of the key cardiovascular risk factors and is associated with an increased mortality and cardiovascular death. It is also recognized that PD solutions may incur significant adverse metabolic effects in PD patients. The International Society for Peritoneal Dialysis (ISPD) commissioned a global workgroup in 2012 to formulate a series of recommendations regarding lifestyle modification, assessment and management of various cardiovascular risk factors, as well as management of the various cardiovascular complications including coronary artery disease, heart failure, arrhythmia (specifically atrial fibrillation), cerebrovascular disease, peripheral arterial disease and sudden cardiac death, to be published in 2 guideline documents. This publication forms the first part of the guideline documents and includes recommendations on assessment and management of various cardiovascular risk factors. The documents are intended to serve as a global clinical practice guideline for clinicians who look after PD patients. The ISPD workgroup also identifies areas where evidence is lacking and further research is needed.
Collapse
Affiliation(s)
| | - K Scott Brimble
- St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Gillian Brunier
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Holt
- Division of Nephrology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Vivekanand Jha
- George Institute for Global Health India, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - David W Johnson
- University of Queensland at Princess Alexandra Hospital, Brisbane, Australia Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Yonsei University, Korea
| | - Jeroen P Kooman
- Division of Nephrology, University Hospital Maastricht, Maastricht, The Netherlands
| | - Mark Lambie
- Health Services Research Unit, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, United Kingdom
| | - Chris McIntyre
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Rajnish Mehrotra
- Harborview Medical Center, Division of Nephrology/Department of Medicine, University of Washington, Washington, DC, United States
| | - Roberto Pecoits-Filho
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
78
|
Iyer SP, Foss FF. Romidepsin for the Treatment of Peripheral T-Cell Lymphoma. Oncologist 2015; 20:1084-91. [PMID: 26099743 DOI: 10.1634/theoncologist.2015-0043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/13/2015] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas associated with poor prognosis in most subtypes. Diagnosis of this rare disease by expert hematopathologists improves accuracy of subtyping, and referral to academic or specialty centers is recommended. Many patients, however, will receive treatment in the community, and knowledge of approved agents is key to optimizing therapeutic approaches for all patients. There is no current standard of care for patients with PTCL and no approved therapies for first-line treatment. Although many patients initially respond to induction chemotherapy, responses are often brief, and many patients relapse or become treatment refractory. For patients with relapsed or refractory PTCL, achievement of durable responses is challenging, and there are few treatment options. Romidepsin is a histone deacetylase inhibitor approved by the U.S. Food and Drug Administration for the treatment of patients with cutaneous T-cell lymphoma who have received one prior systemic therapy or more and patients with PTCL who have received one prior therapy or more. Approval of romidepsin for PTCL was based on a pivotal phase II study of patients with relapsed or refractory PTCL (n = 131) that demonstrated an objective response rate of 25% including 15% with complete response; responses lasted a median of >2 years. Long-term responses to romidepsin were achieved in patients regardless of baseline characteristics, including subtype, heavy pretreatment, response to prior therapy, or advanced disease. Common adverse events included hematologic abnormalities, gastrointestinal or asthenic conditions, and infections; romidepsin was not correlated with clinically meaningful QT prolongation or electrocardiogram abnormalities. IMPLICATIONS FOR PRACTICE Due to the rarity, severity, and heterogeneous nature of peripheral T-cell lymphoma (PTCL), diagnosis by expert hematopathologists is preferred, and referral to specialty centers is recommended. Many patients, however, will receive treatment in the community, and community oncologists play a key role in the recognition and treatment of PTCL. Knowledge of approved agents is key for optimizing therapeutic approaches. This review provides an overview of PTCL and an in-depth examination of romidepsin, a histone deacetylase inhibitor approved for the treatment of relapsed or refractory PTCL, and highlights difficulties of diagnosis and optimization of treatment modalities for patients with PTCL.
Collapse
Affiliation(s)
- Swaminathan P Iyer
- Houston Methodist Cancer Center, Houston, Texas, USA; Yale Cancer Center, New Haven, Connecticut, USA
| | - Francine F Foss
- Houston Methodist Cancer Center, Houston, Texas, USA; Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
79
|
Sager PT, Balser B, Wolfson J, Nichols J, Pilot R, Jones S, Burris HA. Electrocardiographic effects of class 1 selective histone deacetylase inhibitor romidepsin. Cancer Med 2015; 4:1178-85. [PMID: 25914207 PMCID: PMC4559029 DOI: 10.1002/cam4.467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Romidepsin is a histone deacetylase inhibitor approved by the FDA for the treatment of patients with cutaneous or peripheral T-cell lymphoma who have received prior systemic therapy. The objective of this analysis was to evaluate the potential QTc effects of romidepsin. Patients with advanced malignancy received 4-h infusions of 14 mg/m2 romidepsin on days 1, 8, and 15 of a 28-day cycle. In cycle 2, a subset of patients received 1-h infusions of 8–12 mg/m2 romidepsin. Patients were administered antiemetics before each romidepsin dose and electrolyte supplementation as needed. Electrocardiogram readings were performed prior to antiemetic administration, prior to romidepsin administration, and at specified time points over the subsequent 24 h. Romidepsin exposure and heart rate were also assessed. In the electrocardiogram-evaluable population, 26 patients received romidepsin at 14 mg/m2 over 4 h. The maximum mean increases from the preantiemetic baseline for QTcF and heart rate were 10.1 msec (upper 90% CI, 14.5 msec) and 18.2 beats per minute, respectively. No patient in this study had an absolute QTcF value >450 msec and only one patient had an increase from the preantiemetic baseline of >60 msec. There was a mild reduction in the PR interval and no meaningful changes in the QRS interval. Despite the use of QT-prolonging antiemetics, treatment with romidepsin did not markedly prolong the QTc interval through 24 h. Increases in calculated QTc may have been exaggerated as a consequence of transient increases in heart rate.
Collapse
Affiliation(s)
- Philip T Sager
- Stanford University School of Medicine, San Francisco, California
| | | | | | | | | | - Suzanne Jones
- Sarah Cannon Research Institute, Nashville, Tennessee
| | | |
Collapse
|
80
|
Koenig X, Hilber K. The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules 2015; 20:2208-28. [PMID: 25642835 PMCID: PMC4382526 DOI: 10.3390/molecules20022208] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022] Open
Abstract
The plant indole alkaloid ibogaine has shown promising anti-addictive properties in animal studies. Ibogaine is also anti-addictive in humans as the drug alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug and despite safety concerns, ibogaine is currently used as an anti-addiction medication in alternative medicine in dozens of clinics worldwide. In recent years, alarming reports of life-threatening complications and sudden death cases, temporally associated with the administration of ibogaine, have been accumulating. These adverse reactions were hypothesised to be associated with ibogaine’s propensity to induce cardiac arrhythmias. The aim of this review is to recapitulate the current knowledge about ibogaine’s effects on the heart and the cardiovascular system, and to assess the cardiac risks associated with the use of this drug in anti- addiction therapy. The actions of 18-methoxycoronaridine (18-MC), a less toxic ibogaine congener with anti-addictive properties, are also considered.
Collapse
Affiliation(s)
- Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria.
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria.
| |
Collapse
|
81
|
Human atrial cell models to analyse haemodialysis-related effects on cardiac electrophysiology: work in progress. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:291598. [PMID: 25587348 PMCID: PMC4284940 DOI: 10.1155/2014/291598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 11/25/2022]
Abstract
During haemodialysis (HD) sessions, patients undergo alterations in the extracellular environment, mostly concerning plasma electrolyte concentrations, pH, and volume, together with a modification of sympathovagal balance. All these changes affect cardiac electrophysiology, possibly leading to an increased arrhythmic risk. Computational modeling may help to investigate the impact of HD-related changes on atrial electrophysiology. However, many different human atrial action potential (AP) models are currently available, all validated only with the standard electrolyte concentrations used in experiments. Therefore, they may respond in different ways to the same environmental changes. After an overview on how the computational approach has been used in the past to investigate the effect of HD therapy on cardiac electrophysiology, the aim of this work has been to assess the current state of the art in human atrial AP models, with respect to the HD context. All the published human atrial AP models have been considered and tested for electrolytes, volume changes, and different acetylcholine concentrations. Most of them proved to be reliable for single modifications, but all of them showed some drawbacks. Therefore, there is room for a new human atrial AP model, hopefully able to physiologically reproduce all the HD-related effects. At the moment, work is still in progress in this specific field.
Collapse
|
82
|
Abuelo JG. Low dialysate potassium concentration: an overrated risk factor for cardiac arrhythmia? Semin Dial 2014; 28:266-75. [PMID: 25488729 DOI: 10.1111/sdi.12337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serum potassium concentrations rise with dietary potassium intake between dialysis sessions and are often at hyperkalemic levels by the next session. Conversely, potassium concentrations fall during each hemodialysis, and sometimes reach hypokalemic levels by the end. Low potassium dialysate, which rapidly decreases serum potassium and often brings it to hypokalemic levels, is almost universally considered a risk factor for life-threatening arrhythmias. While there is little doubt about the threat of lethal arrhythmias due to hyperkalemia, convincing evidence for the danger of low potassium dialysate and rapid or excess potassium removal has not been forthcoming. The original report of more frequent ventricular ectopy in early dialysis that was improved by reducing potassium removal has received very little confirmation from subsequent studies. Furthermore, the occurrence of ventricular ectopy during dialysis does not appear to predict mortality. Studies relating sudden deaths to low potassium dialysate are countered by studies with more thorough adjustment for markers of poor health. Dialysate potassium concentrations affect the excursions of serum potassium levels above or below the normal range, and have the potential to influence dialysis safety. Controlled studies of different dialysate potassium concentration and their effect on mortality and cardiac arrests have not been done. Until these results become available, I propose interim guidelines for the setting of dialysate potassium levels that may better balance risks and benefits.
Collapse
Affiliation(s)
- J Gary Abuelo
- Division of Kidney Disease and Hypertension, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
83
|
Aronsen JM, Skogestad J, Lewalle A, Louch WE, Hougen K, Stokke MK, Swift F, Niederer S, Smith NP, Sejersted OM, Sjaastad I. Hypokalaemia induces Ca²⁺ overload and Ca²⁺ waves in ventricular myocytes by reducing Na⁺,K⁺-ATPase α₂ activity. J Physiol 2014; 593:1509-21. [PMID: 25772299 DOI: 10.1113/jphysiol.2014.279893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypokalaemia is a risk factor for development of ventricular arrhythmias. In rat ventricular myocytes, low extracellular K(+) (corresponding to clinical moderate hypokalaemia) increased Ca(2+) wave probability, Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load and induced SR Ca(2+) leak. Low extracellular K(+) reduced Na(+),K(+)-ATPase (NKA) activity and hyperpolarized the resting membrane potential in ventricular myocytes. Both experimental data and modelling indicate that reduced NKA activity and subsequent Na(+) accumulation sensed by the Na(+), Ca(2+) exchanger (NCX) lead to increased Ca(2+) transient amplitude despite concomitant hyperpolarization of the resting membrane potential. Low extracellular K(+) induced Ca(2+) overload by lowering NKA α2 activity. Triggered ventricular arrhythmias in patients with hypokalaemia may therefore be attributed to reduced NCX forward mode activity linked to an effect on the NKA α2 isoform. ABSTRACT Hypokalaemia is a risk factor for development of ventricular arrhythmias. The aim of this study was to determine the cellular mechanisms leading to triggering of arrhythmias in ventricular myocytes exposed to low Ko. Low Ko, corresponding to moderate hypokalaemia, increased Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load, SR Ca(2+) leak and Ca(2+) wave probability in field stimulated rat ventricular myocytes. The mechanisms leading to Ca(2+) overload were examined. Low Ko reduced Na(+),K(+)-ATPase (NKA) currents, increased cytosolic Na(+) concentration and increased the Na(+) level sensed by the Na(+), Ca(2+) exchanger (NCX). Low Ko also hyperpolarized the resting membrane potential (RMP) without significant alterations in action potential duration. Experiments in voltage clamped and field stimulated ventricular myocytes, along with mathematical modelling, suggested that low Ko increases the Ca(2+) transient amplitude by reducing NKA activity despite hyperpolarization of the RMP. Selective inhibition of the NKA α2 isoform by low dose ouabain abolished the ability of low Ko to reduce NKA currents, to increase Na(+) levels sensed by NCX and to increase the Ca(2+) transient amplitude. We conclude that low Ko, within the range of moderate hypokalaemia, increases Ca(2+) levels in ventricular myocytes by reducing the pumping rate of the NKA α2 isoform with subsequent Na(+) accumulation sensed by the NCX. These data highlight reduced NKA α2 -mediated control of NCX activity as a possible mechanism underlying triggered ventricular arrhythmias in patients with hypokalaemia.
Collapse
Affiliation(s)
- J M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Bjørknes College, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Laboratory markers of ventricular arrhythmia risk in renal failure. BIOMED RESEARCH INTERNATIONAL 2014; 2014:509204. [PMID: 24982887 PMCID: PMC4058221 DOI: 10.1155/2014/509204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/01/2023]
Abstract
Sudden cardiac death continues to be a major public health problem. Ventricular arrhythmia is a main cause of sudden cardiac death. The present review addresses the links between renal function tests, several laboratory markers, and ventricular arrhythmia risk in patients with renal disease, undergoing or not hemodialysis or renal transplant, focusing on recent clinical studies. Therapy of hypokalemia, hypocalcemia, and hypomagnesemia should be an emergency and performed simultaneously under electrocardiographic monitoring in patients with renal failure. Serum phosphates and iron, PTH level, renal function, hemoglobin and hematocrit, pH, inflammatory markers, proteinuria and microalbuminuria, and osmolarity should be monitored, besides standard 12-lead ECG, in order to prevent ventricular arrhythmia and sudden cardiac death.
Collapse
|
85
|
|
86
|
Osadchii OE. Procainamide and lidocaine produce dissimilar changes in ventricular repolarization and arrhythmogenicity in guinea-pig. Fundam Clin Pharmacol 2013; 28:382-93. [DOI: 10.1111/fcp.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences; University of Copenhagen; Blegdamsvej 3 Copenhagen N 2200 Denmark
- Department of Health Science and Technology; University of Aalborg; Fredrik Bajers Vej 7E Aalborg 9220 Denmark
| |
Collapse
|
87
|
Abstract
PURPOSE Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. METHODS The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. RESULTS Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. CONCLUSIONS Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
88
|
Noonan AM, Eisch RA, Liewehr DJ, Sissung TM, Venzon DJ, Flagg TP, Haigney MC, Steinberg SM, Figg WD, Piekarz RL, Bates SE. Electrocardiographic studies of romidepsin demonstrate its safety and identify a potential role for K(ATP) channel. Clin Cancer Res 2013; 19:3095-104. [PMID: 23589175 DOI: 10.1158/1078-0432.ccr-13-0109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Romidepsin is a histone deacetylase inhibitor (HDI) approved for the treatment of both cutaneous and peripheral T-cell lymphoma (CTCL and PTCL). During development, a thorough assessment of cardiac toxicity was conducted. EXPERIMENTAL DESIGN A phase II single-agent nonrandomized study of romidepsin was conducted in patients with CTCL or PTCL who had progressed after at least 1 prior systemic therapy. RESULTS Results for the first 42 patients enrolled on the NCI 1312 phase II study of romidepsin in CTCL or PTCL showed no cardiac toxicity based on serial electrocardiograms (ECG), troponins, and MUGA scans/echocardiograms. The cardiac assessments reported herein confirm the safety of romidepsin among 131 enrolled patients, while supporting a role for electrolyte replacement. Heart rate increased an average 11 bpm following romidepsin infusion; there was no evidence of increased arrhythmia. Criteria for potassium/magnesium replacement were met before 55% of 1365 romidepsin doses; an association with hypoalbuminemia was confirmed. We propose a mechanism for ST segment flattening and depression, the most common ECG abnormalities observed: HDI-induced alteration of the activity or expression of KATP channels. In addition, examination of the variants of the active transporter of romidepsin, ABCB1, showed a trend toward smaller heart rate changes in the peri-infusion period among wild-type than variant diplotypes. CONCLUSIONS We conclude that in the context of appropriate attention to electrolyte levels, the data support the cardiac safety of romidepsin.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adult
- Aged
- Aged, 80 and over
- Antibiotics, Antineoplastic/adverse effects
- Depsipeptides/adverse effects
- Electrocardiography/drug effects
- Female
- Genotype
- Heart Rate/drug effects
- Histone Deacetylase Inhibitors/adverse effects
- Humans
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Magnesium/blood
- Male
- Middle Aged
- Potassium/blood
Collapse
Affiliation(s)
- Anne M Noonan
- Medical Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Karagueuzian HS, Nguyen TP, Qu Z, Weiss JN. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias. Front Physiol 2013; 4:19. [PMID: 23423152 PMCID: PMC3573324 DOI: 10.3389/fphys.2013.00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 01/06/2023] Open
Abstract
Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Cardiovascular Research Laboratory, Translational Arrhythmia Research Section, David Geffen School of Medicine at UCLA Los Angeles, CA, USA
| | | | | | | |
Collapse
|
90
|
Lopez S, Henderson SO. Electrocardiogram changes in Thyrotoxic Periodic Paralysis. West J Emerg Med 2013; 13:512-3. [PMID: 23359336 PMCID: PMC3555582 DOI: 10.5811/westjem.2011.11.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/10/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022] Open
Abstract
Thyrotoxic periodic paralysis (TPP) attacks are characterized as recurrent, transient episodes of muscle weakness that range from mild weakness to complete flaccid paralysis. Episodes of weakness are accompanied by hypokalemia, which left untreated can lead to life-threatening arrhythmias (6). In this case study, we followed a patient’s potassium levels analyzing how they correlate with electrocardiogram changes seen while treating his hypokalemia and ultimately his paralysis.
Collapse
Affiliation(s)
- Sarah Lopez
- Los Angeles County USC Medical Center, USC Keck School of Medicine, Department of Emergency Medicine, Los Angeles, California
| | | |
Collapse
|
91
|
Barra S, Providencia R, Paiva L, Nascimento J. Early repolarization patterns and the role of additional proarrhythmic triggers. Europace 2012; 15:482-5. [DOI: 10.1093/europace/eus421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
92
|
Asmar A, Mohandas R, Wingo CS. A physiologic-based approach to the treatment of a patient with hypokalemia. Am J Kidney Dis 2012; 60:492-7. [PMID: 22901631 DOI: 10.1053/j.ajkd.2012.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/31/2012] [Indexed: 01/15/2023]
Abstract
Hypokalemia is common and can be associated with serious adverse consequences, including paralysis, ileus, cardiac arrhythmias, and death. As a result, the body maintains serum potassium concentration within very narrow limits by tightly regulated feedback and feed-forward systems. Whereas the consequences of symptomatic hypokalemia and severe potassium depletion are well appreciated, chronic mild hypokalemia can accelerate the progression of chronic kidney disease, exacerbate systemic hypertension, and increase mortality. Persistent hypokalemia may reflect total-body potassium depletion or increased renal potassium clearance. In a patient with simple potassium depletion, potassium replacement therapy should correct serum potassium concentration, but may have little effect when renal potassium clearance is abnormally increased from potassium wasting. In such cases, the addition of potassium-sparing diuretics might be helpful. Serum potassium concentration is an inaccurate marker of total-body potassium deficit. Mild hypokalemia may be associated with significant total-body potassium deficits and conversely, total-body potassium stores can be normal in patients with hypokalemia due to redistribution. The speed and extent of potassium replacement should be dictated by the clinical picture and guided by frequent reassessment of serum potassium concentration(.) The goals of therapy should be to correct a potassium deficit, if present, without provoking hyperkalemia. Oral replacement is preferred except when there is no functioning bowel or in the setting of electrocardiogram changes, neurologic symptoms, cardiac ischemia, or digitalis therapy.
Collapse
Affiliation(s)
- Abdo Asmar
- Division of Nephrology, Hypertension, and Transplantation, University of Florida, College of Medicine, Gainesville, FL 32610-0224, USA
| | | | | |
Collapse
|
93
|
Soltysinska E, Thomsen MB. Torsades de Pointes in the Guinea-pig heart : editorial to: "dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart" by O.E. Osadchii. Cardiovasc Drugs Ther 2012; 26:437-9. [PMID: 23011586 DOI: 10.1007/s10557-012-6417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Myojo T, Sato N, Nimura A, Matsuo A, Taniguchi O, Nakamura H, Karim Talib A, Sakamoto N, Takeuchi T, Kawamura Y, Hasebe N. Recurrent ventricular fibrillation related to hypokalemia in early repolarization syndrome. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 35:e234-8. [PMID: 22734973 DOI: 10.1111/j.1540-8159.2012.03460.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe a case of early repolarization syndrome in which augmented J waves were documented during an electrical storm associated with hypokalemia. The patient was referred to our hospital for therapy to treat recurrent ventricular fibrillation (VF). The 12-lead electrocardiogram showed giant J waves associated with hypokalemia during multiple episodes of VF. Although antiarrhythmic agents or deep sedation were not effective for the VF, an intravenous supplementation of potassium completely suppressed the VF with a reduction in the J-wave amplitude. Our report discusses the possible relationship between hypokalemia and VF in early repolarization syndrome.
Collapse
Affiliation(s)
- Takuya Myojo
- Department of Cardiovascular Medicine, Abashiri Kohsei General Hospital, Abashiri, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Osadchii OE. Effects of ventricular pacing protocol on electrical restitution assessments in guinea-pig heart. Exp Physiol 2012; 97:807-21. [DOI: 10.1113/expphysiol.2012.065219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Bapat A, Nguyen TP, Lee JH, Sovari AA, Fishbein MC, Weiss JN, Karagueuzian HS. Enhanced sensitivity of aged fibrotic hearts to angiotensin II- and hypokalemia-induced early afterdepolarization-mediated ventricular arrhythmias. Am J Physiol Heart Circ Physiol 2012; 302:H2331-40. [PMID: 22467308 DOI: 10.1152/ajpheart.00094.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Unlike young hearts, aged hearts are highly susceptible to early afterdepolarization (EAD)-mediated ventricular fibrillation (VF). This differential may result from age-related structural remodeling (fibrosis) or electrical remodeling of ventricular myocytes or both. We used optical mapping and microelectrode recordings in Langendorff-perfused hearts and patch-clamp recordings in isolated ventricular myocytes from aged (24-26 mo) and young (3-4 mo) rats to assess susceptibility to EADs and VF during either oxidative stress with ANG II (2 μM) or ionic stress with hypokalemia (2.7 mM). ANG II caused EAD-mediated VF in 16 of 19 aged hearts (83%) after 32 ± 7 min but in 0 of 9 young hearts (0%). ANG II-mediated VF was suppressed with KN-93 (Ca(2+)/calmodulin-dependent kinase inhibitor) and the reducing agent N-acetylcysteine. Hypokalemia caused EAD-mediated VF in 11 of 11 aged hearts (100%) after 7.4 ± 0.4 min. In 14 young hearts, however, VF did not occur in 6 hearts (43%) or was delayed in onset (31 ± 22 min, P < 0.05) in 8 hearts (57%). In patch-clamped myocytes, ANG II and hypokalemia (n = 6) induced EADs and triggered activity in both age groups (P = not significant) at a cycle length of >0.5 s. When myocytes of either age group were coupled to a virtual fibroblast using the dynamic patch-clamp technique, EADs arose in both groups at a cycle length of <0.5 s. Aged ventricles had significantly greater fibrosis and reduced connexin43 gap junction density compared with young hearts. The lack of differential age-related sensitivity at the single cell level in EAD susceptibility indicates that increased ventricular fibrosis in the aged heart plays a key role in increasing vulnerability to VF induced by oxidative and ionic stress.
Collapse
Affiliation(s)
- Aneesh Bapat
- Translational Arrhythmia Research Section, University of California-Los Angeles Cardiovascular Research Laboratory, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Nguyen TP, Xie Y, Garfinkel A, Qu Z, Weiss JN. Arrhythmogenic consequences of myofibroblast-myocyte coupling. Cardiovasc Res 2011; 93:242-51. [PMID: 22049532 DOI: 10.1093/cvr/cvr292] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS Fibrosis is known to promote cardiac arrhythmias by disrupting myocardial structure. Given recent evidence that myofibroblasts form gap junctions with myocytes at least in co-cultures, we investigated whether myofibroblast-myocyte coupling can promote arrhythmia triggers, such as early afterdepolarizations (EADs), by directly influencing myocyte electrophysiology. METHODS AND RESULTS Using the dynamic voltage clamp technique, patch-clamped adult rabbit ventricular myocytes were electrotonically coupled to one or multiple virtual fibroblasts or myofibroblasts programmed with eight combinations of capacitance, membrane resistance, resting membrane potential, and gap junction coupling resistance, spanning physiologically realistic ranges. Myocytes were exposed to oxidative (1 mmol/L H(2)O(2)) or ionic (2.7 mmol/L hypokalaemia) stress to induce bradycardia-dependent EADs. In the absence of myofibroblast-myocyte coupling, EADs developed during slow pacing (6 s), but were completely suppressed by faster pacing (1 s). However, in the presence of myofibroblast-myocyte coupling, EADs could no longer be suppressed by rapid pacing, especially when myofibroblast resting membrane potential was depolarized (-25 mV). Analysis of the myofibroblast-myocyte virtual gap junction currents revealed two components: an early transient-outward I(to)-like current and a late sustained current. Selective elimination of the I(to)-like component prevented EADs, whereas selective elimination of the late component did not. CONCLUSION Coupling of myocytes to myofibroblasts promotes EAD formation as a result of a mismatch in early vs. late repolarization reserve caused by the I(to)-like component of the gap junction current. These cellular and ionic mechanisms may contribute to the pro-arrhythmic risk in fibrotic hearts.
Collapse
Affiliation(s)
- Thao P Nguyen
- UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
98
|
Madhvani RV, Xie Y, Pantazis A, Garfinkel A, Qu Z, Weiss JN, Olcese R. Shaping a new Ca²⁺ conductance to suppress early afterdepolarizations in cardiac myocytes. J Physiol 2011; 589:6081-92. [PMID: 22025660 DOI: 10.1113/jphysiol.2011.219600] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sudden cardiac death (SCD) due to ventricular fibrillation (VF) is a major world-wide health problem. A common trigger of VF involves abnormal repolarization of the cardiac action potential causing early afterdepolarizations (EADs). Here we used a hybrid biological-computational approach to investigate the dependence of EADs on the biophysical properties of the L-type Ca(2+) current (I(Ca,L)) and to explore how modifications of these properties could be designed to suppress EADs. EADs were induced in isolated rabbit ventricular myocytes by exposure to 600 μmol l(-1) H(2)O(2) (oxidative stress) or lowering the external [K(+)] from 5.4 to 2.0-2.7 mmol l(-1) (hypokalaemia). The role of I(Ca,L) in EAD formation was directly assessed using the dynamic clamp technique: the paced myocyte's V(m) was input to a myocyte model with tunable biophysical parameters, which computed a virtual I(Ca,L), which was injected into the myocyte in real time. This virtual current replaced the endogenous I(Ca,L), which was suppressed with nifedipine. Injecting a current with the biophysical properties of the native I(Ca,L) restored EAD occurrence in myocytes challenged by H(2)O(2) or hypokalaemia. A mere 5 mV depolarizing shift in the voltage dependence of activation or a hyperpolarizing shift in the steady-state inactivation curve completely abolished EADs in myocytes while maintaining a normal Ca(i) transient. We propose that modifying the biophysical properties of I(Ca,L) has potential as a powerful therapeutic strategy for suppressing EADs and EAD-mediated arrhythmias.
Collapse
Affiliation(s)
- Roshni V Madhvani
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-7115, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient reductions in plasma potassium concentration are of importance. Hypokalemia is present in 7% to 17% of patients with cardiovascular disease. Furthermore, up to 20% of hospitalized patients and up to 40% of patients on diuretics suffer from hypokalemia. Importantly, inadequate management of hypokalemia was found in 24% of hospitalized patients. Hypokalemia is associated with increased risk of arrhythmia in patients with cardiovascular disease, as well as increased all-cause mortality, cardiovascular mortality and heart failure mortality by up to 10-fold. Long-term potassium homeostasis depends on renal potassium excretion. However, skeletal muscles play an important role in short-term potassium homeostasis, primarily because skeletal muscles contain the largest single pool of potassium in the body. Moreover, due to the large number of Na(+)/K(+) pumps and K(+) channels, the skeletal muscles possess a huge capacity for potassium exchange. In cardiovascular patients, hypokalemia is often caused by nonpotassium-sparing diuretics, insufficient potassium intake and a shift of potassium into stores by increased potassium uptake stimulated by catecholamines, beta-adrenoceptor agonists and insulin. Interestingly, drugs with a proven significant positive effect on mortality and morbidity rates in heart failure patients all increase plasma potassium concentration. Thus, it may prove beneficial to pay more attention to hypokalemia and to maintain plasma potassium levels in the upper normal range. The more at risk of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis.
Collapse
Affiliation(s)
- Keld Kjeldsen
- Laboratory for Molecular Cardiology, Medical Department B, The Heart Centre, Copenhagen University Hospital (Rigshospitalet) and Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
100
|
Abstract
PURPOSE OF REVIEW To describe the etiology and complications of the refeeding syndrome. RECENT FINDINGS Complications of the refeeding syndrome can include electrolyte abnormalities, heart failure, respiratory failure, and death. This syndrome is of particular importance to critically ill patients, who can be moved from the starved state to the fed state rapidly via enteral or parenteral nutrition. There are a variety of risk factors for the development of the refeeding syndrome. All of these risk factors are tied together by starvation physiology. Case reports and case series continue to be reported, suggesting that this entity continues to exist in critically ill patients. Initiation of enteral nutrition to patients with starvation physiology should be gradual and careful monitoring of electrolytes and organ function is critical during the early stages of refeeding. SUMMARY The refeeding syndrome remains a significant issue in critically ill patients. Knowledge of the risk factors and the clinical signs of the refeeding syndrome is important to optimize outcomes.
Collapse
Affiliation(s)
- Matthew C Byrnes
- Division of Surgical Critical Care, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|